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Constrained robotics systems are serial or parallel robots with less than six degrees

of freedom. Dimensional synthesis is defined as the process of dimensioning a robot,

that is, designing the link dimensions for a given task or set of tasks. In finite-position

synthesis, we define the task as a series of positions that the robot must reach.

Dimensional synthesis of planar mechanisms was first solved using graphic meth-

ods, and later those methods were transformed into algebraic equations that described

the constraints on the movement of the mechanism. This approach was successfully

applied to spherical mechanisms and simple cases of spatial mechanisms. The method-

ology was not extended to general constrained robots due to the difficulty in stating

the geometric constraints for robots with more than three links.

A systematic approach for the synthesis of spatial robots was developed based on

using the kinematics equations of the robot. The kinematics equations are spatial

transformations from a fixed frame to the end-effector of the robot, parameterized by
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both the dimensions of the links and the joint variables.

In this dissertation, a method for the kinematic synthesis of constrained robots

is presented. It is based on the use of dual quaternions to construct the kinematics

equations of the robot from a reference position and to equate them to a set of task

positions. A calculation was devised to compute the maximum number of task posi-

tions for each robot topology, and a classification of constrained robots was obtained

according to this.

The design equations produced using this methodology have been solved numeri-

cally for both the link dimensions and the joint variables, and also a scheme has been

introduced to eliminate the joint variables in order to obtain algebraic equations.

These have been further simplified to closed algebraic expressions in several cases.

The dual quaternion synthesis methodology provides with a tool for the system-

atic design of constrained robots. Some of these results have been implemented in

computer-aided design systems.
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Chapter 1

Introduction

1.1 Overview

The focus of this research is in developing the mathematical and computational core

of interactive systems for the computer-aided design of robots. The key for this

development is the use of the kinematics theory for the analysis of multi-body systems,

which was developed for its application to robotics, within the finite position synthesis

theory for the design of spatial linkage systems. The former has systematic tools for

analyzing any open-chain topology and many closed-chain robots. The kinematic

synthesis of spatial linkages has been generalized from the initial planar theory to

the space for some fundamental primitives, which constitute the component pieces of

most robotic systems. The solution for the synthesis of the basic constrained chains

and the connection of different solutions to form more complex systems will be the

basis to develop synthesis procedures for robotic systems for the exact fitting of the

workspace to a specified task manifold of dimension lower than six.
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1.2 Kinematics of Robots

The term kinematics defines the branch of mechanics which deals with the motion

without considering the forces associated to it. It includes position and its spatial

derivatives: velocities, accelerations and higher derivatives.

A robot can be defined as a mechanical system that can be programmed to perform

a number of tasks involving movement under automatic control. The main charac-

teristic of a robot is its capability of movement, in general in a six-dimensional space

that includes translational and rotational coordinates.

A mechanical system consists of a series of rigid links connected by joints. The

joints allow the relative movement of adjacent links, and are generally powered and

equipped with systems to control the movement. The most common types of joints

in robotic systems are revolute joints, which allow rotary movement between links,

and prismatic joints, which allow linear movement between consecutive links.

The mobility or number of degrees of freedom of the mechanism is defined as the

minimum number of coordinates needed to specify the positions of all members of

the system relative to a particular base frame. The criteria to find the mobility of

mechanisms was first developed by Gruebler (1851-1935) and has been posteriorly

expanded to spatial linkage systems, see [9]. In the case of open chains, the number

of degrees of freedom is equal to the number of joints of the chain, while for parallel

mechanisms other factors have to be considered, see [29], [80].

The study of the kinematics of mechanical systems dealt mainly with planar mech-
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anisms and graphical methods until the kinematics of robots started to develop in

the second half of the 20th century. See for instance [21] for an introduction to the

history of the theory of machines.

1.3 Kinematic Analysis

In its origins, the kinematics of robots focused mainly in analyzing the kinematics

properties for a given robot structure. Research was devoted to extend the mathemat-

ical concepts of planar kinematics to the space, see Bottema [9] and Veldkamp [103].

In 1955, Denavit and Hartenberg [20] introduced the methodology of 4x4 homoge-

neous matrix transformations to analyze robotic systems, which became a standard

tool for the description of robotics systems [13], and especially in dealing with the

forward and inverse kinematics, which relate the position of the end-effector to the

values of the joint angles along the kinematic chain.

The solutions of the direct kinematics define the workspace of the robot. The

concept of workspace of a robotic system was developed by Roth [85], Kumar and

Waldron [41], Tsai and Soni [100] and Gupta and Roth [25] among others. The

workspace of a mechanical system is the set of all positions (translations and orien-

tations) that it can reach. There are many ways of representing the workspace of

a robot. For the purpose of the kinematic analysis, one of the most common ways

is to give the workspace as a 4x4 homogeneous matrix. This describes the spatial

transformations from a frame attached to the end-effector of the robot to a reference
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frame as consecutive displacements along the kinematic chain. There exist other rep-

resentations for the workspace, which fit better for different purposes. For a summary

of different representations of displacements applied to robotics see [92].

Screw theory captures the geometry of Lie algebras and has been widely applied in

kinematic analysis for describing the workspace of mechanisms, characterizing their

mobility and especially for studying the instantaneous properties of the systems. For

finite displacements, the first notions of screw theory can be found in the work of

Chalses in the early 1800s. Chalses proved that a general displacement of a rigid

body can be expressed as a rotation about a line followed by a translation along the

same line, called a screw motion. Rodrigues ( circa 1840) [6] formulated the expression

for the rotation axis of a composite rotation. Screw theory was developed by Ball [7]

and later applied to the kinematics of mechanisms by Dimentberg [22] and Hunt [37].

Its application to finite kinematics was further developed by Tsai [97], Bottema and

Roth [9], Roth [81], Huang [32], [34], [36], and Parkin [69].

The effort of generalizing the representation of planar rotations by mean of complex

numbers led to the invention of quaternions by Hamilton [28]. Dual quaternions

were first introduced by Clifford [11] as a combination of the real quaternions with

Clifford’s dual numbers, and further developed by Study and McAulay around 1890.

Dual quaternions form a Clifford algebra and represent spatial transformations.

Yang and Freudenstein [107] introduced the use of dual quaternions for the analysis

of spatial mechanisms, based on the earlier work of Denavit and Hartenberg and
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Dimentberg. Since then, dual quaternions and their planar version have been used

widely in the analysis of robotic systems and computer graphics, see for instance the

works of Murray[62], McCarthy [53], [23], Ravani and Ge [78], and others, see [106],

[18], [31], [3].

All these analysis tools, combined with numerical and computational methods,

have been used to solve most of the analysis problems.

1.4 Kinematic Synthesis

In the kinematic synthesis, a mechanism is designed “to meet certain motion spec-

ifications” [30]. We differentiate between type synthesis and dimensional synthesis.

In type synthesis the designer decides about the type and number of joints of the

chain [2] (to design for the number of joints was formerly called number synthesis).

In dimensional synthesis the dimensions of the links are calculated to fit a specified

motion.

One of the first works in defining the synthesis of mechanisms, in particular defining

the type synthesis, is due to Franz Releaux (around 1875) [79]. He identified the fact

that the relative motion between two bodies depends on the surfaces of contact. The

two contacting elements constitute a kinematic pair; Releaux identified two types of

pairs: higher pairs, in which the two bodies are in contact at a point or along a line,

and lower pairs, in which the bodies share a surface of contact. This classification of

joints as higher and lower pairs is still in use and will be presented more in detail in
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Chapter 2. The first systematic enumeration of mechanical components is also due

to Releaux; he identified six basic types of components used to create a mechanism.

See [30] for more details.

The dimensional synthesis of mechanisms was historically divided in three cat-

egories: function generation, where a single input-single output was synthesized to

follow a certain input-output function; path generation, in which the mechanism must

reach a set of prescribed points; and rigid body guidance, where the mechanism is de-

signed to reach a set of positions consisting of translation plus orientation. However,

it is possible to express the first two problems as rigid body guidance problems, see

[96]. When the mechanism is forced to reach exactly the specified set of positions,

the rigid body guidance problem is called exact position synthesis.

Burmester (around 1888) developed geometric methods both for analysis and di-

mensional synthesis. His dimensional synthesis method was based on finding a finite

number of precision points representing locations of the moving body that comply

with the movement of the chain. Similar results were developed as mathematical

problems by Schoenflies around the same time.

Freudenstein transformed the geometric methods of what is now called Burmester’s

theory into analytical equations, see for instance his work with Primrose and Sandor

[76], and started the use of computers to generate the solutions, as well as the use

of optimization methods [84]. The synthesis of planar mechanisms has been studied

also by Hartenberg and Denavit [30], Sandor and Erdman [88], and Roth [82].
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The exact synthesis for planar serial chains deals with only a reduced number of

cases, those that consist of prismatic and / or revolute joints and have less than three

degrees of freedom. The finite position synthesis theory was generalized to spherical

linkages, see McCarthy [58]. The synthesis of constrained spherical robots deals also

with a reduced number of mechanisms.

The two main techniques used for the planar synthesis are the geometric constraint

and the complex number methods [88].

The geometric constraint method imposes constraints to the movement of the end-

effector based on the structure of the chain. This yields algebraic equations that are

solved to determine the dimensions of the linkage. This method has been used to

solve several spatial dyads, among others the spatial RR chain by Suh [94]; spatial

CC chain by McCarthy [54], Huang and Chang [35], Vance and Larochelle [102];

the SS chain by Innocenti [38], who found a polynomial solution for this problem,

and Liao and McCarthy [48], who combined the solutions of the finite-dimensional

syntehsis to form a 5-SS platform. This approach was applied to two- and three-

jointed chains ending in S joints, such as the RPS and PPS chains as well as the CS

chain, by Chen and Roth [12]. Nielsen and Roth [64] studied elimination methods

to solve these design equations. The method has been also used recently to design

parallel manipulators by Kim and Tsai [39].

The complex number method was introduced around 1960 by Sandor [88] for planar

synthesis and has been generalized in different ways. It is based on creating loop
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equations for a given chain from a reference position of the end-effector to a desired

position. Sandor used complex numbers to represent both the vectors and the planar

operators and later applied the same procedure to spatial chains using quaternions,

see [86], [44]. The same principle has been applied to spatial synthesis expressing

the links as vectors and the rotations as matrices in [40], [87], and in [89] they were

used to state the design equations for spatial 3R and 4R linkages. However, some

difficulties arised in the use of the loop equation method for spatial synthesis. The

loop equations describe the location of the links and these introduce a set of extra

parameters; extra equations are needed to account for them and for the orientations.

The loop equation method for spatial linkages was used mainly for path generation

due to the fact that the loop equations characterize the translation of the mechanism,

while they are parameterized by the joint variables. In [89], [90], these equations

are called the displacement equations and a set of orientation equations is added to

account for the rotations.

The attempt to generalize the spatial synthesis led to the methodology derived

by Tsai [97] around 1970, which is based on using the geometry underlying screw

kinematics. Geometric elements in kinematics were defined by Yang. Roth [81],

using a concept originated by Halphen (1882), developed the screw triangle as a tool

in kinematics and extended it to screw polygons for the study of n positions of a rigid

body. Tsai applied the screw triangle to the screws representing the joints of a dyad

and the resultant composition of their displacements. Tsai’s dissertation provides
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a long list of chains and associated design equations. This approach introduced

intermediate joint parameters as necessary to describe the chains. In Tsai and Roth

(1973) [99] they obtained an algebraic solution for the 10 design equations of the

spatial RR chain. The equivalent screw triangle provides with a systematic method

for the synthesis of spatial chains; however, its use is limited to dyads and three-link

chains because of the complexity of the equations obtained.

With the development of robotics, kinematics equations, also called forward kine-

matics, started being used for solving the synthesis problem. Park and Bobrow [66]

used them as product of exponentials to optimize the location of cooperating 6-dof

robots. De Sa [19] and Ravani [77] studied the use of the kinematic mapping in pla-

nar synthesis. This approach was introduced by Mavroidis [52] for spatial constrained

robots by considering, instead of the action of the group, the design equations created

from equating directly the elements of the group. This is based on formulating the

4×4 homogeneous transformation that defines the kinematics equations of the robot,

equating it to the goal transformation. Using this formulation, Mavroidis and Lee

solved the spatial RR chain, RRR chain and PRR chain, see [52], [46], [47]. This

methodology provides with a systematic way of creating the design equations for any

robot. On the other hand, the design equations obtained with this approach are

in general more complicated than those derived directly from geometric constraints.

For a selected robot topology, the kinematics equations are parameterized by the

structural dimensions of the robot (link lengths and twist angles and location of the
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robot) and by the joint variables. In the dimensional synthesis, only the structural

parameters matter, hence a representation of the workspace that eliminates the joint

variables would reduce, in general, the complexity of the solution process. The alge-

braic representation of the workspace given by the geometric constraint polynomial

equations leads to a more compact formulation, easier solution and more informa-

tion about the geometry of the problem, but it lacks the systematic methodology for

defining the design equations.

In our approach, we combine the systematic methodology of using the robot kine-

matics equations with the geometric meaning of the equivalent screw triangle. We use

dual quaternions to state the kinematics equations of the chain as successive screw

displacements, described by Gupta [26], see also Tsai [101], and equate them to the

task positions in dual quaternion form. The dual vector of the dual quaternion is the

screw of the displacement used in Tsai’s methodology. The design equations contain

the axes of the robot in a reference configuration, as in [86], parameterized by the

joint variables. However, it is possible to eliminate these to obtain algebraic equations

that, in the simplest cases, have been proved to coincide with those obtained using

geometric methods. The dual quaternion synthesis methodology is intended to be

applied to any robot with less than six degrees of freedom to obtain a set of equations

that is reasonably affordable to solve.
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1.5 Design of Robotic Systems

The design of a robot is the process of choosing of a mechanical system (links and

joints) capable of realizing a task or series of tasks in space. The design process

involves finding or choosing a solution to satisfy a set of requirements. Part of these

requirements are related to the movement of the robot, while others may be related

to factors such as load capacity, repeatability, power consumption or cost. In the

kinematics design problem, the designer receives or specifies a certain task that a

robot has to perform, namely a movement in space, and he or she has to create the

mechanical system that better fits he given kinematics task and also agrees with a

set of performance requirements.

One of the advantages of robots is their capability to perform different tasks.

Traditionally, the robots are designed with enough degrees of freedom so that the

desired task needs only to lie inside the three-dimensional reachable workspace of

the robot. This is accomplished by adjusting the dimensions of the links to reach

the farthest point; the control and path planning are used to solve the problem of

reaching the task inside the reachable volume. However, such a general scheme is

not needed in many cases, and it may be economically more efficient to design robots

tailored to a specific set of tasks.

It is under this framework that we define the constrained robots. A constrained

robotic system is constructed from one or more serial chains, each of which imposes a

constraint on the end-effector. These so-called “constrained robotic systems” provide
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structural support in certain directions while allowing freedom of movement in others.

It seems that there is the need for a tool for the design of robotic systems with

a kinematic synthesis module capable of offering different designs for a given task

or set of tasks. Many of the synthesis procedures give multiple solutions. Together

with the synthesis equations, optimization methods can be used to fit the workspace

of the robot to a broader task or to optimize for some performance specifications.

Among the performance specifications we may want to optimize we include dynamic

requirements, structural requirements (like joint variable limits), trajectory planning

or obstacle avoidance problems. For work in design optimization see [105], [66], [59],

[10], [17], [43], and also the following works [65], [51], [57], [1] about metrics and

performance indices.

In this dissertation we present a method for the kinematic synthesis of robotic

systems of less than six degrees of freedom that is systematic, adaptable to be used

within a design process, and can be applied to any robot topology. It is our goal to

develop the synthesis method so that it can be used as a design tool, and at the same

time use it to characterize the dimension of the spatial synthesis problem. However,

it is important to remark that the dimensional kinematic synthesis is only one of the

steps of the whole design process that has to be considered.
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1.6 Contributions

The research developed in this dissertation is intended to create the mathematical

tools to generalize the finite-position synthesis of spatial robots, with special interest

in its implementation in computer-aided-design software. Its contributions are listed

below.

• A procedure for creating design equations for any constrained robot based on the

expression of the workspace of the robot as dual quaternions. Using these design

equations, a method has been created for computing the maximum number of

exact positions that we can define for each robot topology. See [73].

• An identification of the effect that the structure of the group of displacements

has on the synthesis process. It led to the identification of orientation-limited

robots and translation-unconstrained robots, which differ in the definition of

task positions. Formulas were found to identify these cases. See [73].

• A methodology to eliminate non-structural parameters from the equations,

based on the use of linear algebra and spaces of solutions, that provides in

addition with the inverse kinematics. We compared the degree of complexity of

the initial equations and the ones obtained after the elimination. See [71], [75].

• The application of the above methodology led to the synthesis solution of several

constrained robots that, to our knowledge, had not been completely solved

before using exact synthesis: RPP, RPR, TPR, RPRP, RPC, PRRR, CRR,
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RRRR and RCC. Some of these synthesis methods have been implemented in

a computer software. These results can be found in [73], [75], [74].

• A simplification procedure for the design equations based on locating the fixed

frame in the principal axes of the set of screw transformations that form the

workspace of the robot. This procedure was applied to the spatial RR robot to

obtain a simplified solution. See [70], [72].

1.7 Organization of the Dissertation

The material of this dissertation has been organized in the following way. Chapter 2

contains the mathematical background on group theory, representations and algebras

related to the spatial displacements. Chapter 3 develops the basic theory of the

dual quaternion synthesis of constrained robots and relates this theory to previous

synthesis methodologies. Chapter 4 presents an application of the use of quaternions

for the synthesis of planar and spherical robots, and identifies special cases that

correspond to subgroups of the group of spatial displacements. Chapter 5 contains a

systematic enumeration of all the cases solved using the dual quaternion methodology,

with the specific elimination process for each case and with a numerical example.

Chapter 6 presents the solution for the spatial RR robot in which the equations

are simplified using the geometry of the workspace. Finally, Chapter 7 contains the

conclusions and future research.
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Chapter 2

Kinematics Background

In this chapter we introduce the mathematical tools used in the kinematic synthesis of

spatial linkages. Displacements in space are identified as having a structure of group

with certain properties. Different representations of this group are advantageous for

different purposes; the addition of an inner product allows us to complement the

group to obtain a structure of algebra. This is used to describe the relation between

the displacement and the space where it acts.

The first sections contain the group theory and algebra theory necessary for further

development of the synthesis problem. Later we define kinematic structures and

elements of the kinematics of robots. For basic definitions and proofs, the reader is

referred to [4], [91] and [53].
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2.1 The Group of Displacements

The Euclidean space is a set of points that can be described by three coordinates.

The movement of the points can be viewed as the action of a group on this set. To

study the movement in Euclidean space is to study the properties of this group.

The displacements of rigid bodies correspond to isometries of the three-dimensional

Euclidean space, that is, displacements that preserve the Euclidean distance between

points. The set of isometries of the Euclidean space E3 with the composition of

functions form a non-commutative group called the Euclidean group E(3).

Motion corresponds to a subgroup called the special Euclidean group SE(3) which

is characterized by keeping the angles between points. The Euclidean group has struc-

ture of Lie group, that is, it is a continuous group whose elements form a differentiable

manifold. We are not going to focus on the instantaneous properties of SE(3) but

still need to be able to define arbitrary displacements as close as needed.

2.1.1 Properties of the group of displacements

The subgroups of the Euclidean group play an important role in its structure. On

Table 2.1 we find the continuous subgroups that are of interest to us.

The main subgroups that we deal with are SO(3) and T , the subgroup of spatial

rotations and the subgroup of spatial translations.

SO(3), the special orthogonal group, is a subgroup of the linear group, formed by

the elements of the orthogonal group O(3) with determinant equal to one.
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Table 2.1: Subgroups of the group of spatial displacements

Subgroup Description Dimension

SO(3) Rotations 3

T Translations 3

Ru Rotations about an axis u 1

Tu Translations along a direction u 1

Hu,p Screw displacement along axis u of pitch p 1

Cu Rotation and translation (cylindrical movement) along axis u 2

TP Planar translation on plane P 2

SE(2)P Planar displacements on plane P 3

So Spherical rotations about a point o 3

Yu,p Translating screw of axis u and pitch p 3

Xu Translation followed by rotation about axis u 4

Any spatial motion can be seen as the composition of an element of SO(3) and an

element of T ; both subgroups are disjoint and their union generates the whole special

Euclidean group. The translation group is normal, that is, for any rotation r and

translation t, rtr−1 ∈ T , while the orthogonal group is not. With these conditions,

the special euclidean group has a structure of semi-direct product, SE(3) = SO(3) �

R
3. This translates to the fact that we can operate rotations independently, while

translations are modified by the rotations: we can write any element of SE(3) as

(r, t); then the group operation can be decomposed as

(r1, t1)(r2, t2) = (r1r2, r2t1 + t2). (2.1)
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2.2 The Clifford Algebra of Dual Quaternions

Given an n-dimensional vector space, such as R
n, the addition of an associative prod-

uct that operates two vectors to obtain another vector of the space, creates an algebra.

Examples of algebras are the traditional three-dimensional vector algebra with the

cross product, or the matrix algebra of square matrices with the matrix product. A

Clifford algebra is used in this work to represent the group of proper rigid motions,

and will be defined in the following sections. For more information about Clifford

algebras, see [53], [91], [15] or [24].

2.2.1 Exterior algebra

Exterior algebra was introduced by Grassmann to study linear varieties in a projective

space. Let V be a vector space of dimension n, we can define a wedge operator, ∧,

with the properties:

• Associative: (u ∧ v) ∧ w = u ∧ (v ∧ w)

• Distributive: u ∧ (av + bw) = au ∧ w + bu ∧ w

• Skew-symmetry: u ∧ v = −v ∧ u

This creates an exterior algebra, or multi-vector algebra, denoted as Ω(V ). If a

basis of V is {e1, . . . , en}, the elements of the exterior algebra are linear combinations

of multi-vectors of rank that goes from 0 to n, and correspond to all possible products

of the basis vectors using the wedge product. Vectors of rank i are created as all the
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nonzero combination in operating i basis vectors, e1 ∧ e2 ∧ . . . ∧ ei and so on; there

are
(

n
i

)
of them. The exterior algebra has dimension 2n − 1.

We can interpret the rank p vectors as defining p-dimensional parallelepipeds, such

that rank 1 vectors define lines, rank 2 vectors define elements of area, and so on.

We can write the wedge product of j vectors as

v1 ∧ . . . ∧ vj =
∑

i1<...<ij

M i1...ijei1 ∧ . . . ∧ eij , (2.2)

where Mi1 . . . ij are j × j minors.

2.2.2 Clifford algebra

Given a vector space V , for instance R
n, the geometric or Clifford algebra C(V ) is

obtained if we define a geometric product that combines the multi-vector structure of

the wedge product and a scalar product -a symmetric bilinear form- defined on the

vector space. A Clifford algebra becomes an exterior algebra if the scalar product is

zero. The geometric product for two vectors can be defined as

pq = − < p,q > +p ∧ q (2.3)

and this gives in general a multi-vector of different rank. Notice that this definition

cannot be applied directly to general multi-vectors, unless we define the scalar product

more generally; however, using the linearity of the product, we just need to operate

on the basis vectors. We can also use a definition of the geometric product based on

its properties:
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• Linear,

• Associative,

• There exists a scalar product for the vectors of R
n: < p,q > with the usual

properties.

• We require geometric the product to satisfy the condition:

pq + qp = −2 < p,q > (2.4)

If we apply this product to p vectors, we obtain a multivector of rank p plus a

scalar. There are
(

n
p

)
basis multivectors of rank p. A typical element of the Clifford

algebra is a linear combination of the basis multivectors of all ranks up to n, inlcuding

a scalar which is considered a multivector of rank zero. Thus, there are 2n components

in a Clifford algebra element. The dimension of the Clifford algebra as a vector space

is 2n.

The product of two elements of the Clifford algebra can be performed by expressing

the elements as linear combinations of the elements of the basis and then distributing

the product on the basis vectors.

The conjugate

Conjugation in the Clifford algebra is a bijective map that reverses the order of

products, that is, (pq)∗ = q∗p∗. To conjugate an element of the algebra, we just

need to conjugate the basis elements (e∗
i = −ei for all basis elements) and apply
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linearity; the conjugation does not affect the scalars.

The inverse

We cannot invert every element of a Clifford algebra, as it has zero divisors. The ele-

ments that are not zero divisors have an inverse and form a group. For the underlying

vector space, because pp = − < p,p >, the inverse is p−1 = −p/ < p,p >.

For those elements of the algebra of “length” equal to one, defined as PP ∗ = 1,

the inverse of the element P is its conjugate.

2.2.3 Clifford subalgebras

The subset of the Clifford algebra of V spanned by multivectors of even rank will

have even rank under the geometric product, and hence it spans a subalgebra which

is the even Clifford algebra, C+(V ), of dimension 2n−1.

Notice that there exists always an isomorphism between the Clifford algebra of V n

(vector space of dimension n) and the even subalgebra of V n+1, with the standard

scalar product.

2.2.4 The even Clifford subalgebra of R
3: Quaternions

The even Clifford algebra of R
3 with the usual Euclidean dot product, gives the

following relations for the basis vector products: let e1, e2, e3 be the basis vectors, the

product of two of them gives three rank-2 multivectors, and the product of all three of

them gives one rank-3 multivector, but this does not belong to the even subalgebra.
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The general element of the algebra can be written as

H = hxe2e3 + hye3e1 + hze1e2 + hw (2.5)

If we denote i = e2e3, j = e3e1, k = e1e2, we obtain the identities first obtained

by Hamilton [28] to define quaternions:

i2 = j2 = k2 = −1

ij = −ji, ik = −ki, jk = −kj

ij = k, jk = i, ki = j (2.6)

We will denote the element of the Clifford algebra as

H = H + hw = hxi + hyj + hzk + hw (2.7)

and using this vector notation we can define the conjugate quaternion, H∗ = −H+hw.

The product of two elements of this algebra can be computed applying linearity

to the geometric product of the elements of the basis; however, the vector notation

allows for this simpler computation,

GH = (gwH + hwG + G ×H) + (hwgw − H · G) (2.8)

The even Clifford algebra C+(R3) is isomporphic to the Clifford algebra C(R2), the

quaternions. The group of quaternions is a double covering of the group SO(3).

A rotation in E
3 of angle φ about a normalized rotation axis s is written in quater-

nion form as

H = s sin
φ

2
+ cos

φ

2
. (2.9)
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The action of this rotation on vectors of E
3, considering the vector quaternion (with

fourth component equal to zero) x, gives the rotated vector quaternion X = QxQ∗.

Because the inverse of a rotation is a rotation of angle −φ about the same axis, and

− sin φ
2

= sin(−φ
2
) and cos φ

2
= cos(−φ

2
), the conjugate quaternion Q∗ represents the

inverse rotation.

The quaternion corresponding to a general rotation [R] is

H =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

hx

hy

hz

hw

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin θ
2
sx

sin θ
2
sy

sin θ
2
sz

cos θ
2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (2.10)

where s is the axis and θ is the angle of the rotation.

Because h2
x +2

y +h2
z + h2

w = 1, quaternions can be viewed as points on the unit

hypersphere of R
3.

2.2.5 The even Clifford subalgebra of P
2: Planar Quaternions

Let P
2 be the projective space obtained by embedding the Euclidean space E

2 as the

plane z = 1 in the three-dimensional space R
3 of coordinates (x, y, z). This is the

vector space in which the homogeneous transform operates,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X

Y

1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎣

cos θ − sin θ dx

sin θ cos θ dy

0 0 1

⎤

⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x

y

1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (2.11)
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We introduce a degenerate scalar product in P
2,

< p,q >= pT

⎡

⎢⎢
⎢
⎣

1

1

0

⎤

⎥⎥
⎥
⎦

q (2.12)

which makes distances and angles measured parallel to the plane z = 1.

The geometric product defined with this degenerate scalar product will operate on

the basis vectors e1, e2, e3 as follows:

e1e1 = −1, e2e2 = −1, e3e3 = 0. (2.13)

The general element of C+(P2) is

P = pxe2e3 + pye3e1 + pze1e2 + pz = pxiε + pyjε + pzk + pw, (2.14)

if we denote e2 = i, e1 = j, e1e2 = k and e3 = ε. The i, j, k are the quaternion units

of C(R2), and ε is the dual unit with the property ε2 = 0.

The planar quaternion corresponding to the general planar displacement [T ] in

Eq.(2.11) is, in vector form,

P =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

px

py

pz

pw

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx

2
cos θ

2
+ dy

2
sin θ

2

dy

2
cos θ

2
− dx

2
sin θ

2

sin θ
2

cos θ
2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(2.15)

Notice that the elements of the planar quaternion are constrained by the condition

p2
z + p2

w = 1. If we consider the components of the planar quaternion as homogeneous

coordinates in P
4, then both solutions from this condition give the same projective

point, and we can consider that each point of P
4 defines a planar displacement.
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2.2.6 The even Clifford subalgebra of P
3: Dual Quaternions

Let P
3 be the projective space obtained by embedding the Euclidean space E

3 as the

plane w = 1 in the four-dimensional space R
4 of coordinates (x, y, z, w). This is the

vector space in which the homogeneous transform operates,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X

Y

Z

1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎣ [R] d

0 0 0 1

⎤

⎦

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x

y

z

1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (2.16)

If we define the degenerate scalar product,

< p,q >= pT

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

1

1

1

0

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

q (2.17)

we obtain that e1e1 = −1, e2e2 = −1, e3e3 = −1, e4e4 = 0, and the general

element of the Clifford algebra,

Q̂ = q1e2e3 + q2e3e1 + q3e1e2 + q4 + q5e4e1 + q6e4e2 + q7e4e3 + q8e1e2e3e4 (2.18)

is a linear combination of rank 4, 2, and 0 multivectors. This algebra has dimension

24−1 = 8.

We define e1e2e3e4 = ε, and see that ε2 = 0, which identifies the dual number

unit. If we call, as before, i = e2e3, j = e3e1, k = e1e2, then εi = e4e1, εj = e4e2,

εk = e4e3. Because the generators commute in the even algebra, dual quaternions

can be seen as a tensor product of the algebra of quaternions and the ring of dual
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numbers, see [91]. We rewrite the general element as

Q̂ = (q1 + q5ε)i + (q2 + q6ε)j + (q3 + q7ε)k + (q4 + q8ε) = Q + εQ0 (2.19)

where Q and Q0 are quaternions. This is our standard expression of a dual quaternion.

We call Q the real part and Q0 the dual part.

We express a general displacement [T ] as a dual quaternion

Q̂ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

qx

qy

qz

qw

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

+ ε

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

q0
x

q0
y

q0
z

q0
w

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin θ
2
sx

sin θ
2
sy

sin θ
2
sz

cos θ
2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

+ ε

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin θ
2
s0

x + d
2
cos θ

2
sx

sin θ
2
s0

y + d
2
cos θ

2
sy

sin θ
2
s0

z + d
2
cos θ

2
sz

−d
2
sin θ

2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (2.20)

The dual quaternion can be also expressed as

Q̂ = cos
θ̂

2
+ sin

θ̂

2
S, (2.21)

with sin θ̂
2

= sin θ
2

+ ε cos θ
2
, cos θ̂

2
= cos θ

2
− ε sin θ

2
, and the dual vector S = s + εs0

being the screw axis of the displacement.

To represent a displacement, the elements of the dual quaternion are constrained

by the conditions

QQ∗ = 1 : q2
x + q2

y + q2
z + q2

w = 1,

Q0Q∗ + QQ0∗ = 0 : qxq
0
x + qyq

0
y + qzq

0
z + qwq0

w = 0. (2.22)

The dual quaternions are elements of the semi-direct product group Spin(3) � R
3,

that is a double covering of SE(3); this group is isomorphic to Spin(3) � R
3
�Z2,

which identifies quaternions Q̂ and −Q̂.
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If we consider the components of the dual quaternion as homogeneous coordinates

in P
7, then Q̂ = −Q̂, and we only need the second relation in Eq.(2.22). That

condition defines a quadratic surface in the projective space, called the Study quadric.

Points on the quadric represent spatial displacements, except those belonging to the

3-dimensional plane defined by Q0Q0∗ = 0.

Relation between matrix and quaternion representation

The relation between the quaternion and the rotation matrix representation is cap-

tured by the expression of the rotation matrix as Euler parameters, which, when

normalized, are the components of the quaternion, see [9]. For the dual part of the

dual quaternion, we use the vector quaternion (that is, with no scalar component)

D = d, d being the translational component of the transformation, and compute

Q0 =
1

2
DQ (2.23)

The displacement of a point by the action of a matrix, X = [T ]x, is computed

using dual quaternions as

X̂ = Q̂x̂Q̂∗ = QxQ∗ + ε(Qx0Q∗ + Q0xQ∗ + QxQ0∗). (2.24)

Here, X̂ is the vector dual quaternion for the vector X in the fixed reference frame

F and x̂ is the vector dual quaternion for the vector in the moving reference frame,

x.
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2.3 Representations of SE(3)

2.3.1 Homogeneous transformations

Four-dimensional matrices, called 4x4 homogeneous transforms, are commonly used

to describe the coordinate transformation from a moving frame M located at the end-

effector of the robot to a fixed frame F located at the base. If X are the homogeneous

coordinates of a point in the fixed frame and x are the homogeneous coordinates in

the moving frame, we have the relation X = [T ]x, where

X =

⎡

⎣[R] d

0 1

⎤

⎦x. (2.25)

We denote by [R] ∈ SO(3) the rotation matrix, and by d ∈ R
3 the three-

dimensional translation vector.

The composition of displacements corresponds to the matrix multiplication, which

operates on the homogeneous transform as indicated in Eq.(2.1). For robotics applica-

tions, a displacement may be considered as the composition of screw transformations

about coordinate axes. The most commonly used are transformations about the Z

and the X axes.

The screw displacement along the joint axis Z, or X = [Z(θ, d)]x., is defined by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X

Y

Z

1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢⎢
⎢
⎢
⎢⎢
⎣

cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 d

0 0 0 1

⎤

⎥⎥
⎥
⎥
⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x

y

z

1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (2.26)
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The screw displacement along the X-axis by the amounts a and α is X = [X(α, a)]x,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X

Y

Z

1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

1 0 0 a

0 cos α − sin α 0

0 sin α cos α 0

0 0 0 1

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x

y

z

1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (2.27)

Chalses’ theorem [37] states that a general displacement can be written as a screw

motion consisting of a rotation about an axis and a translation along the same axis.

We can find the screw axis S = s + ε(c × s), angle φ and translation t from the

expression of Eq.(2.25).

We use Cayley’s formula and its inverse to pass from the rotation matrix to the

rotation axis. The matrix [B] in [B] = [R − I][R + I]−1 is skew-symmetric and

contains the components of the Rodrigues’ vector b that defines the rotation axis s

as s = tan φ
2
b. We find the point on the axis and the translation following [58],

c =
b × (d − b × d)

2b · b , d = [I − R]c + ts. (2.28)

2.3.2 Relative transformations

We can also describe spatial displacements as relative transformation matrices if we

choose a reference position [T0] and perform a right translation. Let [T0] and [T1]

be two transformations from a moving frame M to a fixed frame F . The relative

displacement from [T0] to [T1] measured in F is [T01] = [T1][T0]
−1, or

[T01] = [R01,d01] = [R1R
T
0 ,d1 − R1R

T
0 d0]. (2.29)
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The relative displacement can be expressed as the relative screw displacement,

[T01] = [T (φ̂, S)], (2.30)

where S is the relative screw axis and φ̂ is the relative rotation and translation along

the axis. Notice that the coordinates of the relative screw axis are expressed in the

fixed frame.

2.3.3 Dual quaternions

We can create a dual quaternion representation for the relative displacement of

Eq.(2.30) directly from the screw axis S and dual angle φ̂,

Ŝ(φ̂) = cos(φ̂/2) + sin(φ̂/2)S =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin(φ̂/2)ŝx

sin(φ̂/2)ŝy

sin(φ̂/2)ŝz

cos(φ̂/2)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (2.31)

where cos( φ̂
2
) = cos φ

2
+ ε(−d

2
sin φ

2
) and sin( φ̂

2
) = sin φ

2
+ ε(d

2
cos φ

2
).

Notice that this result must be equal to the one obtained from the quaternion prod-

uct of the initial displacements in dual quaternion form, that is, Ŝ(φ̂) = Ŝ1(φ̂1)Ŝ0(φ̂0)
∗,

Ŝ1(φ̂1)Ŝ0(φ̂0)
∗ =cos

φ̂1

2
cos

φ̂0

2
+ sin

φ̂1

2
sin

φ̂0

2
S1 · S0 −

cos
φ̂1

2
sin

φ̂0

2
S0 + sin

φ̂1

2
cos

φ̂0

2
S1 − sin

φ̂1

2
sin

φ̂0

2
S1 × S0. (2.32)

In general, the relative angle φ is not equal to the difference of the angles φ0, φ1 of

the initial displacements. For the particular case when the screw axes of the displace-
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ment coincide, S0 = S1 = S, we obtain from the quaternion product in Eq.(2.32),

Ŝ(φ̂) = cos
φ1 − φ0

2
+ sin

φ1 − φ0

2
S +

ε(−d1 − d0

2
sin

φ1 − φ0

2
+ sin

φ1 − φ0

2
S0 +

d1 − d0

2
cos

φ1 − φ0

2
S), (2.33)

in which case the relative angle and translation can be computed from the initial ones

as φ = φ1 − φ0, and d = d1 − d0.

2.3.4 The Lie exponential

We can create a Lie algebra on a continuous group as the vector space of tangent

vectors at the identity with a vector product called commutator or Lie bracket, see

[63], [67] or [91]. The Lie exponential is a mapping from the Lie algebra to the

group that allows us to express an element of the group as a certain function of the

elements of its Lie algebra. For the group SE(3) the Lie exponential seeks to express

displacements as a function of velocities.

Consider the line S = s + εc × s in F , which is the screw axis of an instantaneous

movement of a rigid body. If w = ws is the angular velocity of this body around S

and v = vs = hws is its linear velocity along S, then the element of the Lie algebra

se(3) representing this movement is given by the 4 × 4 matrix w[S], with

[S] =

⎡

⎣ [s] c × s + hs

0 0 0 0

⎤

⎦ . (2.34)

The matrix [s] is viewed as an operator that forms the 3 × 3 cross product matrix,

that is [s]y = s × y for any vector y. The 4 × 4 matrix transformation associated
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with [S] is obtained as the matrix exponential,

[T ] = e[S]φ, (2.35)

which, for a screw axis fixed in F , has the angle φ = wt and slide d = vt around and

along S.

For the relative displacement in Eq.(2.30), take the Lie algebra element with

axis coincident with the screw axis of the relative displacement. Then, with w =

(φ1 − φ0)/∆t = φ/∆t and v = (d1 − d0)/∆t the velocity along the axis, the matrix

exponential is

[T ] = e[S]φ =

⎡

⎣ et[Ω] φu + (1 − cos φ)[Ω]u + (φ − sin φ)[Ω]2u

0 0 0 1

⎤

⎦ , (2.36)

where we denote Ω the skew-symmetric matrix of the angular velociy, [Ω] = w[s]. The

rotation matrix expression [R] = et[Ω] and the expression of the displacement vector

d as a function of the velocity vector u can be found for instance in [91].

2.4 Kinematics of Robots

2.4.1 Basic joints

Releaux [79] identified six basic types of joints that share a surface of contact, that

he called lower pairs. His classification is still used today in most robotics and mech-

anisms books. He defined revolute (R), cylindric (C), prismatic (P), spherical (S),

helical (H) and plane (E) joints. In our research, we only consider the basic types

of revolute and prismatic joints; any of the others can be obtained by combining the
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two basic types with certain additional constraints. In addition to these, we refer to

the universal joint (T), which can be modeled as two revolute joints at right angles.

See Figure 2.1.

Revolute Prismatic Cylindrical Universal Spherical

Figure 2.1: The different types of joints used in this research.

The revolute joint is a one-degree-of-freedom joint that allows a rotation of angle

θ about the joint axis G = g + εg0. It can be expressed in dual quaternion form as

Ĝ(θ) = cos
θ

2
+ sin

θ

2
G =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin θ
2
gx

sin θ
2
gy

sin θ
2
gz

cos θ
2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

+ ε

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin θ
2
g0

x

sin θ
2
g0

y

sin θ
2
g0

z

0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(2.37)

where we set the scalar as the fourth component of the dual quaternion.

The prismatic joint is also a one-degree-of-freedom joint, which allows translation

along the direction h of the axis H. It is interesting to notice that the location of the

prismatic axis does not matter for the movement of the prismatic joint. This is also
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captured by its dual quaternion expression,

Ĥ(d) = 1 + ε
d

2
H =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0

0

0

1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

+ ε

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d
2
hx

d
2
hy

d
2
hz

0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(2.38)

The cylindric joint is a general screw motion, in which the rotation about and the

translation along the screw axis S are nonzero and independent. It can be constructed

as the composition of a revolute joint and a prismatic joint with same direction,

Ŝ(θ) = cos
θ̂

2
+ sin

θ̂

2
S =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin θ
2
sx

sin θ
2
sy

sin θ
2
sz

cos θ
2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

+ ε

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin θ
2
s0

x + d
2
cos θ

2
sx

sin θ
2
s0

y + d
2
cos θ

2
sy

sin θ
2
s0

z + d
2
cos θ

2
sz

−d
2
sin θ

2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (2.39)

In a similar fashion, the universal (T) joint and the spherical (S) joint can be

constructed from individual rotations. We will not consider helical or plane joints in

this work.

2.4.2 Constrained robotic systems

We define a constrained robotic system as a workpiece, or end-effector, supported

by one or more serial chains such that each chain imposes at least one constraint

on its movement; we assume that the joints are independently actuated and free

to move within their range of motion. Constrained robots are, basically, serial or

parallel robots with less than six degrees of freedom. They allow movement in certain

directions while providing structural support in other directions. Unlike robots with

six or more degrees of freedom, constrained robots may have positions within the
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three-dimensional volume of their workspace that are not reachable by the robot. In

this context, the exact finite position synthesis makes sense for constrained robotic

systems.

For serial robots, the degrees of freedom coincide with the number of joints of the

robot, as we can see applying Gruebler’s formula [96]. Hence, constrained serial robots

are those that have from 2 to 5 joints and, for synthesis purposes, at least two links.

Table 2.2 lists the different constrained serial robots that can be created with revolute,

prismatic, universal, cylindrical and spherical joints. We consider the permutations

of joints within the same set of joints as part of the same class of constrained robot,

except for particular cases that will be discussed in Chapter 4. Robots with less than

six joints that are not capable of at least one general displacement are not considered

in this research and have not been not included.

Table 2.2: Constrained serial robots

DOF Structure

2 RP, RR

3 RPP, PRP, RRP, RRR, – CP, RC, TP, TR

4 RPPP, RRPP, RPRP, RRRP, RRRR, – CPP, RCP, CC, TPP, PTP,

RRC, TRP, TC, SP, TRR, TT, SR

5 RPPPP, RRPPP, RRRPP, RPRPR, RRRRP, RRRRR, – CPPP,

CRPP, CCP, TPPP, CPRR, CRRP, CCR, CRC, TRPP, TPRP, TCP,

PTC, SPP, PSP, CRRR , TRRP, TTP, TCR, SRP, SPR, SC, TRRR,

TTR, SRR, ST
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2.5 Summary

In this chapter, we reviewed the properties of the group of spatial displacements and

presented the different representations that we use; we showed the relation between

the homogeneous transformations, the matrix exponential and the dual quaternions

for representing the workspace of a serial chain. We summarized the properties and

structure of the Clifford algebra of dual quaternions that we use to formulate the

design problem.

In the design problem, a spatial transformation is performed by a robot as the com-

position of transformations along the joints. In this chapter we also reviewed the basic

types of joints and their dual quaternion expression, and defined and characterized

the constrained robots that are the object of this research.
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Chapter 3

Dual Quaternion Synthesis Theory

3.1 Introduction

In this chapter we present the methodology for the synthesis of constrained robots

using dual quaternions.

The dual quaternion synthesis methodology uses Mavroidis [52] systematic method

to create the design equations based on the kinematics equations of the robot; how-

ever, we use successive screw displacements described by Gupta [26] formulated using

dual quaternion algebra [101]. Our approach uses the Plücker coordinates of the joint

axes as design parameters and yields six independent design equations from each task

position, see [71]. Like in the methodologies of Tsai and Roth [97], Sandor [86] and

Mavroidis and Lee [52], the joint angles appear in our design equations. However, it

is possible to eliminate them to solve directly for the axes of the joints. The equations

obtained after this elimination are closer to the geometric constraints imposed by the

chain [83]. Dual quaternions present separately the rotations and the conjugation of
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translations and rotations that occurs when operating two general transformations.

This gives some insight to the structure of the problem and allows us to classify

constrained robots according to the movement that they can perform.

The chapter begins with the introduction to the methodology of creating the kine-

matics equations of a robot in matrix formulation, and how to transform them into

dual quaternions. Then we create the design equations and relate the robot topology

with the maximum number of task positions that can be defined. They form the pa-

rameterized design equations, that is, those design equations containing both design

parameters and joint angle parameters. We then develop a procedure to create the

reduced design equations free of joint variables. The algebraic and numerical methods

that we use for solving the parameterized and the reduced equations are discussed

briefly, and we present a table summarizing the constrained robots that have been

solved using the dual quaternion approach. At the end of the chapter, we show how

the dual quaternion approach can be identified with the complex number formulation

of Sandor [88] if we specialize the dual quaternions to planar quaternions. We also

show how to obtain the equations defining the geometry of Tsai’s screw triangle [97]

using the dual quaternion formulation.
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3.2 Dual Quaternion Kinematics Equations of a

Serial Robot

The kinematics equations of the robot equate the 4× 4 homogeneous transformation

[D] between the end-effector and the base frame to the sequence of local coordinate

transformations along the m joint axes of the chain,

[D] = [G][Z(θ1, d1)][X(α12, a12)][Z(θ2, d2)] . . . [X(αm−1,m, am−1,m)][Z(θm, dm)][H ].

(3.1)

A serial robot can be kinematically defined as a series of joint axes denoted Si, i =

1, . . . , m. The common normal, Aij , to each pair of lines defines the link connecting

the joints, see [13]. The distance aij and angle αij along the common normal line

define the dimensions of the link. The parameters (θ, d) that define the movement

at each joint and the link and twist (α, a) are collectively known as the Denavit-

Hartenberg parameters. The transformation [G] defines the position of the base of

the chain relative to the fixed frame, and [H ] locates the tool relative to the last link

frame, see Figure 3.1. Notice that for constrained serial chains it is necessary that

m ≤ 5.

The kinematics equations, written as homogeneous matrices, give a matrix repre-

sentation of the workspace parameterized by the joint variables, (θi, di), and the link

dimensions, (αij , aij).
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Figure 3.1: A constrained serial robot and three specified task positions.

3.2.1 Successive screw displacements

These kinematics equations can be transformed into successive screw displacements

by choosing a reference position [D0]. Let [Di] be the homogeneous matrix describing

the transformation from the fixed frame to a moving frame {Di}. We can compute

[D0i] = [Di][D0]
−1, that is,

[D0i] =[Di][D0]
−1,

=([G][Z(θi
1, d

i
1)] . . . [Z(θi

m, di
m)][H ])([G][Z(θ0

1, d
0
1)] . . . [Z(θ0

m, d0
m)][H ])−1. (3.2)

In order to simplify this equation we introduce the partial transformations [Mj ] up

to but not including the jth joint transformation for the reference configuration, so
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that we have

[M1] =[G],

[M2] =[G][Z(θ0
1, d

0
1)][X(α12, a12)],

. . .

[Mj ] =[G][Z(θ0
1, d

0
1)][X(α12, a12)][Z(θ0

2, d
0
2)] . . . [X(αj−1,j, aj−1,j)]. (3.3)

Equation (3.2) can now be rewritten in the form

[D0i] = [T (∆θ1, S1)][T (∆θ2, S2)] . . . [T (∆θm, Sm)], (3.4)

where

[T (∆θ1, S1)] =[M1][Z(θi
1, d

i
1)][Z(θ0

1, d
0
1)]

−1[M1]
−1,

[T (∆θ2, S2)] =[M2][Z(θi
2, d

i
2)][Z(θ0

2, d
0
2)]

−1[M2]
−1,

. . .

[T (∆θm, Sm)] =[Mm][Z(θi
m, di

m)][Z(θ0
m, d0

m)]−1[Mm]−1, (3.5)

and ∆θj = θi
j − θ0

j or ∆θj = di
j − d0

j depending on whether the joint is revolute or

prismatic, respectively.

The displacements [T (∆θi, Si)] define the rotations about and translations along

the joint axes Si measured in the fixed frame relative to the reference configuration

[D0]. Notice that by expressing kinematics equations in this fashion, the base trans-

formation [G] is absorbed into the coordinates of the first joint axis and the tool

transformation [H ] cancels.
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3.2.2 Kinematics equations as product of exponentials

We can write the kinematics equations as product of the Lie exponentials, as described

in Section 2.3.4, if we notice that the line S defining each joint axis is the screw axis

of the instantaneous motion of each link for the displacement between the reference

position and position i. The 4×4 matrix transformation associated with the element

of the Lie algebra [S] is obtained as the matrix exponential,

[T0i] = e[S]θ[T0], (3.6)

and the kinematics equations become

[D0i] = e[S1]θ1e[S2]θ2 . . . e[Sm]θm, (3.7)

where the reference configuration is such that θj = 0 for all joint variables, and the

matrix defining the transformation between the end-effector and the base frame when

the robot is in the reference configuration has been made equal to the identity. This

can always be achieved by considering one of the task transformations as the reference

configuration and using relative displacements with respect to it to define the task.

3.2.3 Dual quaternion kinematics equations

The kinematics equations of the serial chain can be also computed using dual quater-

nions.

This formulation provides a compact representation of the displacement and a use-

ful structure that assists for the elimination of the joint variables. The dual quater-

42



nion representation contains the rotation information in its real part, and the effect

of rotations and translations on the translation information in its dual part.

A spatial displacement consisting of a rotation by θ and slide by d around and

along a screw axis S is written as the dual quaternion,

Ŝ(θ̂) = sin(
θ̂

2
)S + cos(

θ̂

2
), (3.8)

see Eq.(2.21).

The dual quaternion of Eq.(3.8) encodes the same information as the 4 × 4 screw

displacement matrix [T (∆θ, S)]. We can define the dual quaternion kinematics equa-

tions for the serial chain by simply replacing the 4 × 4 matrices in Eq.(3.4) by their

dual quaternion equivalents to obtain

D̂i = Ŝ1(∆θ̂i
1)Ŝ2(∆θ̂i

2) . . . Ŝm(∆θ̂i
m). (3.9)

For details about the computation of the dual quaternion components from the ho-

mogeneous matrix, see for instance [9] or [53].

The Plücker coordinates of the screw axes Si, i = 1, . . . , m, are defined in the base

frame F and form convenient design parameters.

3.3 Design Equations

For a given kinematic chain, the design equations must impose that a set of specified

task positions lie within the workspace of the robot. The algebraic shape of the

workspace is determined by the structure, or topology, of the chain, but we can
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adjust its physical dimensions by adjusting the dimensions of the links fo the robot.

If we design for the maximum number of positions then there is no freedom left

and the positions completely define the dimensions of the workspace and hence the

dimensions of the robot; in this case we obtain a finite number of solutions.

3.3.1 The design equations

Let the n positions be defined by the 4 × 4 transforms [Pi], i = 1, . . . , n. Construct

the n − 1 relative transformation matrices [P1i] = [Pi][P1]
−1 and their associated

dual quaternions P̂i, i = 2, . . . , n. Equating the task dual quaternions P̂i to the

dual quaternion kinematics equations in Eq.(3.9), we impose that the spatial chain

must be able to perform exactly those relative displacements. This yields the design

equations

Qi : Ŝ1(∆θ̂i
1)Ŝ2(∆θ̂i

2) . . . Ŝm(∆θ̂i
m) − P̂i = 0, i = 2, . . . , n. (3.10)

Each Qi is an eight-dimensional vector equation. If not otherwise specified, we

assume that each axis Si defines either a revolute joint or a prismatic joint, but not

both. This means in the dual angle ∆θ̂i = ∆θi + ε∆di only one of the values is the

joint variable, either θ or d.

Using the quaternion product, the workspace of the most general serial chain,
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consisting of five joints, is expressed as the dual quaternion Q̂ = Q̂0 + Q, where

Q̂0 = c1c2c3c4c5 −
∑

α1<α2∈C2,5

α3<α4<α5

sα1sα2cα3cα4cα5Sα1 · Sα2 −
∑

α1<α2<α3∈C3,5

α4<α5

sα1sα2sα3cα4cα5(Sα1 × Sα2) · Sα3

−
∑

α1∈C1,5

α2<α3<α4<α5

sα2sα3sα4sα5cα1

(
((Sα2 × Sα3) × Sα4) · Sα5 − (Sα2 · Sα3)(Sα4 · Sα5)

)

− s1s2s3s4s5

(
(((S1 × S2) × S3) × S4) · S5 − ((S1 × S2) · S3)(S4 · S5) −

(S1 · S2)((S3 × S4) · S5)
)
, (3.11)

and

Q =
∑

α1∈C1,5

α2<α3<α4<α5

sα1cα2cα3cα4cα5Sα1 +
∑

α1<α2∈C2,5

α3<α4<α5

sα1sα2cα3cα4cα5Sα1 × Sα2 +

∑

α1<α2<α3∈C3,5

α4<α5

sα1sα2sα3cα4cα5

(
(Sα1 × Sα2) × Sα3 − (Sα1 · Sα2)Sα3

)
+

∑

α1∈C1,5

α2<α3<α4<α5

sα2sα3sα4sα5cα1

(
((Sα2 × Sα3) × Sα4) × Sα5 − (Sα2 · Sα3)Sα4 × Sα5 −

((Sα2 × Sα3) · Sα4)Sα5

)
+ s1s2s3s4s5

(
(((S1 × S2) × S3) × S4) × S5 −

(((S1 × S2) × S3) · S4)S5 − (S1 · S2)(S3 × S4) × S5 − ((S1 × S2) · S3)(S4 · S5)
)

(3.12)

where cj , sj stand for cos
∆θ̂j

2
, sin

∆θ̂j

2
, respectively, and αi ∈ I = {1, 2, 3, 4, 5}, the set

of non-repeated indices. We denote by Cj,k the combinations of j elements from a set

of k elements. This formula can be applied to serial chains with less than 5 joints by

simply eliminating the extra indices.
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From the general formula in Eqs.(3.11) and (3.12) we can state the maximum

multi-degree of the system of design equations. For the most general case, the multi-

degree is d = (2m)8(n−1)2m(n−1), n being the number of task dual quaternions and m

the number of joints of the serial chain: each design equation is, at most, of degree

2m if we consider the sines and cosines of the joint angles separately and add the

quadratic condition between them.

The degrees obtained with this bound are very big; for the most general robot, the

spatial 5R, we obtain a bound of the order of 10190. However, this bound is far from

accurate, for several reasons. The equations are multi-linear in many cases; also, they

include the solutions for the inverse kinematics, which are not a part of the synthesis

problem. In addition to this, two of each set of eight equations can be eliminated if

we introduce the Plücker constraints of the joint axes. As an example, for the spatial

RR chain, d ≈ 1010, but the actual number of solutions is equal to six. Later in

this Chapter we introduce a way to reduce the total degree by simplifying the design

equations.

3.3.2 Maximum number of task positions

The maximum number of task positions corresponds to the maximum number of

arbitrary positions that we can fit in the workspace of a given robot topology. When

we define a task with the maximum number of positions for that particular robot

structure, the given task completely shapes the workspace and we obtain a finite

number of robots which are solutions of the design equations. In this Section we
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explain how to calculate the maximum number of task positions for a given robot

topology, based on counting the parameters of the design equations.

We distinguish between axes Si of revolute joints and axes of prismatic joints. The

axis of a revolute joint is defined by four independent parameters in the associated

Plücker coordinate vector. Coordinate-wise, the expression of a revolute joint consists

on six elements, three for the direction and three for the moment, plus two constraints,

which make the direction a unit vector and the moment perpendicular to the direction,

S = s + εs0 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sx

sy

sz

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+ ε

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s0
x

s0
y

s0
z

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (3.13)

s · s = 1, (3.14)

s · s0 = 0 (3.15)

In contrast, the prismatic joint depends only on two parameters that define the

direction of slide of the joint, that is, three coordinates defining a direction s minus

the unit vector constraint.

Let r and t be the number of revolute and prismatic joints in the chain, where

m = r + t. Then the number of structural parameters is K = 4r + 2t, assuming

that all the axes are generally defined. Otherwise, we need to subtract the number

of constraints among them, which we call c. Given n task positions, we also have

(n − 1)r joint angles and (n − 1)t joint slides that must be determined for reaching

the task positions. Thus, total number of design parameters in an n position task is

N = 4r + 2t + (n − 1)r + (n − 1)t.
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Only six of the eight components of a dual quaternion are independent, therefore

only 6(n− 1) of the design equations in Eq.(3.10) are independent. Here we can add

the extra constraints on the joint axes, to obtain E = 6(n − 1) + c equations.

We equate the number of equations E and the number of unknowns N to obtain

nmax =
3r + t + 6 − c

6 − r − t
, r + t ≤ 5, (3.16)

which defines the number of task positions nmax needed to solve exactly for the design

variables in the constrained serial chain. Notice that nmax achieves a maximum of

21 task positions for the 5R chain. However, this formula determines the maximum

number of combined orientations plus translations that the robot can reach. Due to

the semi-direct product structure of the group of rigid displacements, this formula

is not always directly applicable and some cases must be distinguished, in which

orientations can be solved for separately.

3.3.3 Counting for orientations

The design equations can be separated into three equations that define the orientation

of the end-effector and three equations that define a combination of translation and

rotation; the real part of the dual quaternion design equations corresponds to the

orientations. The 3(n−1) orientation design equations include the 2r unknowns that

define the directions of the revolute joints and the (n−1)r associated rotation angles.

These equations can be solved -in some cases, independently from the translations-
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for a maximum number of task orientations given by

nR =
3 + r

3 − r
, r ≤ 2. (3.17)

This equation is meaningful only for r = 1 and r = 2, which have the associated

values of nR = 2 and nR = 5 maximum task orientations. For r = 3 –and beyond–

we can reach any task rotation.

3.3.4 Counting for translations

The dual part of the dual quaternion contains the translation terms obtained as a

combination of rotations and translations. Both revolute and prismatic joints produce

translation; in this case, a necessary condition for a robot to be constrained by the

translations is that the number of joints is less than three. Because of this, the direct

counting for translations (noted nT l) is limited to a few special cases and it is not of

practical utility.

The counting formula is created by equating the unknowns to the three indepen-

dent components of the dual part of the dual quaternion,

nT l =
3r + t + 3 − c

3 − r − t
, r + t ≤ 2, (3.18)

where c again accounts for extra constraints between axes.

Looking at Eqs.(3.18) and(3.16) we can see that, except in cases with extra con-

straints c, the maximum number of complete arbitrary positions is always smaller

than the maximum number of translations.
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However, for those cases in which the rotations are given, counting for the trans-

lations may be necessary. This occurs when the orientation of the task position is

specified in advance and we must dimension the robot to reach a series of transla-

tions. In this case, the revolute joint angles θi, i = 2 . . . , r are fixed and so are the

directions of the revolute joints, but not their locations. We obtain

nT =
2r + t + 3 − c

3 − t
, t ≤ 2, (3.19)

where c is again the number of extra constraints on the axes. Notice that we need to

have less than three prismatic joints.

3.3.5 The combined counting

Considering apart the translation-limited cases, which are few, to determine the max-

imum number of task positions that we can reach, we need to compute both nmax

and nR. The maximum number of complete positions is limited by nR. If nR > nmax,

then we can reach up to nmax complete positions. If nR < nmax, we can reach at

most nR arbitrary positions. In this case, we can also reach e = nT − nR more posi-

tions consisting of arbitrary translation terms and of orientation terms that lie in the

workspace of the spherical chain obtained using the orientation design equations.

In order to be able to solve for finite number of constrained robots, we need to

either define those orientation-specified task positions or add some extra constraints

c to the parameters that determine only translation.

The formulas presented in previous sections are not directly applicable in some
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cases, presented in Chapter 4. In those cases, certain arrangement of joint axes

creates movement within a subgroup of SE(3) and the extra constraints that need to

be added are not only distances and angles between joint axes.

3.3.6 Permutation of joints

Notice that the counting is independent of the hierarchical position of the joints along

the chain, except for the special cases presented in Chapter 4. According to that,

chains with same number and type of joints can be designed for the same maximum

number of task positions. Also the structure of the equations will be similar, the only

difference being the order of the cross product terms in Eq.(3.11) and (3.12). Some

of the chains present the particularity that any of the topologies obtained permuting

the roots give the same number of design solutions. This has been shown for the

permutations of the RPR - PRR - RRP topology.

3.4 Classification of Orientation-Limited Chains

For those constrained serial chains in which nR < nmax, we can solve the orientation

equations independently. We call serial chains that have this property orientation

limited chains. Table 3.1 lists the classes of serial chains that are orientation limited—

the permutation of the R and P joints has been included only when it is relevant for the

counting. The cylindrical joint C consists of four parameters and two joint variables,

equivalent to consider a revolute joint and a prismatic joint plus two constraints that
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make the direction of P parallel to the direction of R. The universal joint T is defined

as two revolute joints plus two constraints making the directions orthogonal and the

locations coincident.

Table 3.1: The orientation-limited constrained serial chains.

Robot DOF r t c nR nmax nT e

RP 2 1 1 0 2 3 3 1

CP 3 1 2 2 2 22
3 4 2

RPP 3 1 2 0 2 3 5 3

PRP 3 1 2 0 2 32
3 7 5

CPP 4 1 3 2 2 5 any any

RPPP 4 1 3 0 2 6 any any

TPP 4 2 2 2 4 5 6 2

PTP 4 2 2 2 4 6 7 3

RPC 4 2 2 2 5 6 7 2

RRPP 4 2 2 0 5 6 7 2

RPRP 4 2 2 0 5 7 9 4

TPPP 5 2 3 2 4 13 any any

CPC 5 2 3 4 5 11 any any

RPPC 5 2 3 2 5 13 any any

RRPPP 5 2 3 0 5 15 any any

We solve an orientation-limited chain to reach nR arbitrary task positions plus e

excess positions for which the directions and angles of the revolute joints are known.
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3.5 Classification of Generally-Constrained Chains

Constrained serial chains that have three or more revolute joints are clearly not

orientation-limited, and so are the chains for which nmax < nR, in which cases the

number of task positions is defined by the parameter nmax given in Eq.(3.16).

Table 3.2: Constrained serial chains that are not orientation-limited, 2 to 4 degrees

of freedom.

Robot DOF r t c nR nmax

C 2 1 1 2 2 2

RR 2 2 0 0 5 3

TP 3 2 1 2 4 32
3

RC 3 2 1 2 5 32
3

RRP 3 2 1 0 5 41
3

TR 3 3 0 2 any 41
3

RRR 3 3 0 0 any 5

CC 4 2 2 4 5 5

TC 4 3 1 4 any 6

RRC 4 3 1 2 any 7

TPR 4 3 1 2 any 7

RRRP 4 3 1 0 any 8

TT 4 4 0 4 any 7

TRR 4 4 0 2 any 8

RRRR 4 4 0 0 any 9

Table 3.2 and Table 3.3 list the number of task positions nmax that is possible to

define for the design of these chains. We include in this table robots like the CC,
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for which nmax = nR. These could be also considered as orientation-limited robots

because we can solve for the orientations separately.

Table 3.3: Constrained serial chains that are not orientation-limited, five degrees of

freedom.

Robot DOF r t c nR nmax

RCC 5 3 2 4 any 13

TPC 5 3 2 4 any 12

PTC 5 3 2 4 any 13

RRPC 5 3 2 2 any 14

RPRC 5 3 2 2 any 15

RRRPP 5 3 2 0 any 15

RPRPR 5 3 2 0 any 17

TPT 5 4 1 4 any 15

TRC 5 4 1 4 any 15

RRRC 5 4 1 2 any 17

RRRRP 5 4 1 0 any 19

TRT 5 5 0 4 any 17

TRRR 5 5 0 2 any 19

RRRRR 5 5 0 0 any 21

3.6 Translation-Unconstrained Chains

Some chains with five or less degrees of freedom can be translation-unconstrained.

These chains have one or two revolute joints and three or more prismatic joints. In

these cases, the complete task positions that we can define are limited to two for
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robots with one revolute joint, or five for robots with two revolute joints, and any

translation can be reached regardless of its orientation. Translation-unconstrained

robots are not considered constrained robots for us and will not be studied as such.

These include the RPPP, CPP, RPPPP, CPPP, RRPPP, TPPP, CRPP, and CCP

robots.

3.7 Parameterized Design Equations

The synthesis procedure for a given robot structure is as follows: we compute the

maximum number of goal positions using nmax, nR and nT , define extra constraints

c for the axes if needed, and write Eq.(3.10) for the maximum number n of goal dual

quaternions. We obtain a set of 8(n − 1) + c design equations.

As we have pointed out, only six of the eight components of the dual quaternion

equality are independent. From the point of view of the solutions of the set of design

equations, it is the addition of the Plücker constraints for each axis that allows us to

consider only six independent equations. A proof of this is presented in Chapter 4.

As the set of design equations we can use, instead of the whole eight components

of each dual quaternion, the six independent components plus the Plücker constraints
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for each axis,

Qi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

qx + εqx0

qy + εqy0

qz + εqz0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

i

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

px + εpx0

py + εpy0

pz + εpz0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

i

, i = 2, . . . n,

sj · sj = 1, sj · s0
j = 0, j = 1, . . . r,

sk · sk = 1, k = 1, . . . t, (3.20)

plus the extra geometric constraints c we may want to add. We prefer to use the set in

Eq.(3.20) because the Plücker constraints are generally simpler than the components

of the dual quaternion.

This is the set of parameterized design equations. When using these equations, we

solve for the structural parameters defining the joint axes at the reference position,

Si, but also for the values of the joint variables to reach each of the task positions,

∆θ̂j
i .

Notice that solving also for the joint variables increases the dimension of the prob-

lem by (r+t)(n−1). For instance, for the PRRR robot, the number of total variables

is 49, out of which 28 correspond to the values of the joint variables, but for the 5R

robot the total number of variables is 130, out of which 100 correspond to joint vari-

ables. The number of solutions we have to track tends also to increase because of the

multiple solutions for the inverse kinematics. Table 3.4 shows the number of joint

variables and structural variables for different robots.

On the other hand, the parameterized equations are not extremely complex, and

their multi-degree is at most 2(r + t) in each single equation. This makes them well
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Table 3.4: Number of structural and joint variables for different constrained robots

Robot DOF n e structural vars. joint vars.

C 2 2 0 6 2

RP 2 2 1 9 3

RR 2 3 0 12 4

PC 3 2 3 9 9

PRP 3 2 5 12 13

RC 3 32
3 0 12 6

TP 3 32
3 0 12 6

RRP 3 41
3 0 15 9

RRR 3 5 0 18 12

CC 4 5 0 12 16

PRC 4 5 2 15 20

RPRP 4 5 4 18 24

RRC 4 7 0 18 24

TPR 4 7 0 18 24

RRRP 4 8 0 21 28

RRRR 4 9 0 24 32

RCC 5 13 0 18 60

TPT 5 15 0 21 70

RPRC 5 15 0 21 70

RPRPR 5 17 0 24 80

RRRC 5 17 0 24 80

RRRRP 5 19 0 27 90

RRRRR 5 21 0 30 100

suited for some numerical iterative solution methods.
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3.8 Reduced Design Equations

The parameterized design equations can be solved directly for both joint axes and

joint variables by using numerical methods. However, we may want to eliminate the

joint variables, if possible, and solve for the parameters of the axes only. We call this

process “implicitization” of the parametric equations, see [14]. The implicitization

reduces the dimension of the system by (r+t)(n−1). The system of reduced equations

contains only the parameters that define the joint axes. The reduction is also a first

step in the elimination to find closed algebraic solutions for the design equations.

The implicitization takes place at each goal dual quaternion and while eliminating

the joint variables, it provides formulas for the inverse kinematics of the robot. The

procedure used here is general and can be constructed systematically, but for every

case there is a better way to choose the number and order of the joint variables that we

want to eliminate. In the following section we explain the methodology and present

some examples. The process is called complete reduction when all the joint variables

are eliminated linearly, and partial reduction when only some of the joint variables are

eliminated linearly and then the equations are further reduced in consecutive steps,

if needed.

3.8.1 The complete reduction

The implicitization uses a linear transformation in the vector space of dual quaternions

that can be solved for the joint variables. Figure 3.2 shows the transformation for an
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RRRR robot.
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2
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Figure 3.2: The transformation from the coordinate robot to the actual dimensions.

It has the advantage of separating the joint variables, contained in the vector V̂ ,

from the structural variables of the joint axes contained in the matrix [M̂ ],

Q̂(θ̂1, . . . , θ̂m) = [M̂ ]V̂ (θ̂1, . . . , θ̂m) = P̂ . (3.21)

Solving the linear system, we obtain the joint variables contained in the vector V̂ ,

V̂ (θ̂1, . . . , θ̂m) = [M̂ ]−1P̂ (3.22)

The solution of the system provides the inverse kinematics, and the subspaces

of the solutions, stated as relations among the components of the eight-dimensional

vector V̂ , are used to define the reduced design equations.

The implicitization can be visualized in some cases as a transformation from a

“coordinate robot”, whose axes are aligned with the coordinate axes in some fashion,
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to the actual robot dimensions. This is a non-rigid transformation, as it does not

keep angles and distances between lines. However, it is a linear transformation from

dual quaternions to dual quaternions.

For serial chains with more than three joints, the vector V̂ has more than eight

components; in fact its dimension is 2m, m being the total number of joints. For

m = 2 we use either the real or the dual part of the dual quaternion to construct the

linear system, depending on the type of joints; for m = 3, V̂ has eight components

and the linear system contains the whole dual quaternion. For m = 4 and m = 5, we

need to create a sum of linear systems. In this case, the procedure does not seem to

be of practical use and instead, several steps of reduction are performed.

We illustrate this using the spatial 5R chain. In this case, V̂ has 32 components.

We separate it in four vectors of dimension 8 just for handling purposes, and sort

their terms to obtain the system

[
M̂1

]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c12345

s1c2345

s2c1345

s3c1245

c1235s4

c1234s5

s12c345

s13c245

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+
[
M̂2

]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s14c235

s15c234

c145s23

c135s24

c134s25

c125s34

c124s35

c123s45

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+
[
M̂3

]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s123c45

s124c35

s125c34

s134c25

s135c24

s145c23

c15s234

c14s235

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+
[
M̂4

]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c13s245

c12s345

s1234c5

s1235c4

s1245c3

s1345c2

c1s2345

s12345

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= P̂ ,

(3.23)
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where cij denotes cos θi

2
cos

θj

2
, and so on. The matrices have the structure

[M̂1] =
[
Ŝ(0) Ŝ1 Ŝ2 Ŝ3 Ŝ4 Ŝ5 Ŝ12 Ŝ13

]

[M̂2] =
[
Ŝ14 Ŝ15 Ŝ23 Ŝ24 Ŝ25 Ŝ34 Ŝ35 Ŝ45

]

[M̂3] =
[
Ŝ123 Ŝ124 Ŝ125 Ŝ134 Ŝ135 Ŝ145 Ŝ234 Ŝ235

]

[M̂1] =
[
Ŝ245 Ŝ345 Ŝ1234 Ŝ1235 Ŝ1245 Ŝ1345 Ŝ2345 Ŝ12345

]
, (3.24)

where the Ŝ are dual quaternions written in columns as 8-vectors, and Ŝij = ŜiŜj.

3.8.2 The partial reduction

Partial reduction is used with advantage in many cases because of the high cost

associated with inverting the matrix [M ]. It follows basically the same principles

as the complete reduction, but in this case the coordinate robot has less degrees of

freedom than the actual robot,

Q̂(θ̂1, . . . , θ̂m) = [M̂(θ̂k+1, . . . , θ̂m)]V̂ (θ̂1, . . . , θ̂k) = P̂ . (3.25)

Notice that in Eq.(3.25) the joint variables contained in V̂ need not be the first

k joint variables of the robot, and can be chosen arbitrarly. The solution for the k

variables of the coordinate robot is now a function of the m − k joint variables left

plus the structural variables. Further steps are performed to eliminate those joint

variables, in a case-by-case basis.

Here we present three partial eliminations that we use to solve for different con-

strained robots. They correspond to the cases of eliminating one rotation angle, two
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rotation angles, and two rotation angles plus one translation. All three cases present

an easy algebraic solution.

Reduction of one revolute joint variable

For robots with only one revolute joint, eliminating its joint variable leads to the

expected results of identifying the direction of the revolute joint axis with the direction

of the goal quaternion. Notice that, in this case, a maximum of two orientations can

be reached.

We collect by sines and cosines of θ and consider any robot with only a revolute

joint axis, S. The real part of the dual quaternion kinematics equations of the robot,

Q̂R, shown in Eqs.(3.11) and (3.12), contains only the joint direction s, and we can

write it as

Q̂R(S(θ)) = [M̂ ]V (θ) = P̂R, (3.26)

which expands to

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

sx 0

sy 0

sy 0

0 1

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

⎧
⎨

⎩
sin θ

2

cos θ
2

⎫
⎬

⎭
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

px

py

pz

pw

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(3.27)

We impose that every 2 × 2 linear system of rank 2 must give the same solution,

that is, the set of systems

⎡

⎣si 0

0 1

⎤

⎦

⎧
⎨

⎩
sin θ

2

cos θ
2

⎫
⎬

⎭
=

⎧
⎨

⎩
pi

pw

⎫
⎬

⎭
, i = x, y, z, (3.28)
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yields the set of solutions

cos
θ

2
= pw

sin
θ

2
=

pi

si
, i = x, y, z. (3.29)

This solution states that the direction and angle of the revolute axis S is the same

as the direction and angle of the goal dual quaternion. Equating the values of sin θ
2

we obtain the two reduced design equations,

sypx − sxpy = 0

szpx − sxpz = 0, (3.30)

which correspond to making the axes parallel, that is, s × p = 0. Together with the

Plücker condition, we obtain the solution for s

sx =
px√

p2
x + p2

y + p2
z

sy =
py√

p2
x + p2

y + p2
z

sz =
pz√

p2
x + p2

y + p2
z

. (3.31)

There exist two solutions, corresponding to the two positive and negative parallel

directions; the second solution can be obtained by negating the first one. This is true

for all cases and by default we will not consider them as different designs in any case.
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Reduction of two revolute joint variables

We use the following coordinate robot:

V (θ1, θ2) = X(θ1)Y (θ2) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin θ1

2
cos θ2

2

cos θ1

2
sin θ2

2

sin θ1

2
sin θ2

2

cos θ1

2
cos θ2

2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(3.32)

X

Y

Z

S1(θ1)

S2(θ2)

Figure 3.3: The coordinate robot for two revolute variables.

Notice that the dual part is equal to zero; the rotations can be eliminated by using

only the real part of the dual quaternion. The solution of the system will be a function

of the rest of revolute joints of the robot.

For the most general case, the 5R robot,

Q̂(θ1, θ2, θ3, θ4, θ5) = Ŝ1(∆θ1)Ŝ2(∆θ2)Ŝ3(∆θ3)Ŝ4(∆θ4)Ŝ5(∆θ5), (3.33)

the expression of the design equations becomes,

[M̂(θ3, θ4, θ5)]V (θ1, θ2) = P̂R, (3.34)
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where P̂R denotes the real part of the dual quaternion, and the columns of the 4 × 4

matrix [M̂ ] are the quaternions,

[
M̂
]

=
[
S1S345(θ) S2S345(θ) S12S345(θ) S345(θ)

]
. (3.35)

where

S1S345(θ) = S1(π)S3(θ3)S4(θ4)S5(θ5)

S2S345(θ) = S2(π)S3(θ3)S4(θ4)S5(θ5)

S12S345(θ) = S1(π)S2(π)S3(θ3)S4(θ4)S5(θ5)

S345(θ) = S3(θ3)S4(θ4)S5(θ5) (3.36)

Notice that Si(π) = 0 + si, the vector quaternion in the direction of the ith joint

axis. It is also important to notice that we can eliminate any pair of joint variables,

and expressing it similarly as the linear function of quaternions in Eq.(3.35) but

keeping the order of the axes in the actual serial chain.

In the special case of a robot with only two revolute joints, like the one in Figure

3.4,

Q̂(θ1, θ2, d3, . . . dm) = Ŝ1(∆θ1)Ŝ2(∆θ2)Ŝ3(∆d3) . . . Ŝm(∆dm), (3.37)

the partial reduction simplifies to

[M̂ ]V (θ1, θ2) = P̂R, (3.38)

where P̂R denotes the quaternion that forms the real part of the dual quaternion.
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X

Y

Z

S1(θ1)

S2(θ2)

S1(θ1)
S2(θ2)

[M]

Figure 3.4: The coordinate robot transformed to an RRPP robot.

The columns of the 4 × 4 matrix [M ] are the vector quaternions,

[
M̂
]

=

⎡

⎣s1 s2 s1 × s2
�0

0 0 −s1 · s2 1

⎤

⎦ =
[
S1(π) S2(π) S1(π)S2(π) S(0)

]
. (3.39)

We invert this matrix by finding the row vectors orthogonal to the column vectors

in [M ],

[
M̂−1

]
=

1

(s1 × s2) · (s1 × s2)

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

s1 − (s1 · s2)s2 0

s2 − (s1 · s2)s1 0

s1 × s2 0

(s1 · s2)s1 × s2 (s1 × s2) · (s1 × s2)

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

, (3.40)

and solve for V (θ1, θ2),

sin
θ1

2
cos

θ2

2
=

s1 · p− s1 · s2s2 · p
(s1 × s2) · (s1 × s2)

cos
θ1

2
sin

θ2

2
=

s2 · p− s1 · s2s1 · p
(s1 × s2) · (s1 × s2)

sin
θ1

2
sin

θ2

2
=

p · (s1 × s2)

(s1 × s2) · (s1 × s2)

cos
θ1

2
cos

θ2

2
=

p · (s1 × s2)(s1 · s2)

(s1 × s2) · (s1 × s2)
+ pw, (3.41)
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where P̂R = pw + p = {px, py, pz, pw}.

The results in Eq.(3.41) provide us with the inverse kinematics for the variables θ1

and θ2. These values are substituted into the dual part Q̂D(θ1, θ2, d3, . . . dm) − P̂D of

the dual quaternion design equations to obtain equations in the prismatic variables

di only. The prismatic variables can be then linearly eliminated.

The reduced design equations are created from the solutions to the inverse kine-

matics.

The components of V (θ1, θ2) are not independent variables; the relation between

them captures the fact that they are cosines and sines of angles,

R1 :
sin θ1

2
sin θ2

2

cos θ1

2
sin θ2

2

=
sin θ1

2
cos θ2

2

cos θ1

2
cos θ2

2

. (3.42)

When using the values of Eq.(3.41), we obtain the first reduced design equation

R1,

[(
p · (s1 × s2)

)(
p · (s1 × s2)(s1 · s2) + pw(s1 × s2) · (s1 × s2)

)−
(
p · ((−s1 × s2) × s2)

)(
p · (−s1 × (s1 × s2))

)]
/(s1 × s2) · (s1 × s2) = 0 (3.43)

This equation can be collected in the form

(pws1 · p× s2 + s1 · (p × (p × s2)))((s1 × s2) · (s1 × s2))
2/(s1 × s2) · (s1 × s2) = 0

(3.44)

If we require that s1 × s2 �= 0, which restricts the pair of revolute joints from

generating a pure planar movement, then we obtain

R : pws1 · p × s2 + s1 · (p× (p× s2)) = 0. (3.45)
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It is interesting to notice that this equation corresponds to both the matrix for-

mulation of geometric constraint equations [58] and the equivalent screw triangle

formulation [97], in the following way,

R = s1 · ([AEuler − I]s2) = tan
ψ

2
− s1 · (pu × s2)

(pu × s1) · (pu × s2)
, (3.46)

where AEuler corresponds to the rotation matrix expressed by using the Euler pa-

rameters [9], and pu = p/|p| with sin ψ
2

= |p| and cos ψ
2

= pw. This shows how all

three formulations lead to the same set of solutions, and represents the best case of

reduction, when the implicitization creates the set of polynomial equations with no

extraneous roots.

Reduction of two revolute and one prismatic joint variables

For this reduction we use the coordinate robot:

V̂ (θ1, θ2, d) = X̂(θ1)Ẑ(d)Ŷ (θ3) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin θ1

2
cos θ3

2

cos θ1

2
sin θ3

2

sin θ1

2
sin θ3

2

cos θ1

2
cos θ3

2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

+ ε

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−d
2
cos θ1

2
sin θ3

2

−d
2
sin θ1

2
cos θ3

2

d
2
cos θ1

2
cos θ3

2

d
2
sin θ1

2
sin θ3

2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(3.47)

We apply the reduction for instance to an RPRRR robot,

Q̂(θ1, d, θ3, θ4, θ5) = Ŝ1(∆θ1)Ŝ2(∆d)Ŝ3(∆θ3)Ŝ4(∆θ4)Ŝ5(∆θ5), (3.48)

and the design equations become,

[M̂(θ4, θ5)]V̂ (θ1, d, θ3) = P̂ . (3.49)
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X

Y

Z

S1(θ1)

S3(θ3)

S2(d)

Figure 3.5: The coordinate robot for two revolute and one prismatic variables.

If we write V̂ and P̂ as eight-dimensional vectors, [M̂ ] is an 8×8 matrix with general

structure

[M̂ ] =

⎡

⎢
⎢
⎢
⎣

A
... 0

· · · ... · · ·
B

... C

⎤

⎥
⎥
⎥
⎦

, (3.50)

where
⎡

⎢
⎢
⎢
⎣

A

· · ·
B

⎤

⎥
⎥
⎥
⎦

=
[
Ŝ1Ŝ45(θ) Ŝ3Ŝ45(θ) Ŝ13Ŝ45(θ) Ŝ45(θ)

]
(3.51)

contains only the factors corresponding to revolute joints, and

[
C
]

=
[
−Ŝ23Ŝ45(θ) −Ŝ12Ŝ45(θ) Ŝ2Ŝ45(θ) Ŝ123Ŝ45(θ)

]

R
, (3.52)

where the subindex R in Eq.(3.52) indicates real part of the quaternion –dual parts

never multiply together. The abbreviatons are used as indicated in Eq.(3.36).

As in the previous case, we can pick any group of three joint variables to perform

the elimination as long as the order is maintained.
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We solve for the components of the vector V̂ (θ1, d, θ2) by inverting the matrix [M̂ ],

V̂ (θ1, d, θ2) =
[
M̂
]−1

P̂ (3.53)

The inversion of matrix [M̂ ] is not very complicated if we notice that

[
M̂
]−1

=

⎡

⎢
⎢
⎢
⎣

A−1 ... 0

· · · ... · · ·
−C−1BA−1 ... C−1

⎤

⎥
⎥
⎥
⎦

. (3.54)

This inversion is a special case of the general Schur’s complement formula.

The expression of [A]−1 has been already computed in Eq.(3.34), and if the robot

has only two revolute joints, it coincides with Eq.(3.40). The submatrix [B] contains

the dual part of the same dual quaternions, while the submatrix [C] contains dual

quaternions of both prismatic and revolute joints. We solve for the joint variables θ1,

θ2 and d as the rotational components,
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin θ1

2
cos θ2

2

cos θ1

2
sin θ2

2

sin θ1

2
sin θ2

2

cos θ1

2
cos θ2

2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

= [A]−1P̂R (3.55)

and the translational components,
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−d
2
cos θ1

2
sin θ2

2

−d
2
sin θ1

2
cos θ2

2

d
2
cos θ1

2
cos θ2

2

d
2
sin θ1

2
sin θ2

2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

= −([C]−1[B][A]−1)P̂R + [C]−1P̂0, (3.56)

where P̂R = p + pw, P̂0 = p0 + pw0 are the real and dual parts of the task dual

quaternion, respectively.
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Corresponding to these solutions for the inverse kinematics, there are some rela-

tions among the components of V̂ which are going to form the set of reduced equations;

for the components in Eq.(3.55),

R1 :
sin θ1

2
sin θ2

2

cos θ1

2
sin θ2

2

=
sin θ1

2
cos θ2

2

cos θ1

2
cos θ2

2

, (3.57)

and for the components in Eq.(3.56) we can define the two more independent relations.

Those can be expressed in different ways; the ones below make the equations well-

conditioned,

L1 :
d
2
cos θ1

2
cos θ2

2

cos θ1

2
cos θ2

2

=
d
2
sin θ1

2
sin θ2

2

sin θ1

2
sin θ2

2

,

L2 :
d
2
cos θ1

2
sin θ2

2

cos θ1

2
sin θ2

2

=
d
2
sin θ1

2
cos θ2

2

sin θ1

2
cos θ2

2

. (3.58)

These equations may be free of additional joint variables, and hence form the set

of reduced design equatons, or they may contain some more joint variables, in which

case we perform further reduction steps to create the set of reduced design equations.

3.8.3 The final set of reduced equations

The reduced equations differ according to the robot topology and the type of reduction

we decide to follow, but, in general, at the end of the reduction process we will obtain

a condition R1 from the elimination of revolute joint variables, and several conditions,

{Li} from the elimination of revolute and prismatic joint variables in the dual part

of the dual quaternion.

The number of conditions needed for each case can be computed from the counting

formula in Eq.(3.16); we are eliminating (r + t)(n−1) variables from a set of 6(n−1)
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equations. Hence we need to obtain k = 6 − (r + t) reduced design equations after

the implicitization process.

The complete set of equations consists of {R1, {Li}}j equations for each of the

n − 1 task dual quaternions. To these we must add the Plücker conditions for each

axis and any extra constraint we want to impose. The total set of reduced equations

for a serial chain consisting of m joints, that can be synthesized for a maximum of n

positions, is

{R1,L1, . . . ,Lk−1}j, j = 2, . . .n,

si · si = 1, si · s0
i = 0, i = 1, . . . , m,

c1, . . . , cc. (3.59)

It does not contain any joint variable and can be solved for the Plücker coordinates

of the axes.

3.9 Solving the Design Equations

We use numerical methods to solve the parameterized design equations; the goal of the

implicitization process is, in the first place, to reduce the size of the parameterized

system. However, this reduction may introduce extraneous roots that need to be

eliminated. The final goal is to arrive to the set of equations that captures exactly

the geometric constraints of the serial chain, and, if possible, to obtain a closed

algebraic solution.

The parameterized design equations are numerically well-behaved. We used the
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Newton-Raphson and Levenberg-Marquardt solver fsolve of Matlab to test the de-

sign equations and to solve for those chains for which the implicitization results too

complicated. The calculations were performed on an Apple G4 computers, at 733

MHz and 500 Mhz. In addition to the solutions of the exact synthesis problem,

the parameterized design equations can be used also for design optimization along a

trajectory, see [56].

The reduced design equations were solved numerically using same methods. For

some cases, the equations were further reduced using resultant methods and closed

algebraic solutions were found.

In Table 3.5 we present a summary of all the constrained robots for which the dual

quaternion design equations were created and solved. In the table, “DOF” indicates

the degrees of freedom of the chain, n is the maximum number of complete positions

that we can define, c counts for extra constraints imposed on the axes, and e indicates

the number of extra positions, that is, task translations with orientation belonging

to the workspace. Under “Des.Eq.”, we indicate whether the design equations have

been solved in parameterized (p) or reduced (r) form, or if a closed solution (c)

has been found. “Sols.” denotes the number of solutions found and t the time

it took to compute them, whereas “Method.” indicates the solution method: it

can be algebraic (A) –and, in particular, when resultants (R) were used to reduce

the problem. Or it can be a numeric method, polynomial homotopy continuation

(PHC) or Newton-Raphson algorithms (NR). The last column, “Section”, indicates
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the section of Chapter 5 where the results can be found. The following chapter

presents the particular solution process for these cases.

Table 3.5: Constrained robots solved using dual quaternion synthesis.

Robot DOF n c e Des. Eq. Sols. t Method. Section

RP 2 2 0 1 c 1 < 1 sec. A 5.2.1

RR 2 3 0 0 c 6 (2 real) < 1 sec. A 5.2.2

RPP 3 2 2 3 c 6 < 1 sec. A 5.3.1

RRP 3 4 1 0 c 12 < 1 sec. R 5.3.2

TP 3 3 4 0 c 12 < 1 sec. R 5.3.3

RRR 3 5 0 0 p/r 19 18 h. NR 5.3.4

RPC 4 5 4 0 c 6 < 1 sec. R 5.4.2

RPRP 4 5 0 4 p/r 21 (7 real) 43 min. PHC 5.4.1

TPR 4 7 2 0 p/r 6 12 h. NR 5.4.5

CRR 4 7 2 0 p/r 52 14 h. NR 5.4.4

PRRR 4 8 0 0 p 91 9.8 h. NR 5.4.3

RRRR 4 9 0 0 p 11 48 h. NR 5.4.6

PPS 5 6 0 0 c 10 < 1 sec. A 5.5.1

RCC 5 13 0 0 p 1 14.7 h. NR 5.5.2

3.10 Relation to Previous Synthesis Methods

In this section we demonstrate the relation between the dual quaternion formulation

and some of the synthesis methods presented in Chapter 1. To compare with the

planar complex formulation of Sandor [88], called the standard form, we reduce the

dual quaternion synthesis to planar quaternions. We follow [55] for some of the
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derivations. We then compare the result of the dual quaternion product with the

geometric screw triangle used by Tsai [97]. For the calculations on the screw triangle,

we follow [9].

3.10.1 Planar quaternions and the standard form

A planar quaternion can be derived from a dual quaternion with a general expression

as that of Eq.(2.18) if we realize that the displacement in the z-direction and the x−y

components of the rotation must be zero. We obtain the expression in Eq.(2.14).

For a relative displacement of angle θ and translation d, the planar quaternion is

expressed as a rotation about the pole p of the relative displacement,

P = cos
θ

2
+ sin

θ

2
k + py sin

θ

2
iε − px sin

θ

2
jε, (3.60)

or, using the displacement vector d = (dx, dy),

P = cos
θ

2
+ sin

θ

2
k + (

dx

2
cos

θ

2
+

dy

2
sin

θ

2
)iε − (

dx

2
sin

θ

2
− dy

2
cos

θ

2
)jε. (3.61)

McCarthy [55] decomposes the general planar displacement in pure translation and

pure rotation, which can be expressed as complex numbers,

R(θ) = cos
θ

2
+ k sin

θ

2
= ek φ

2 ,

T (d) = 1 +
1

2
(dx + dyk)iε = 1 +

1

2
Diε. (3.62)

Using this notation, a general planar displacement can be computed as T (p)R(θ)T (−p),

which gives the expression

P = T (p)R(θ)T (−p) = (1 − 1

2
P(1 − ekφ)iε)ek φ

2 (3.63)
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The Standard Form

The complex number synthesis procedure developed in [88] for rigid-body guidance

generates the design equations from loop equations.

A planar displacement is expressed as a complex number whose module contains

the translation and whose angle accounts for the rotation. The composition of planar

displacements is expressed as the product of modules and exponential functions.

If we are expressing a displacement from a reference configuration Z, then the

change in length and orientation of the vector by amounts ρ = |Z ′|/|Z| and φ will

yield the complex number,

Z ′ = |Z ′|eθ+φ =
|Z ′|
|Z| |Z|eθeφ = Zρeφ (3.64)

The relative displacement ρeφ is denoted as stretch rotation operator in [88].

We demonstrate the procedure for a planar RR chain. In Figure 3.6, we have a

planar RR chain in two positions{M1} and {M2}, whose links are defined by the

complex numbers W and Z in the first position. In the standard form, angles are

measured from a fixed reference frame {F}. They are denoted βi and αi when the

links W and Z are in position i. However, in the planar quaternion formulation, we

use for the second and consecutive links the relative angle from the previous link,

denoted here by αiR.

Considering position 1 as the reference configuration, we compute the relative

angles β1i = βi − β1 = β1iR and α1i = αi − α1, but α1i = β1i + α1iR. Notice that, as

the moving frame is attached to the second link, it is also true that α1i = θi − θ1. We

76



D1

D2

{F}

{M}1

{M}2

W

Z

β1
β2

β12
α1

α1R

θ1θ2

α2

α2R

α12

B

A

B

Figure 3.6: A planar RR chain in two positions.

also denote δ1i = Di − D1 the relative translation.

The standard form equations are created by stating the loop equations for the

chain from position 1 to position i; we use i = 2 for this example. Compute the

vector addition going from position 2 to position 1,

B + Weiβ12 + Zeiα12 − D2 + D1 − Z − W − B = 0, (3.65)

to obtain the standard form,

W (eiβ12 − 1) + Z(eiα12 − 1) = δ12. (3.66)

Planar Quaternion Synthesis

We create the design equations for the same RR chain using the planar quaternion

procedure in the form of Eq.(3.63), as a rotation about A followed by a rotation

about B and equated to the relative planar quaternion for the task position,

B(β12R)A(α12R) = P12. (3.67)
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The expansion of the planar quaternion product gives

(
(1 +

1

2
B(1 − ekβ12)iε +

1

2
A(1 − ekα12R)iεe−kβ12

)
ek

β12+α12R
2 = (1 +

1

2
P(1 − ekθ12)iε)ek

θ12
2 ,

(3.68)

where P is the pole of the relative transformation from {M1} to {M2}. From this

expression we can eliminate the equality ek
β12+α12R

2 = ek
θ12
2 and simplify the scalars

to obtain an equation in the terms of iε,

B(1 − ekβ12) + Aekβ12(1 − ekα12R) = P(1 − ekθ12). (3.69)

Noting that P(1−ekθ12) = D2−ekθ12D1, see [58], and that we can write B = A−W,

A = D1 − Z and substitute θ12 = α12, α12R = α12 − β12, we obtain

(D1 − Z −W)(1 − ekβ12) + (D1 − Z)ekβ12(1 − ek(α12−β12)) = D2 − ekθ12D1, (3.70)

which simplifies to the standard form of Eq.(3.66),

W (eiβ12 − 1) + Z(eiα12 − 1) = δ12.

The dual quaternion synthesis, when specialized to planar quaternions, gives equa-

tions that contain an orientation part and a displacement part that is equivalent to

that obtained using the standard form.

3.10.2 Dual quaternions and the screw triangle

Given three displacements [T1], [T2], [T3], the set of screw axes S12, S23, S13, repre-

senting the relative displacements [T12], [T23], [T13] form a screw triangle, see Figure

3.7.
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Figure 3.7: The screw triangle.

The angle θij and distance tij between common normals ni and nj along the axis

Sij correspond to half the rotation angle and translation of the relative displacement

[Tij ]. This geometric property of the screw triangle was studied by Bottema and Roth

[9] and applied to mechanism synthesis by Tsai [97]. He considered two of the screw

axes as the axes of a dyad. The third screw is the displacement obtained from the

composition of screw displacements of the dyad.

The equations that capture the geometry of the screw triangle can be used to

solve for the joint axes of the dyad if the resultant displacement is known. The initial
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equations,

tan
θ12

2
=

s12 · (s23 × s13)

(s13 × s12) · (s12 × s23)
,

t12
2

=
s12 − (s12 · s23)s23

(s12 × s23)2
· (A23 − A12) − s12 − (s12 · s13)s13

(s12 × s13)2
· (A13 − A12), (3.71)

are transformed in [9] into expressions that can be solved for the parameters of one

axis as a function of the other two axes.

The dual quaternion product

Consider the dual quaternion expressions, Ŝ12, Ŝ23, of the relative displacements [T12],

[T23] described above, and let Ŝ13 be the result of their composition. The dual quater-

nion product,

Ŝ13 =Ŝ12Ŝ23 = (cos
θ̂12

2
cos

θ̂23

2
− sin

θ̂12

2
cos

θ̂23

2
S12 · S23) +

(cos
θ̂12

2
sin

θ̂23

2
S23 + sin

θ̂12

2
cos

θ̂23

2
S12 + sin

θ̂12

2
sin

θ̂23

2
S12 × S23), (3.72)

can be manipulated to obtain expressions that allows us to solve directly for the screw

axis S13 and the rotation and translation θ13, d13.

For obtaining the expression of the direction and rotation angle, we consider the

real part of Eq. (3.72). Divide the vector part by the scalar to obtain

tan
θ13

2
s13 =

tan θ12

2
s12 + tan θ23

2
s23 + tan θ12

2
tan θ23

2
s12 × s23

1 − tan θ12

2
tan θ23

2
s12 · s23

. (3.73)

To solve for the rotation angle, we dot the expression in Eq.(3.73) with itself. This
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yields

tan
θ13

2
=

√
tan2 θ12

2
+ tan2 θ23

2
+ 2 tan θ12

2
tan θ23

2
s12 · s23 + tan2 θ12

2
tan2 θ23

2
(s12 × s23)2

1 − s12 · s23 tan θ12

2
tan θ23

2

,

(3.74)

which is the same as the expression obtained in [9]. For the direction of the screw

axis we divide by this value in Eq.(3.73),

s13 =
tan θ12

2
s12 + tan θ23

2
s23 + tan θ12

2
tan θ23

2
s12 × s23√

tan2 θ12

2
+ tan2 θ23

2
+ 2 tan θ12

2
tan θ23

2
s12 · s23 + tan2 θ12

2
tan2 θ23

2
(s12 × s23)2

.

(3.75)

We find expressions for a point in the screw axis A13 and for the displacement t13

from the dual part of the quaternion product. The cross product of s13 with the dual

vector part of the screw axis yields the perpendicular point A13 in the line S13 from

the origin,

A13 =
1

tan θ13

2

s13 × (
t13
2

s13 + tan
θ13

2
s0
13). (3.76)

We divide the dual vector part of the product, t13
2

cos θ13

2
s13 + sin θ13

2
s0
13 by the real

scalar cos θ13

2
. The dot product with the real vector s13 yields, if we call k the square

root in the denominator of Eq.(3.75),

t13
2

=
1

k

(
(A12 − A23) · (s12 × s23) tan

θ12

2
tan

θ23

2
+

t12
2

(tan
θ12

2
+ tan

θ23

2
s12 · s23) +

t23
2

(tan
θ23

2
+ tan

θ12

2
s12 · s23)

)
. (3.77)

The expressions in Eqs.(3.74, 3.75, 3.76, 3.77) correspond to those derived from the

screw triangle by Bottema and Roth [9]. The equality of the direction equations had
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been proved also in section 3.8.2 using a different approach. Hence the geometry of the

screw triangle can be obtained by using the dual quaternion product of displacements.

3.11 Summary

In this chapter, we developed the basic theory of the finite-position dual quaternion

synthesis of constrained robots. We identified the relation between the kinemat-

ics equations in 4 × 4 homogeneous matrix form and in dual quaternion form, and

showed that the latter corresponds to successive screw displacements and the prod-

uct of exponentials based on Lie group methods. We created the design equations by

equating the dual quaternion kinematics equations to a set of task dual quaternions.

We were able to create a formula to count for the maximum number of positions

that can be defined for each robot topology. In doing so, we identified special cases

in which the robot is orientation-limited or translation-unconstrained, due to the

semi-direct product structure of the group of spatial displacements.

The design equations obtained with this method are parameterized by the joint

variables: assigning the whole range of values to the joint variables, we obtain the

workspace of the robot. We devised a methodology to eliminate these non-structural

variables that yields a set of algebraic equations that, in the simplest cases, were

proved to be equivalent to the equations obtained stating the geometric constraints

of the chain. The set of design equations were then solved using different methods,

depending on their complexity.
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The dual quaternion synthesis methodology was compared to planar synthesis

using complex numbers and to the equivalent screw triangle methodology for spatial

synthesis, and we were able to show that both methodologies can be derived from the

dual quaternion synthesis.
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Chapter 4

Synthesis for Subgroups of SE(3)

4.1 Introduction

The quaternion synthesis of spherical robots is a special case of the dual quaternion

synthesis of spatial robots. A dual quaternion contains Hamilton’s quaternion as its

real part; real parts operate separately to represent the orientation of the general

displacement. The solution of the quaternion synthesis is directly applicable in some

cases of spatial movement, when the displacement of the robot is limited by the

orientations.

Planar quaternion synthesis is developed to design the two general cases of planar

constrained robots. In Section 3.10 we showed the specialization of dual quaternions

into planar quaternions. In this Chapter, we compare the design equations obtained

using planar quaternions to those created as geometric constraints.

A different set of special cases is studied in the last part of this Chapter. For these

cases, the joints of the robot form a subgroup of the group of spatial displacements,
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but the task positions need to be considered in its general form.

4.2 Quaternion Synthesis of Spherical Robots

Spherical robots are those whose workspace is contained on the surface of a sphere.

They consist of revolute joints whose axes intersect at a point; the end-effector moves

in a pure rotation about this point. The workspace of a spherical robot is a subset of

the group of spatial rotations, the special orthogonal group SO(3).

Some work has been done in spherical robots with prismatic joints; however, this

joint can be transformed into a revolute joint by making the axis of the revolute joint

perpendicular to the circle described by the prismatic joint. There are two general

cases of constrained spherical robots, the R and the RR robot.

4.2.1 Kinematics equations of constrained spherical robots

The kinematics equations are created using the same procedure described in Chapter

3. The rotation matrix kinematics equations,

[R0i(θ1, . . . , θk)] = [R1(∆θi
1)] . . . [Rk(∆θi

k)]. (4.1)

are transformed into quaternion form,

Q(θ1, . . . , θk) = S1(θ1) . . . Sk(θk). (4.2)

85



4.2.2 Design equations for constrained spherical robots

A discrete approximation of the desired workspace is given in the form of n − 1 task

rotations Ri, i = 2 . . . , n. As in the general case, we equate the kinematics equations

to the task rotations to obtain design equations. The set of parameterized design

equations is
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

qx(θ
i
1, . . . , θi

k)

qy(θ
i
1, . . . , θi

k)

qz(θ
i
1, . . . , θi

k)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ri
x

ri
y

ri
z

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, i = 2, . . . , n.

sj · sj = 1, j = 1 . . . , k. (4.3)

As noted before, only three of the components of the quaternion are independent.

We can prove that the set of solutions generated by the four quaternion components

is the same as that generated by three components of the quaternion considering

the unit vector condition for the quaternion. To do this, we express the last design

equation as a polynomial combination of the other three and the unit quaternion

condition,

(qw − rw)(qw + rw) = − (qx + rx)(qx − rx) − (qy + ry)(qy − ry) − (qz + rz)(qz − rz) +

(q2
x + q2

y + q2
z + q2

w − 1) (4.4)

where the polynomial (qw + pw) does not have any root in the set, except for the case

qw = 0, which is not of interest for us.

Next step is to substitute the unit quaternion condition q2
x +q2

y +q2
z +q2

w = 1 by the

unit vector conditions for the rotation axes. We only need to prove it for the cases of
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one and two rotation axes, but the proof can be generalized using induction.

For the case k = 1, we can see directly that

q2
x + q2

y + q2
z + q2

w = 1 ⇐⇒ sin2 θ

2
(s2

x + s2
y + s2

z) + cos2 θ

2
= 1 ⇐⇒ s2

x + s2
y + s2

z = 1.

(4.5)

Because of this, the set of solutions generated by the original quaternion equality is

the same as that generated by the set < qx − rx, qy − ry, qz − rz, s
2
x + s2

y + s2
z − 1 >.

For the case k = 2, the squared components of the quaternion are

q2
x + q2

y + q2
z + q2

w = (sin
θ1

2
cos

θ2

2
s1 + cos

θ1

2
sin

θ2

2
s2 + sin

θ1

2
sin

θ2

2
s1 × s2)

2 +

(cos
θ1

2
cos

θ2

2
− sin

θ1

2
sin

θ2

2
s1 · s2)

2 = sin2 θ1

2
cos2 θ2

2
s1 · s1 +

cos2 θ1

2
sin2 θ2

2
s2 · s2 + sin2 θ1

2
sin2 θ2

2
s1 · s1s2 · s2 + cos2 θ1

2
cos2 θ2

2
=

(sin2 θ1

2
s1 · s1 + cos2 θ1

2
)(sin2 θ2

2
s2 · s2 + cos2 θ2

2
) (4.6)

This last expression is equal to one if and only if s1 · s1 = 1 and s2 · s2 = 1. Again

we can use the unit vector conditions for the axes instead of the unit condition for

the quaternion.

4.2.3 Synthesis of a spherical R robot

The spherical R robot is a one-degree-of-freedom robot consisting of one revolute axis

g arbitrarly oriented, that allows rotation of angle θ about it, see Figure 4.1.

The kinematics equations for a spherical R robot are defined by the angle about
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G θ

Figure 4.1: A robot consisting of a revolute joint

the fixed rotation axis g,

Q(θ) = G(θ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin θ
2
gx

sin θ
2
gy

sin θ
2
gz

cos θ
2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (4.7)

These are equated to the task orientations. The maximum number of orientations are

given by Eq.(3.17). For a single revolute joint, the maximum number of orientations

is two.

Q(θi, ) = Ri, i = 1, 2. (4.8)

The parameterized design equations are reduced by eliminating linearly the joint
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variable θ. We construct the matrix⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

0 gx

0 gy

0 gz

1 0

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

⎧
⎨

⎩
cos θ

2

sin θ
2

⎫
⎬

⎭
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

rx

ry

rz

rw

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(4.9)

Every one of the three 2 × 2 linear system of rank 2 must give a solution,
⎡

⎣0 gx

1 0

⎤

⎦

⎧
⎨

⎩
cos θ

2

sin θ
2

⎫
⎬

⎭
=

⎧
⎨

⎩
rx

rw

⎫
⎬

⎭
; (4.10)

We obtain the set of solutions

cos
θ

2
= rw

sin
θ

2
=

ri

gi
, i = x, y, z, (4.11)

which states that the direction and angle of the revolute joint axis g need to be the

same as the direction and angle of the task dual quaternion.

The reduced design equations are created by equating the values of sin θ
2
,

gyrx − gxry = 0

gzrx − gxrz = 0 (4.12)

and together with the condition |g| = 1, we can solve for the direction of the revo-

lute joint g. The design equations impose parallelism between the directions of the

revolute joint and the task position, that is, g × r = 0,

gx =
rx√

r2
x + r2

y + r2
z

gy =
ry√

r2
x + r2

y + r2
z

gz =
rz√

r2
x + r2

y + r2
z

. (4.13)
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There exist two solutions, corresponding to opposite directions.

Hence, the two solutions for the spherical R robot are obtained by aligning the

revolute axis with the axis of the relative rotation and then rotating by the relative

rotation angle. The second solution is obtained by negating both axis and rotation

angle.

4.2.4 Synthesis of a spherical RR robot

The spherical RR robot is a two-degree of freedom robot consisting of two revolute

axes, the fixed axis g and the moving axis w, which are concurrent. The rotation

about the fixed axis g is called θ and φ is the rotation about w, see Figure 4.2.

G
θ

W

φ

Figure 4.2: A spherical RR robot.
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The quaternion representation for the relative rotations of the chain is given by

QRR = G(θ)W (φ). (4.14)

When applying the quaternion product we obtain the expression QRR = q0 + q,

where the point q0 and the vector q are

q0 = cos
θ

2
cos

φ

2
− sin

θ

2
sin

φ

2
g · w,

q = sin
θ

2
cos

φ

2
g + cos

θ

2
sin

φ

2
w + sin

θ

2
sin

φ

2
(g ×w). (4.15)

The componentwise expansion leads to a set of equations in the components of the

fixed rotation axis, g = (gx, gy, gz), and the moving rotation axis w = (wx, wy, wz). If

we write the point as the fourth component of the direction vector we have

QRR =

⎧
⎨

⎩
cos θ

2
sin φ

2
w + sin θ

2
cos φ

2
g + sin θ

2
sin φ

2
g × w

cos θ
2
cos φ

2
− sin θ

2
sin φ

2
g · w

⎫
⎬

⎭
. (4.16)

The number of rotations needed to obtain finite number of solutions is calculated,

using the formula in Eq.(3.17), to be a maximum of nR = 5 rotations. We create the

design equations,

QRR(θi, φi) − Ri = �0, i = 2, . . . 5, (4.17)

to obtain the set of parameterized design equations.

To eliminate the joint parameters θ and φ, we use the procedure developed in

91



Section 3.8.2. Construct the linear system

⎡

⎣g w g × w �0

0 0 −g · w 1

⎤

⎦

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin θ
2
cos φ

2

cos θ
2
sin φ

2

sin θ
2
sin φ

2

cos θ
2
cos φ

2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎨

⎩
p

pw

⎫
⎬

⎭
(4.18)

in which vectors form the columns of the matrix. The system has a solution when

the matrix is invertible. The determinant of the matrix is (g×w) · (g×w), which is

zero only for the degenerate case when both directions are parallel.

We invert the matrix (see Eq.(3.40)) and calculate the inverse kinematics for the

angles θ and φ. The reduced equation is given in Eq. (3.42) by the relation among

sines and cosines of the joint variables.

We could also use other trigonometric relations, but this one has the virtue of not

adding extraneous roots, and even eliminating the norm of the vector g × w. When

applying this relation, we obtain the expression in Eq.(3.45), which expands to

R : gx((−r2
y − r2

z)wx + (rxry − rwrz)wy + (rwry + rxrz)wz) +

gy((rxry + rwrz)wx + (−r2
x − r2

z)wy + (ryrz − rwrx)wz) +

gz((rxrz − rwry)wx + (rwrx + ryrz)wy + (−r2
x − r2

y)wz) = 0 (4.19)

Notice that this equation is bilinear and homogeneous in the components of g and

w. As it has been proved in Section 3.8.2, this expression is equivalent to the matrix

geometric constraint imposing constant angle between g and w, and also equal to the

direction equation of the equivalent screw triangle formulation.
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The set of reduced design equations consists of one equation like Eq.(4.19) per

relative rotation plus the two unit vector constraints,

Ri, i = 1, . . . , 4

g2
x + g2

y + g2
z = 1,

w2
x + w2

y + w2
z = 1. (4.20)

We solve the set of Eq.(4.20) for the 6 unknowns corresponding to the two joint

axes g and w. For this case, there exists an algebraic closed solution, consisting

of a two-step matrix elimination, see for instance [58]. The result is a set of linear

equations plus a univariate six-degree polynomial; the spherical RR robot synthesis

has at most six complex solutions.

4.3 Planar Quaternion Synthesis of Planar Robots

Planar robots move in parallel planes [58], allowing both translation and rotation of

the end-effector within the plane. They consist of revolute joints whose axes are per-

pendicular to this plane, and prismatic joints whose directions belong to the plane.

The workspace of a planar robot is a subset of the special euclidean group of pla-

nar displacements, SE(2). Planar quaternions have been used for the synthesis and

analysis of planar robots, see [16, 42, 61],

A constrained serial chain has at most two degrees of freedom. There are three

basic constrained serial chains, the single revolute joint R, the planar RP (or PR)

and the planar RR robots. Chains consisting of one or two prismatic joints cannot
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reach a general planar displacement.

4.3.1 Kinematics equations of constrained planar robots

We transform the matrix kinematics equations, written as 3× 3 planar displacement

matrices,

[T0i(θ1, . . . , θk)] = [T1(∆θi
1)] . . . [Tk(∆θi

k)]. (4.21)

into planar quaternion form, following the notation of Chapter 2 and Chapter 3,

Q(θ1, . . . , θk) = p1(θ1) . . . pk(θk). (4.22)

where θi designates a generic variable that can be either rotation or translation, and

pi are the poles of the relative displacements for each link of the robot, which coincide

with the joints of the robot.

4.3.2 Design equations for constrained planar robots

A discrete approximation of the desired workspace is given in the form of n − 1 task

planar displacements Pi, i = 2 . . . , n. As in the general case, we equate the kinematics

equations to the task rotations to obtain the set of parameterized design equations,
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

qx(θ
i
1, . . . , θi

k)

qy(θ
i
1, . . . , θi

k)

qz(θ
i
1, . . . , θi

k)

qw(θi
1, . . . , θi

k)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pi
x

pi
y

pi
z

pi
w

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, i = 2, . . . , n. (4.23)

The maximum number of planar displacement are computed from a counting for-

mula derived in a similar fashion as Eq.(3.16). Every revolute joint is a point on the
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plane, given by two coordinates. A prismatic joint is a direction on the plane, con-

sisting of two coordinates with a unit vector condition. Three of the four components

of the planar quaternion are independent. For r revolute joints and t prismatic joints,

we have

nP =
3 + r

3 − r − t
. (4.24)

4.3.3 Synthesis of a planar R robot

The planar R robot is a one-degree-of-freedom robot consisting of one revolute axis

g that allows rotation of angle θ about it. The kinematics equations,

G(θ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin θ
2
gy

− sin θ
2
gx

sin θ
2

cos θ
2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (4.25)

are equated to the task planar displacements. In this case, the maximum number of

task positions is two.

G(θi, ) = P i, i = 1, 2. (4.26)

The general planar displacement P is expressed as a planar quaternion in Eq.(3.61).

In this case we can solve directly from the design equations. We obtain

gx =
−py

pz
=

dx

2
sin

θ

2
− dy

2
cos

θ

2

gy =
−py

pz
=

dx

2
cos

θ

2
+

dy

2
sin

θ

2
(4.27)

This is, as expected, the expression of the pole for the relative transformation, see

Eq.(3.60).
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4.3.4 Synthesis of a planar RP robot

The planar RP robot is a two-degree of freedom robot consisting of one revolute axes,

the fixed axis g, and one prismatic moving axis w. Notice that g is a point of the

projective plane, while w is a direction. The rotation about the fixed axis g is called

θ and d is the translation along w, see Figure 4.3.

G

d

θ W

Figure 4.3: A planar RP robot.

The planar quaternion representation for the relative displacements of the chain,

QRP = G(θ)W (d), (4.28)
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expands to

QRP =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d
2
cos θ

2
wx + sin θ

2
(gy − d

2
wy)

d
2
cos θ

2
wy + sin θ

2
(−gx + d

2
wx)

sin θ
2

cos θ
2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (4.29)

We can solve the planar RP robot, using the formula in Eq.(4.24), for a maximum

of nP = 4 displacements.

QPR(θi, di) − P i = �0, i = 2, . . . 4, (4.30)

To eliminate the joint variables θ and d, construct the linear system

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

−wy

2
wx

2
gy 0

wx

2

wy

2
−gx 0

0 0 1 0

0 0 0 1

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d sin θ
2

d cos θ
2

sin θ
2

cos θ
2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

px

py

pz

pw

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(4.31)

and solve to obtain the inverse kinematics for the robot,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d sin θ
2

d cos θ
2

sin θ
2

cos θ
2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2(pywx − pxwy + pz(gxwx + gywy))

2(pxwx + pywy + pz(gxwy − gywx))

pz

pw

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(4.32)

The reduced design equation is obtained as the subspace of solutions that relates

the joint variables,

R :
2(pywx − pxwy + pz(gxwx + gywy))

pz
− 2(pxwx + pywy + pz(gxwy − gywx))

pw
= 0

(4.33)
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This equation for each planar task position, plus the unit vector condition for w,

forms the set of reduced design equations,

{R}i, i = 1, 2, 3

w2
x + w2

y = 1. (4.34)

These equations are solved for g and w to obtain a unique solution for the RP

robot.

4.3.5 Synthesis of a planar RR robot

The planar RR robot is a two-degree-of-freedom robot consisting of two revolute axes,

the fixed axis g and the moving axis w, which are points on the plane . The rotation

about the fixed axis g is called θ and φ is the rotation about w, see Figure 4.4.

The planar quaternion representation for the relative displacements of the chain,

QRR = G(θ)W (φ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin θ
2
cos φ

2
gy + cos θ

2
sin φ

2
wy − sin θ

2
sin φ

2
(gx − wx)

− sin θ
2
cos φ

2
gx − cos θ

2
sin φ

2
wx − sin θ

2
sin φ

2
(gy − wy)

sin θ
2
cos φ

2
+ cos θ

2
sin φ

2

cos θ
2
cos φ

2
− sin θ

2
sin φ

2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

(4.35)

is equated to a maximum of nP = 5 displacements,

QRR(θi, φi) − P i = �0, i = 2, . . . 5, (4.36)
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G
θ

φ

W

Figure 4.4: A planar RR robot.

Solve linearly for the joint variables θ and φ,
⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

gy wy wx − gy 0

−gx −wx wy − gy 0

1 1 0 0

0 0 −1 1

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin θ
2
cos φ

2

cos θ
2
sin φ

2

sin θ
2
sin φ

2

cos θ
2
cos φ

2

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

px

py

pz

pw

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(4.37)

to obtain the inverse kinematics for the robot. The reduced design equation is ob-

tained as the subspace of solutions that relates the joint variables, and that is the

same as the one defined in Eq.(3.42). Eliminating the external roots, we obtain

R : (−pwpx − pypz)wx + (−pwpy + pxpz)wy + gx(pwpx − pypz − p2
zwx − pwpzwy) +

gy(pwpy + pxpz + pwpzwx − p2
zwy) − p2

x − p2
y = 0 (4.38)

The set of reduced design equations contains the four equations obtained evaluating
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R at each of the task positions. We solve them for g and w to obtain four solutions

for the RR robot.

4.4 Dual Quaternion Synthesis with Spherical Joints

A spherical joint allows rotation about an arbitrarly orientable axis passing by a point.

Three perpendicular revolute axes intersecting at a point as in Figure 4.5 produce

the same displacement, that is, an arbitrary rotation from the given point. The set

of displacements produced by the spherical joint forms the subgroup So of spherical

rotations about a point o. The subgroup has dimension 3, and three more parameters

are needed to define the point.

G1
θ1

G2
θ2

G3
θ3

Figure 4.5: The spherical joint as three intersecting revolute joints.

Three perpendicular axes intersecting at a point are defined by twelve parameters
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plus three joint variables minus six equations constraining the joint axes; this is a

total of nine parameters. These need to be reduced to the six parameters defining

the subgroup So.

4.4.1 Three perpendicular revolute joints

Let G1, G2, G3 be three revolute joint axes such that G1 · G2 = 0, G1 · G3 = 0 and

G2 · G3 = 0. These six conditions imply that the directions are mutually orthogonal

and that each two lines intersect; the intersection point is common to the three lines.

Each of the joint axes has the dual quaternion expression of Eq.(2.37). We create

the spherical joint as the dual quaternion product of the individual axes,

Ŝ(θ1, θ2, θ3) = Ĝ1(θ1)Ĝ2(θ2)Ĝ3(θ3). (4.39)

When expanded, we obtain

Ŝ(θ1, θ2, θ3) =

⎧
⎨

⎩
α1g1 + α2g2 + α3g3

α4

⎫
⎬

⎭
+ ε

⎧
⎨

⎩
α1g

0
1 + α2g

0
2 + α3g

0
3

0

⎫
⎬

⎭
, (4.40)

where the αi appear as combinations of the joint variables,

α1 = sin
θ1

2
cos

θ2

2
cos

θ3

2
+ cos

θ1

2
sin

θ2

2
sin

θ3

2
,

α2 = cos
θ1

2
sin

θ2

2
cos

θ3

2
− sin

θ1

2
cos

θ2

2
sin

θ3

2
,

α3 = sin
θ1

2
sin

θ2

2
cos

θ3

2
+ cos

θ1

2
cos

θ2

2
sin

θ3

2
,

α4 = cos
θ1

2
cos

θ2

2
cos

θ3

2
− sin

θ1

2
sin

θ2

2
sin

θ3

2
. (4.41)

When equating Eq.(4.39) to a goal displacement P̂ ,

Ŝ(θ1, θ2, θ3) = P̂ , (4.42)
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we can solve linearly for the combinations of joint variables in the αi factors using

the real part of the equation,

⎡

⎣g1 g2 g3
�0

0 0 0 1

⎤

⎦

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

α1

α2

α3

α4

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎨

⎩
p

pw

⎫
⎬

⎭
. (4.43)

The matrix is orthogonal and the values for the joint angles,

α1 = g1 · p, α2 = g2 · p, α3 = g3 · p, α4 = pw, (4.44)

are used to define the reduced design equation given by the relation among the αi

factors,

R : (g1 · p)2 + (g2 · p)2 + (g3 · p)2 + p2
w = 1. (4.45)

If we notice that 1 − p2
w = p · p, this expression can be written as

R′ : (g1 · p)g1 + (g2 · p)g2 + (g3 · p)g3 = p. (4.46)

which simply states that the sum of the projections of p on the three joint directions

is equal to p. Notice that this statement is true for any three perpendicular directions;

hence, there is no condition in the choice of the directions g1, g2, g3, and any three

orthogonal directions can be used to obtain the rotation of the spherical joint.

We now substitute the expressions of the joint variables in the dual part of Eq.(4.42).

If we express the dual part of each joint axis as g0
i = c × gi, where c is the common

intersection point, the dual part of the equations becomes

M : (g1 · p)c × g1 + (g2 · p)c × g2 + (g3 · p)c × g3 = p0, (4.47)
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and this is equal to

M′ : c × ((g1 · p)g1 + (g2 · p)g2 + (g3 · p)g3) = p0. (4.48)

Observe that the expression in parenthesis is the left hand side of Eq.(4.46); if we

use this value, we obtain

M′′ : c × p = p0 (4.49)

The reduced design equation M′′ shows that, for the translations, only the inter-

section point c is the design parameters, and the directions of the revolute joint axes

can be chosen arbitrarily as long as they are orthogonal.

The final parameters that define the spherical joint are hence the intersection point

c plus the three joint variables θi, the same parameters needed to define the subgroup

So. These results need to be taken into consideration when designing robots with

spherical joints.

4.4.2 An orientable axis

Consider the spherical joint as a rotation about an arbitrary axis that can be re-

oriented in a general way. Let S1 be the screw axis defined by the motion of the

spherical joint to reach position 1, and Sj be the screw axis to reach position j. The

relative screw S1j passes through the same point, the center of the spherical joint c,

see Figure 4.6.

Focusing only in the direction of the screw axis, if we construct the kinematics

equations as matrix displacements along the chain and we use the product of three
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S1
Sj

S1j

Figure 4.6: The spherical joint as an orientable screw axis.

Euler angles to define the direction of rotation,

[Sj ] = [X(αj , 0)][Y (−βj , 0)][Z(θj, 0)] (4.50)

and we compute the relative displacement [S1j ] with respect to the reference con-

figuration [S1], we can find the axis of the relative displacement, for instance using

Cayley’s formula,

s1j =
1

√
3 − cos αj cos βj − cos θj(cosαj + cos βj) − sin αj sin βj sin θj⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2(sin
αj

2
cos

βj

2
cos

θj

2
− cos

αj

2
sin

βj

2
sin

θj

2
)

2(sin
αj

2
cos

βj

2
sin

θj

2
+ cos

αj

2
sin

βj

2
cos

θj

2
)

2(cos
αj

2
cos

βj

2
sin

θj

2
− sin

αj

2
sin

βj

2
cos

θj

2
)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (4.51)

which is presented here making the angles to reach the first position equal to zero.

This same result can be obtained from Eq.(4.39) if we make the revolute joints

g1 = (1, 0, 0), g2 = (0,−1, 0) and g3 = (0, 0, 1), and θ1 = α, θ2 = −β, θ3 = θ. The

result of expressing the S-joint as an orientable axis is a particular case of the case
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presented above, in which we specify the rotation axes to be the coordinate axes for

the S joint at the first position.

4.5 Dual Quaternion Synthesis for Two Consecu-

tive Prismatic Joints

When a serial robot is to be designed with two consecutive prismatic joints as in

Figure 4.7, these can be made to be coplanar, as the location of a prismatic joint

is not a design parameter. The set of displacements produced by the two prismatic

joints forms the subgroup TP of planar translations on a plane P . The subgroup has

dimension 2, and two more parameters are needed to define the direction normal to

the plane; for synthesis purposes, the location of the plane is again arbitrary.

H1d1
H2

d2

Figure 4.7: Two consecutive prismatic joints.
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Let h1 and h2 be the directions of the two prismatic joints. Each of the joint axes

has the dual quaternion expression of Eq.(2.38). We create the displacements of the

two joints as the dual quaternion product,

Ĥ(d1, d2) = Ĥ1(d1)Ĥ2(d2). (4.52)

When expanded, the dual part yields

Ĥ0(d1, d2) =

⎧
⎨

⎩

d1

2
h1 + d2

2
h2

0

⎫
⎬

⎭
. (4.53)

We solve linearly for the joint variables d1 and d2 in the design equations,

[
1
2
h1

1
2
h2

]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d1

d2

1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= p0. (4.54)

For the system to have a solution, the determinant of the augmented matrix must

be zero; this condition creates the reduced design equation

M : (h1 × h2) · p0 = 0. (4.55)

The parameters of the prismatic joints always appear as a cross product, and we

can substitute it by the common normal, h1 × h2 = n. Within the plane defined by

n, any two independent directions can be used to define the joint axes.

The design parameters for two consecutive prismatic joints are the two slides and

the vector defining the normal direction to h1 and h2. It coincides with the parameters

needed to define the subgroup TP .
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This result needs to be considered in the design process. Notice that two pris-

matic joints separated by a revolute joint do not create a fixed plane and hence this

simplification is not applicable.

4.6 Summary

In this chapter, we apply the methodology developed in Chapter 3 to robots whose

geometry creates special cases. In these cases, the movement of the robot occurs

within a subgroup of the group of spatial displacements.

We study synthesis of planar constrained robots using planar quaternions, and

synthesis of spherical robots using quaternions. Two cases that can appear within a

spatial robot are also studied using dual quaternions: the spherical joint and the case

of two consecutive prismatic joints.
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Chapter 5

Application to the Synthesis of

Constrained Robots

5.1 Overview

In this chapter we apply the methodology developed in Chapter 3 to a series of

constrained robotic systems. All of them are solved as serial chains; in some cases,

the solutions can be assembled to create parallel robots.

The chapter is organized in different sections for robots with two, three, four and

five degrees of freedom. In each section, all possible cases that have been solved are

described; particular cases of interest that are created by adding extra constraints

on the axes are also presented and solved separately. For each set of revolute and

prismatic axes, only one possible permutation is presented (for instance, the RPR

only and not the PRR, RRP), when the counting, solution method and number of

roots are equivalent. Cases in which the robot has three or more prismatic joints are
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not presented, because, as explained in 3, they are not constrained in the translations.

For each robot, we introduce the topology and a brief summary of previous syn-

thesis results, construct the design equations and solve them either in parameterized

form or performing the reduction. In those cases for which a closed algebraic solution

has been found, this is also included. An example for each robot is presented.

This case-by-case presentation illustrates the generality of the method but also the

different strategies that can be applied to the design equations in order to make them

easier to solve or to obtain additional information about the nature of the problem.

5.2 Synthesis of Two-degree-of-freedom Robots

The simplest cases of robots that can reach at least one complete relative transfor-

mation have two degrees of freedom. Considering revolute and prismatic joints, there

are only two cases to solve for in this section: the RP robot and the RR robot.

5.2.1 Spatial RP robot

The spatial RP robot is a two-degree-of-freedom robot consisting of one revolute axis

and one prismatic axis. Consider the fixed revolute axis G = g + εg0 = (gx, gy, gz) +

ε(g0
x, g

0
y, g

0
z) and the moving prismatic axis H, which can be in an arbitrary position one

respect to the other (but notice that if they are perpendicular, we obtain a planar

motion). The rotation about the fixed axis G is called θ and it is followed by the

translation d along H = h + εh0 = (hx, hy, hz) + ε(h0
x, h

0
y, h

0
z), see Figure 5.1.

109



G
H

θ
d

Figure 5.1: The spatial RP robot

A brief history

The study of the spatial RP chain, and in particular of the C chain, can be related

to the first results of spatial kinematics if we identify the C chain with the screw axis

of a relative displacement, see Chapter 1 for more details.

The design equations

The dual quaternion representation for the relative displacements of the chain is given

by

Q̂RP = Ĝ(θ, 0)Ĥ(0, d), (5.1)

while the only possible permutation of this topology gives

Q̂PR = Ĥ(0, d)Ĝ(θ, 0). (5.2)
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These equations expand to Q̂RP = Q0 + Q, where the dual point Q0 and the dual

vector Q are

Q0
RP = cos

θ

2
− ε

d

2
sin

θ

2
G · H,

QRP = sin
θ

2
G + ε

d

2
cos

θ

2
H + ε

d

2
sin

θ

2
(G × H) (5.3)

for the first case, and

Q0
PR = cos

θ

2
− ε

d

2
sin

θ

2
G · H,

QPR = sin
θ

2
G + ε

d

2
cos

θ

2
H + ε

d

2
sin

θ

2
(H × G) (5.4)

for the second. Notice that the only difference is a sign change due to the cross

product in the vector part.

The design variables are the coordinates of the joint axis G and the direction of

the prismatic joint axis, h. The maximum number of task positions according to

the equations (3.16), (3.17) and (3.19) is nmax = 2.5 and nR = 2, nT = 3. It is a

case of orientation-limited chain. We can define extra constraints on the translational

variables or we can solve for 2 complete arbitrary positions plus one extra position

with orientation belonging to the workspace. The special case of a robot consisting

of a single cylindrical joint C corresponds to the RP robot if we define two extra

constraints making the direction of H parallel to the direction of G. In this case, the

count gives a maximum of nmax = 2 task positions and there exists a unique solution.

To create the design equations we equate the kinematics equations to each of the
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goal dual quaternion P̂ i, that is,

Q̂RP (θi, di) − P̂ i = �0. (5.5)

We expand the design equations,

⎧
⎨

⎩
sin θ

2
g + ε(sin θ

2
g0 + d

2
cos θ

2
h± d

2
sin θ

2
(g × h))

cos θ
2
− εd

2
sin θ

2
(g · h)

⎫
⎬

⎭
−
⎧
⎨

⎩
p + εp0

pw + εp0
w

⎫
⎬

⎭
= �0, (5.6)

where the ± sign corresponds to the RP and PR cases.

Solving the design equations

For this case we do not solve the parameterized equations, as it is easy to eliminate

the joint parameters θ and d. We perform the implicitization as described in Section

3.8 to eliminate the joint variable θ, to obtain

gx =
px√

p2
x + p2

y + p2
z

gy =
py√

p2
x + p2

y + p2
z

gz =
pz√

p2
x + p2

y + p2
z

. (5.7)

If we decide to solve for an extra general translation with rotation in the workspace,

we have two sets of vector equations. We substitute the solution values for the cosine

and sine of θ in the moment equations,

d(gz(hxpw − hypz) + gyhzpz) + 2gx0pz − 2px0gz = 0

d(gz(hypw + hxpz) − gxhzpz) + 2gy0pz − 2py0gz = 0

d(gzhzpw + gxhypz − gyhxpz) + 2gz0pz − 2pz0gz = 0, (5.8)
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then we solve linearly for d at each equation,

dx =
2(px0gz − gx0pz)

gz(hxpw − hypz) + gyhzpz

dy =
2(py0gz − gy0pz)

gz(hypw + hxpz) − gxhzpz

dz =
2(pz0gz − gz0pz)

gzhzpw + gxhypz − gyhxpz
, (5.9)

and impose that the value of d must be the same in all cases, that is, dx = dy and

dx = dz. These 2 equations per relative displacement, together with the the Plücker

constraints, form the set of reduced equations to solve for g0 and h,

{dx = dy, dx = dz}i, i = 2, 3,

gxg
0
x + gyg

0
y + gzg

0
z = 0

h2
x + h2

y + h2
z = 1. (5.10)

We use resultant techniques to further simplify the system . We clear the denomi-

nators of the design equations and use the Plücker condition in Eq.(5.10) to eliminate

one of the components of g0, for instance gx0 and solve linearly for the other two,

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

A11 A12 A13

A21 A22 A23

A31 A32 A33

A41 A42 A43

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gy0

gz0

1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=
{
�0
}

, (5.11)

where the coefficients of the matrix are linear functions of h, that is, Aij = Kxhx +

Kyhy + Kzhz. In order for the system to have solutions, we impose that the 3 × 3

minors must be equal to zero. The result is a set of four homogeneous polynomials of
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cubic total degree in the components of h. We can set hz = 1 for instance and solve

linearly for the powers of hx,

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h3
x

h2
x

hx

1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=
{

0
}

. (5.12)

A solution will exist when the determinant of this matrix is equal to zero. The

determinant is a six-degree polynomial in hy,

Det([B]) = c0 + c1hy + c2h
2
y + c3h

3
y + c4h

4
y + c5h

5
y + c6h

6
y = 0 (5.13)

with at most four real roots, that we can solve to obtain solution values for hy.

Substitute the solutions and solve linearly for the rest of the variables. Three of the

four roots correspond to extraneous roots introduced when clearing denominators,

and we obtain one RP solution.

Example

The task positions are shown in Table 5.1. The third one corresponds to a general

translation with orientation bounded to the workspace of the chain.

Table 5.1: Task positions for an RP chain

Position Axis Rotation Translation

position 1 (1.0, 0.0, 0.0) + ε(0.0, 0.0, 0.0) 0o 0

position 2 (0.82,−0.10, 0.56) + ε(−0.71,−2.04, 0.67) 253.2o 0.98

position 3 (0.82,−0.10, 0.56) + ε(0.55,−1.66,−1.11) 225.4o 0.53

114



Figure 5.2: The spatial RP robot reaching two complete positions plus one translation

The solution is presented in Table(5.2). Figure 5.2 shows the RP chain while

reaching each of the positions. The RP robot was visualized using the software

Synthetica, [93].

Table 5.2: The solution for the RP chain

Joint Axis Direction Moment

G (−0.82, 0.10,−0.56) (−0.15, 1.67, 0.52)

H (−0.58,−0.81, 0.03) (−2.17, 1.53,−0.06)

The solution for the particular case of a C robot consists of making the joint axes,

angle and displacement equal to the relative screw that defines the two task positions.

5.2.2 Spatial RR robot

The spatial RR robot is a two-degree-of-freedom chain consisting of two revolute axes,

the fixed axis G of rotation θ and the moving axis W of rotation φ, which are not

parallel nor concurrent, see Figure 5.3.
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G
θ

W

φ

Figure 5.3: The spatial RR robot

A brief history

The design of spatial RR chains has been a focus of research since the first attempts

of generalizing Burmerster’s theory by Roth [83]. Veldkamp [103] solved the problem

for three instantaneous positions and showed that there exist two solutions. Later,

Suh [95] used screw theory to show that, in all cases, the finite position synthesis

yields two solutions that form a Bennett linkage. Finally, Tsai and Roth, [98], [99]

used the equivalent screw triangle to solve the finite position synthesis and presented

an algebraic solution that yielded two RR linkages. The problem has been recently

studied in different ways ([52], [73]).
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The design equations

The dual quaternion kinematics equations are written as

Q̂RR = Ĝ(θ, 0)Ŵ (φ, 0), (5.14)

where the dual point Q0 and the dual vector Q are

Q0 = cos
θ

2
cos

φ

2
− sin

θ

2
sin

φ

2
G · W,

Q = sin
θ

2
cos

φ

2
G + cos

θ

2
sin

φ

2
W + sin

θ

2
sin

φ

2
(G × W). (5.15)

We can define up to nmax = 3 complete positions, while nR = 5 positions. Hence

this is not a orientation-limited chain and we solve for three arbitrary task positions.

To create the design equations we equate Eq.(5.14) to each of the task dual quater-

nions P̂ , that is,

Q̂RR(θi, φi) − P̂ i = �0, i = 2, 3, (5.16)

to obtain the set of design equations. If G = g + εg0 = (gx, gy, gz) + ε(g0
x, g

0
y, g

0
z) and

W = w + εw0 = (wx, wy, wz) + ε(w0
x, w

0
y, w

0
z), they expand to

⎧
⎨

⎩
cos θ

2
sin φ

2
w + sin θ

2
cos φ

2
g + sin θ

2
sin φ

2
g × w

cos θ
2
cos φ

2
− sin θ

2
sin φ

2
g · w

⎫
⎬

⎭

+ ε

⎧
⎨

⎩
cos θ

2
sin φ

2
w0 + sin θ

2
cos φ

2
g0 + sin θ

2
sin φ

2
(g ×w0 + g0 ×w)

− sin θ
2
sin φ

2
(g ·w0 + g0 · w)

⎫
⎬

⎭
=

⎧
⎨

⎩
p + εp0

pw + εp0
w

⎫
⎬

⎭
.

(5.17)
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Solving the design equations

We eliminate the joint parameters θ and φ as described in section 3.8. In this case

we cannot solve separately for the rotations; the directions of G and W are not fully

specified by the rotations but also by the translations.

The values for the angles of Eq.(3.41),

cos
θ

2
sin

φ

2
=

p · (−g × (g × w))

(g ×w) · (g × w)

sin
θ

2
cos

φ

2
=

p · ((−g ×w) × w)

(g × w) · (g × w)

sin
θ

2
sin

φ

2
=

p · (g × w)

(g × w) · (g × w)

cos
θ

2
cos

φ

2
=

p · (g × w)(g · w)

(g × w) · (g × w)
+ pw (5.18)

are used to obtain the reduced design equation, Eq.(4.19),

R : gx((−p2
y − p2

z)wx + (pxpy − pwpz)wy + (pwpy + pxpz)wz) +

gy((pxpy + pwpz)wx + (−p2
x − p2

z)wy + (pypz − pwpx)wz) +

gz((pxpz − pwpy)wx + (pwpx + pypz)wy + (−p2
x − p2

y)wz) = 0. (5.19)

We substitute the values in Eq. (5.18) in the four dual components of the dual

quaternion of Eq. (5.17) to obtain four equations that are free of joint variables. three

of them are independent; one of them can be written as a polynomial combination of

the other three, as shown in Chapter 4.

The set of reduced design equations contains the angle condition in eq. (5.19) plus
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the three first moment components of Eq.(5.17),

M : (p · (−g × (g ×w))w0 + (p · ((−g × w) × w))g0 +

(p · (g ×w))(g × w0 + g0 × w) = ((g × w) · (g × w))p0, (5.20)

and the Plücker conditions for the axes. This set of reduced design equations,

{R,Mx,My,Mz}i, i = 2, 3,

g · g = 1, g · g0 = 0,

w · w = 1,w · w0 = 0. (5.21)

consists of 12 equations in 12 unknowns. We do not present an algebraic elimination

here, as it is already known, see [99]. A closed algebraic solution that considers the

line geometry of the workspace is presented in Chapter 6. However, the equations are

simple enough for a symbolic program to solve them.

Example

The solutions presented in Table 5.4 and Figure 5.4 for the example of Table 5.3

have been generated using the Mathematica solver. Only the two real solutions are

presented here; for the complete set of solutions see Appendix A.

5.3 Synthesis of Three-degree-of-freedom Robots

Most of the three-degree-of-freedom robots have been solved recently. In this section

we include all basic combinations of revolute and prismatic joints and also those
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Table 5.3: Task positions for an RR chain

Position Axis Rotation Translation

position 1 (1.0, 0.0, 0.0) + ε(0.0, 0.0, 0.0) 0o 0

position 2 (−0.43,−0.75, 0.49) + ε(0.26,−1.37,−1.85) 113.0o 2.59

position 3 (0.03,−0.80,−0.60) + ε(1.68, 1.21,−1.51) 142.6o −1.24

Figure 5.4: Two spatial RR robots reaching three positions

special cases that are of interest, that is, some robots with universal (T) or cylindrical

(C) joints.

5.3.1 Spatial RPP robot

The spatial RPP robot is a three-degree-of-freedom robot. It consists of one fixed

revolute joint G(θ) and two prismatic joints that provide translations d and b along

directions h and u , see Figure 5.5.

A brief history

The finite-position synthesis of chains consisting of three links with two prismatic

joints was considered by Tsai [97] to be equivalent to the corresponding dyad with

one prismatic joint, and this is essentially true when considering only complete task
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Table 5.4: The two real solutions for the RR chain

Joint Axis Direction Moment

G (0.14, 0.94, 0.30) (−1.32,−0.33, 1.68)

W (0.59, 0.03, 0.81) (−0.81,−2.56, 0.69)

G (−0.88, 0.45, 0.17) (−1.57,−2.76,−0.73)

W (0.14, 0.94, 0.30) (−1.32,−0.33, 1.69)

positions. No other information about previous solutions could be found, but this

chain is within the possibilities of geometric constraint synthesis.

The design equations

The dual quaternion kinematics equations,

Q̂RPP = Ĝ(θ, 0)Ĥ(0, d)Û(0, b), (5.22)

are expanded as Q̂RPP = Q0 + Q, where the point is

Q0 = cos
θ

2
− ε(sin

θ

2
(
d

2
G · H +

b

2
G · U)), (5.23)

and the vector

Q = sin
θ

2
G + ε(cos

θ

2
(
d

2
H +

b

2
U) + sin

θ

2
(
d

2
G × H +

b

2
G × U)). (5.24)

Using the counting formula in Eq.(3.17) with r = 1, we obtain nR = 2. Applying

the results of Chapter 4, we substitute the two consecutive prismatic directions by the

common normal n to the plane that they define, to obtain nmax = 3. We can solve

for at most two complete task positions. Notice that the design for the PRP robot
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G
θ

Ub

H

d

Figure 5.5: The spatial RPP robot

yields a different counting because the prismatic axes are separated by the revolute

joint.

Once one direction and the plane are fixed, the second direction in the plane can be

chosen arbitarly with the only condition of not being parallel to the first. Computing

the maximum number of translations using Eq.(3.19) yields nT = 5. We solve for two

complete task positions plus three additional arbitrary translations that must have

an orientation given by a rotation angle around g. The initial set of parameterized
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design equations is

Ĝ(θ2, 0)Ĥ(0, d2)Û(0, b2) = P̂ 2,

(Ĝ(θi, 0)Ĥ(0, di)Û(0, bi))◦ = P̂ i◦, i = 3, 4, 5,

n · n = 1, g · g = 1, g · g0 = 0. (5.25)

These are 18 equation in 18 unknowns, 9 of them corresponding to the structural

variables G and n. This set of equations can be reduced to obtain a closed algebraic

solution.

Solving the design equations

We solve for the direction of G as in Section 5.2.1, to obtain as a result that g must

be equal to the direction of the screw axis of the relative displacement P̂ 2. We also

obtain the inverse kinematics for the angle θ

Substitute the expression of θ in the set of equations (Ĝ(θi, 0)Ĥ(0, di)Û(0, bi))◦ =

P̂ i◦, i = 2, . . . , 5, and discard the dual scalar part. We solve linearly for d and b in

the system,

⎡

⎢
⎢
⎢
⎣

...
...

...

1
2
(pwh− h× p) 1

2
(pwu− u× p) g◦√p · p − p◦

...
...

...

⎤

⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d

b

1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0

0

0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (5.26)

where we denote p and p◦ the dual vector of the task dual quaternion.

Impose the condition that the determinant of the matrix in Eq.(5.26) must be

zero, and solve linearly for d, b choosing two of the equations. The determinant of
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the matrix can be expressed, if we make n = h× u, as

n · (p2
w(
√

p · pg◦ − p◦) + pw(
√

p · pg◦ − p◦) × p + ((
√

p · pg◦ − p◦) · p)p) = 0.

(5.27)

We make nz = 1 and eliminate g0
z using the Plücker condition. The bilinear system

of four equations in four unknowns is solved to obtain at most six complex solutions.

Numerical example

We present an example in which we want to design the RPP robot to reach the

positions presented in Table 5.5. The first two are arbitrary and the last three have

arbitrary translations with rotations belonging to the workspace of the chain.

Table 5.5: Task positions for an RPP chain

Position Axis Rotation Translation

position 1 (1.0, 0.0, 0.0) + ε(0.0, 0.0, 0.0) 0o 0

position 2 (0.98,−0.14, 0.16) + ε(−0.51,−1.81, 1.51) 1.75 2.21

position 3 (0.98,−0.14, 0.16) + ε(0.12, 0.02,−0.70) 4.28 3.97

position 4 (0.98,−0.14, 0.16) + ε(0.28, 1.70,−0.25) 0.96 0.51

position 5 (0.98,−0.14, 0.16) + ε(−0.06, 0.18, 0.52) 5.43 3.06

We obtain six complex roots, which are listed in Appendix A –we pick h = n× x.

Two of the roots are real but one corresponds to the degenerate case n = g. The only

real solution is presented, as the joint axes in the first position,in Table 5.6. Figure

5.6 shows the robot while reaching each of the positions.
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Table 5.6: The solution for the RPP chain

Joint Axis Direction Moment

G (0.98,−0.14, 0.16) (0.25, 1.45,−0.29)

h (0.0, 0.25,−0.97)

u (−0.96,−0.26,−0.07)

Figure 5.6: The solution RPP robot reaching two complete positions plus three trans-

lations

5.3.2 Spatial RRP robot

There are three possible assemblies for robots consisting of two revolute joints and

one prismatic joint: RRP, RPR and PRR. From the kinematic synthesis point of

view, all three topologies belong to the same class: the only difference are the signs

in the anti-commutative part of the design equations. Here we state and solve the

design equations for the RRP robot.
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The RRP robot is a three-degree-of-freedom robot. It consists of two revolute

joints, a fixed axis G that allows rotation of angle θ about it and a moving axis W of

rotation φ about it, followed by a prismatic joint of translation d along an arbitrary

axis H with direction h, see Figure 5.7.

G

Hd

θ φ
W

Figure 5.7: The spatial RRP robot

A brief history

The finite-position synthesis design equations for linkages consisting of two revolute

and one prismatic joints were stated by Tsai [97] using the equivalent screw triangle.

The PRR robot was stated and partially solved by Sandor [90] for three task positions,

using the free parameters to optimize the performance of the mechanism. Recently,

solutions were obtained almost simultaneously using dual quaternion synthesis [71]

for solving the RPR robot, and using matrix kinematics equations [47] for the PRR
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robot. In this last case, the authors were able to reduce the design equations to a

univariate polynomial of degree 30, out of which 12 roots are solutions to the design

problem.

The design equations

The dual quaternion representation for the relative displacements,

Q̂RRP = Ĝ(θ, 0)Ŵ (φ, 0)Ĥ(0, d), (5.28)

is expanded as Q̂RRP = Q0 + Q, where the point is

Q0 = cos
θ

2
cos

φ

2
− sin

θ

2
sin

φ

2
G · W − ε(

d

2
sin

θ

2
cos

φ

2
G · H +

d

2
cos

θ

2
sin

φ

2
W · H +

d

2
sin

θ

2
sin

φ

2
(G × W) · H), (5.29)

and the vector

Q =sin
θ

2
cos

φ

2
G + cos

θ

2
sin

φ

2
W + sin

θ

2
sin

φ

2
(G × W) +

ε
d

2
(cos

θ

2
cos

φ

2
H − sin

θ

2
sin

φ

2
(G · W)H + sin

θ

2
cos

φ

2
(G × H) +

cos
θ

2
sin

φ

2
(W × H) + sin

θ

2
sin

φ

2
(G × W) × H), (5.30)

and equated to the goal positions,

Ĝ(θi, 0)Ŵ (φi, 0)Ĥ(0, di) = P̂ i, i = 2, 3, 4. (5.31)

We can define up to nmax = 4 + 1
3

positions, while nR = 5. These are four full

positions plus two of the six parameters that define a fifth position. We can include the

fifth partially specified position or we can add one extra constraint on the joint axes.

If we specify the constraint on the directions of the revolute joint, we obtain nR = 4

and we can solve separately for the direction of the revolute joints. This simplifies the
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solution process and allows us to obtain a simple closed algebraic solution. However,

any other constraint on any of the structural variables can be used instead.

Solving the design equations

We eliminate the three joint variables following the procedure explained in Section

3.8.2, with the block matrices of Eq.(3.51) and Eq.(3.52) being

⎡

⎢⎢
⎢
⎣

A

. . .

B

⎤

⎥⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

g w g × w �0

0 0 −g · w 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g0 w0 g0 × w + g × w0 �0

0 0 −(g0 ·w + g · w0) 0

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

, (5.32)

and

[C] =

⎡

⎣w × h g × h h (g × w) × h− (g ·w)h

−w · h −g · h 0 −(g ×w) · h

⎤

⎦ . (5.33)

We invert the block matrix using Eq.(3.54). In this case, the inverses of the [A],

[C] matrices are easy to compute,

[A]−1 =
1

(g × w)2

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

w × (g ×w)T 0

−g × (g × w)T 0

g ×wT 0

(g ·w)g ×wT (g × w)2

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

(5.34)

128



and,

[C]−1 =

1

(g × w)2

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

−(g × (g × w)) × hT h · (g × (g × w))

−(w × (w × g)) × hT h · (w × (w × g))

(g · w)(g × w) × hT + (g × w)2hT −(g · w)h · (g × w)

(g ×w) × hT −h · (g × w)

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

, (5.35)

and the values of the joint variables are given by solving the linear system as in

Eq.(3.55) and Eq.(3.56). The expressions obtained for the inverse kinematics are sub-

stituted in Eq.(3.57) and Eq.(3.58) to create the three design equations R,M1,M2.

Notice that R,

R : pwg · p ×w + g · (p × (p ×w)) = 0, (5.36)

where we require that g × w �= 0, which restricts the pair of revolute joints from

generating a pure planar movement, is exactly the same as Eq.(5.19). This is true for

any spatial robot with two revolute joints.

The final set of reduced design equations,

{R,M1,M2}i, i = 2, 3, 4,

g2
x + g2

y + g2
z = 1, w2

x + w2
y + w2

z = 1, h2
x + h2

y + h2
z = 1,

gxg
0
x + gyg

0
y + gzg

0
z = 0, wxw

0
x + wyw

0
y + wzw

0
z = 0,

c(g), (5.37)

contains 15 equations in the 15 parameters of the joint axes. The last equation, c(g),

is any constraint on the joint direction g.
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This set of reduced design equations can be further simplified to a univariate

polynomial using resultant techniques. For the following simplification, we use the

condition gx = 0.

As we indicated, we can solve separately for the directions g and w using the three

equations Ri and the extra condition gx = 0. We make gz = 1, wz = 1 to obtain four

equations in four unknowns. The procedure that follows is the standard way to solve

for two directions and can be found for instance in [58].

Assemble the polynomials Ri into the matrix equation,
⎡

⎢
⎢⎢
⎣

a11gy + b11 a12gy + b12 a13gy + b13

a21gy + b21 a22gy + b22 a23gy + b23

a31gy + b31 a32gy + b32 a33gy + b33

⎤

⎥
⎥⎥
⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wx

wy

1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0

0

0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (5.38)

The terms aij and bij are constants determined by the task positions and the normal-

izing conditions. This matrix equation has a solution only if the rank of the coefficient

matrix is less than 3. To achieve this we set the determinant of the matrix to zero.

The result is a cubic polynomial in gy,

D : d0 + d1gy + d2g
2
y + d3g

3
y = 0. (5.39)

The three roots for gy are used to solve linearly for w in Eq.(5.38). Thus, we obtain

as many as three solutions for the directions g and w in the RRP chain. Notice that

this result applies to the RPR and PRR chains as well, because the equations are the

same for all three chains.

Substitute the solutions in the equations Mi
1,Mi

2, which are linear in the com-

ponents h = (hx, hy, hz), g0 = (gx0, gy0, gz0) and w0 = (wx0, wy0, wz0), to obtain six
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equations of the form,

M : hx(Ax · g0+Bx · w0 + cx) + hy(Ay · g0 + By · w0 + cy)

+hz(Az · g0 + Bz ·w0 + cz) = 0. (5.40)

The coefficient vectors A, B and c are constants determined by the specified task

positions and the values of g and w.

Out of the nine parameters, we can eliminate three by making hz = 1 and using

the Plücker conditions to eliminate gy0, wy0. We obtain a system of six equations in

six unknowns, that we write as the 6 × 5 linear system,

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

a11hx + b11hy + c11 a12hx + b12hy + c12 . . . a15hx + b15hy + c15

a21hx + b21hy + c21 a22hx + b22hy + c22 . . . a25hx + b25hy + c25

...
... . . .

...

a61hx + b61hy + c61 a62hx + b62hy + c62 . . . a65hx + b65hy + c45

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gx0

gz0

wx0

wz0

1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0

0
...

0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

(5.41)

This equation can be solved if we force the six 5× 5 minors to be zero, so the system

has rank four. They yield six polynomials of degree five in hx and hy. We can then

collect by the powers of hx to construct the 6 × 6 matrix equation

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

d10 d11(hy) d12(hy) d13(hy) d14(hy) d15(hy)

d20 d21(hy) d22(hy) d23(hy) d24(hy) d25(hy)
...

...
...

...
...

...

d60 d61(hy) d62(hy) d63(hy) d64(hy) d65(hy)

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h5
x

h4
x

...

hx

1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0
...

0

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (5.42)

We impose det[D(hy)] = 0 to obtain a univariate polynomial of degree 15. The

solutions of this polynomial for hy allow us to compute the associated values hx in
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(5.42). These values are substituted into (5.41) to determine corresponding values for

g0, and w0, thus, completing the solution of the design equations for the RRP chain.

Obtaining the univariate polynomial with a software such as Mathematica or Maple

is easily done with the above procedure; however, for implementing the synthesis in

a programming language, we use a less tedious procedure.

Manocha [49] provides a convenient way to find the values y such that det[D(y)] = 0

by computing the eigenvalues of a matrix constructed from [D(y)]. The first step is

to expand [D(y)] as a matrix polynomial in y, that is

[D(y)] = [M0] + [M1]y + [M2]y
2 + [M3]y

3 + [M4]y
4 + [M5]y

5. (5.43)

Notice that the structure of the coefficients dij(y) forces the first i columns of the

6 × 6 matrices [Mi] to be zero. This means only [M0] is non-singular.

We now transform [D(y)] into a monic polynomial. However, because [M0] is the

only invertable coefficient matrix, we must transform coordinates so z = 1/y, and

define

[D(z)] = [M0]z
5 + [M1]z

4 + [M2]z
3 + [M3]z

2 + [M4]z + [M5]. (5.44)

Multiply by [M0]
−1 to obtain

[D̄(z)] = [I]z5 + [M̄1]z
4 + [M̄2]z

3 + [M̄3]z
2 + [M̄4]z + [M̄5], (5.45)

where [I] is the 6 × 6 identity matrix and [M̄i] = [M0]
−1[Mi].
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The roots of det[D̄(z)] = 0 are obtained as the eigenvalues of the 30 × 30 matrix

[C] =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎣

0 [I] 0 0 0

0 0 [I] 0 0

0 0 0 [I] 0

0 0 0 0 [I]

−[M̄5] −[M̄4] −[M̄3] −[M̄2] −[M̄1]

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎦

. (5.46)

This result and a general fomulation that does not rely on a monic structure for the

matrix polynomial is discussed in detail in [50].

We solved this problem both using the resultant polynomial obtained from det[D(y)]

and by computing the 15 non-zero eigenvalues of [C] using Mathematica. The com-

putations in both cases took less than 1 second and were identical. In completing the

solution, we found that only four of the 15 roots yielded physical RRP chains. This

combines with the three roots of the directions equations to yield 12 solutions.

Example

We present an example in which we want to design the RRP robot to reach the

following four positions:

Table 5.7: Task positions for an RRP chain

Position Axis Rotation Translation

position 1 (1.0, 0.0, 0.0) + ε(0.0, 0.0, 0.0) 0o 0

position 2 (0.51, 0.73,−0.45) + ε(−0.60, 1.58, 1.86) 262.0o −0.08

position 3 (−0.68,−0.55,−0.49) + ε(0.91, 0.27,−1.54) 123.1o 0.48

position 4 (−0.26, 0.87, 0.42) + ε(0.09, 0.32,−0.62) 27.9o −2.32

In this case we obtain twelve real roots, which are listed in Appendix A. One of

133



the obtained solutions is presented, as the joint axes in the first position, in Table

5.8. Figure 5.8 shows the robot while reaching each of the positions.

Table 5.8: The solution for the RRP chain

Joint Axis Direction Moment

G (0,−0.90, 0.44) (−1.60,−0.60,−1.20)

W (0.30,−0.83,−0.47) (0.25, 0.27,−0.32)

H (−0.35, 0.72, 0.59) (−0.79,−0.75, 0.44])

Figure 5.8: A solution RRP robot reaching four positions
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5.3.3 The TP robot

The spatial TP robot can be seen as a special case of the RRP robot solved in

Section 5.3.2, in which both revolute joints are forced to be perpendicular in direction

and concurrent. It consists of a universal joint T with rotations θ1 and θ2 about

perpendicular directions g1, g2 that intersect at a point c, and a prismatic joint h

that allows translation d along it, see Figure 5.9.

G1

θ1

G2

θ2

H
d

Figure 5.9: The TP robot

The design equations

The dual quaternion representation for the relative displacements,

Q̂TP = Ĝ1(θ1, 0)Ĝ2(θ2, 0))Ĥ(0, d), (5.47)
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is expanded as Q̂TP = Q0 + Q, where the point is

Q0 = cos
θ1

2
cos

θ2

2
− ε(

d

2
sin

θ1

2
cos

θ2

2
G1 · H +

d

2
cos

θ1

2
sin

θ2

2
G2 · H +

d

2
sin

θ1

2
sin

θ2

2
(G1 × G2) · H), (5.48)

and the vector

Q = sin
θ1

2
cos

θ2

2
G1 + cos

θ1

2
sin

θ2

2
G2 + sin

θ1

2
sin

θ2

2
(G1 × G2) +

ε
d

2
(cos

θ1

2
cos

θ2

2
H + sin

θ1

2
cos

θ2

2
(G1 × H) +

cos
θ1

2
sin

θ2

2
(G2 × H) + sin

θ1

2
sin

θ2

2
(G1 × G2) × H), (5.49)

and equated to the goal positions. In this case we obtain a count of nmax = 3 + 2
3

by adding the two constraints g1 · g2 = 0 and g1 · g0
2 + g0

1 · g2 = 0 to the counting

for the RRP chain. For the orientations we obtain nR = 4. If we add one structural

constraint to either g1 or g2 and another one to h or to the intersection point c, we

obtain an equal count nR = 3 and nmax = 3, and the design equations

Ĝ1(θ
i
1, 0)Ĝ2(θ

i
2, 0)Ĥ(0, di) = P̂ i, i = 2, 3, (5.50)

can be solved separately for the rotations.

Solving the design equations

We use identical methodology as in the RRP chain for eliminating the joint variables,

with the advantage that now the submatrices are orthogonal and hence it is easier to

calculate their inverses. Once we obtain the set of reduced design equations, we solve

first for the directions of the rotation axes and use this result to solve for the rest of

variables, following the same procedure as in the previous case. We can obtain up to

12 TP solutions.
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Example

For this example we use the extra constraints gx = 0 and hz = 0 to solve for the three

task positions of Table 5.9.

Table 5.9: Task positions for a TP chain

Position Axis Rotation Translation

position 1 (1.0, 0.0, 0.0) + ε(0.0, 0.0, 0.0) 0o 0

position 2 (−0.39, 0.10, 0.92), +ε(−1.73,−3.03,−0.40) 59.5o 1.79

position 3 (−0.38, 0.48,−0.79) + ε(0.72, 0.24,−0.20) 152.9o −2.61

We obtain 6 real solutions that are presented in Appendix A. Notice that there

are only two different solutions for the structural variables that affect the translation

only. Figure 5.10 and Table 5.10 show solution 2 reaching the task positions.

Table 5.10: The solutions for the TP chain

Joint Axis Direction Moment

G1 (0,−0.67, 0.74) (5.01,−1.11,−1.01)

G2 (−0.17, 0.73, 0.66) (−6.83,−2.45, 0.92)

H (0, 0.66, 0.75) (−6.36, 0.36,−0.31)

5.3.4 Spatial RRR robot

The spatial RRR robot is a three-degree-of-freedom robot consisting of three revolute

axes which are not parallel nor concurrent: the fixed axis G of rotation θ and the

rotations φ and ψ about the moving axes W and F. See Figure 5.11.
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Figure 5.10: A solution for the TP robot reaching three positions

A brief history

Design equations for the RRR robot were stated in [89] using the loop equation

method, and partially solved using optimization for four task positions. Lee and

Mavroidis [46] presented first a partial solution for three task positions using homo-

topy continuation, and posteriorly [45] they solved the complete problem, for five

precision positions, using interval analysis, and obtained 26 roots, 20 of them outside

of the domain. In both cases they formulated the design equations using the kine-

matics equations in matrix form and solved for the Denavit-Hartenberg parameters.

The design equations

The dual quaternion representation for the relative displacements of the chain is given

by

Q̂RRR = Ĝ(θ, 0)Ŵ (φ, 0)F̂ (ψ, 0). (5.51)

When applying the dual quaternion product we obtain the expression Q̂RRR =
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G
θ

φ
W

F ψ

Figure 5.11: The spatial RRR robot

Q0 + Q, where the dual point Q0 and the dual vector Q are

Q0 = cos
θ

2
cos

φ

2
cos

ψ

2
− sin

θ

2
sin

φ

2
cos

ψ

2
G · W − cos

θ

2
sin

φ

2
sin

ψ

2
W · F −

sin
θ

2
cos

φ

2
sin

ψ

2
G · F − sin

θ

2
sin

φ

2
sin

ψ

2
(G × W) · F,

Q = sin
θ

2
cos

φ

2
cos

ψ

2
G + cos

θ

2
sin

φ

2
cos

ψ

2
W + cos

θ

2
cos

φ

2
sin

ψ

2
F +

sin
θ

2
sin

φ

2
cos

ψ

2
(G × W) + sin

θ

2
cos

φ

2
sin

ψ

2
(G × F) + cos

θ

2
sin

φ

2
sin

ψ

2
(W × F) −

sin
θ

2
sin

φ

2
sin

ψ

2
(G · W)F + sin

θ

2
sin

φ

2
sin

ψ

2
(G × W) × F. (5.52)

We notice that the RRR robot can reach any orientation, and using Eq.(3.16) we

obtain nmax = 5 positions. The parameterized design equations for n = 5 positions,

Q̂RRR(θi, φi, ψi) − P̂ i = �0, i = 2, . . . , 5, (5.53)

are solved to obtain a finite number of solutions.
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Solving the design equations

Following the methodology described in Section 3.8.1, we define the eight-dimensional

vector containing the joint variables,

V̂ (θ, φ, ψ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos θ
2
cos φ

2
cos ψ

2

sin θ
2
cos φ

2
cos ψ

2

cos θ
2
sin φ

2
cos ψ

2

cos θ
2
cos φ

2
sin ψ

2

sin θ
2
sin φ

2
cos ψ

2

sin θ
2
cos φ

2
sin ψ

2

cos θ
2
sin φ

2
sin ψ

2

sin θ
2
sin φ

2
sin ψ

2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (5.54)

and create the linear system

⎡

⎢
⎢
⎢
⎣

A
... B

· · · ... · · ·
C

... D

⎤

⎥
⎥
⎥
⎦

V̂ (θ, φ, ψ) = P̂ . (5.55)

where the matrices are

⎡

⎢
⎢⎢
⎣

A

. . .

C

⎤

⎥
⎥⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

�0 g w f

1 0 0 0

. . . . . . . . . . . . . .

�0 g0 w0 f0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

(5.56)

140



⎡

⎢
⎢⎢
⎣

B

. . .

D

⎤

⎥
⎥⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

g × w g × f w × f (g × w) × f − g · wf

−g · w −g · f −w · f −(g × w) · f
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(g ×w)0 (g × f)0 (w × f)0 ((g × w) × f)0 − (g · w)0f − (g · w)f0

−(g · w)0 −(g · f)0 −(w · f)0 −((g ×w)0) · f − (g × w) · f0

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

(5.57)

and (g×w)0 = g×w0+g0×w, the dual part of the cross product, and same notation

is used for the rest of the terms.

We use Cramer’s rule to solve for the joint variables. To compute the determinant,

we use Schur complement applied to the A, B, C, D block matrices.

The reduced design equations are obtained from the three independent relations

among components of the vector V̂ ,

R1

cos θ
2
cos φ

2
cos ψ

2

sin θ
2
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2
cos ψ

2

=
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2
sin φ

2
sin ψ

2

sin θ
2
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2
sin ψ

2

,

R2
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2
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2
cos ψ

2

cos θ
2
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2
cos ψ

2

=
sin θ

2
cos φ

2
sin ψ

2

sin θ
2
sin φ

2
sin ψ

2

,

R3

cos θ
2
cos φ

2
cos ψ

2

cos θ
2
cos φ

2
sin ψ

2

=
sin θ

2
sin φ

2
cos ψ

2

sin θ
2
sin φ

2
sin ψ

2

. (5.58)

The set of reduced design equations,

{R1,R2,R3}i, i = 2, . . . , 5,

g · g = 1,w · w = 1, f · f = 1,

g · g0 = 0,w ·w0 = 0, f · f 0 = 0, (5.59)

consists of 18 equations in 18 unknowns corresponding to the three joint axes G, W

and F. The equations are solved numerically.
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Numerical Example

We solve both the parameterized and the reduced equations. We use the Newton-

Raphson solver fsolve in Matlab with Levenberg-Marquardt strategy and random

initial conditions.

Table 5.11: Task positions for an RRR chain

Position Axis Rotation Translation

position 1 (1.0, 0.0, 0.0) + ε(0.0, 0.0, 0.0) 0o 0

position 2 (0.98,−0.14, 0.16), +ε(−0.51,−1.81, 1.51) 100.4o 2.21

position 3 (0.28,−0.46,−0.84) + ε(−0.01,−2.18, 1.20) 134.4o −1.20

position 4 (0.44,−0.31, 0.84) + ε(−2.61,−1.41, 0.86) 161.4o −0.68

position 5 (−0.08,−0.01,−0.99) + ε(1.09,−0.43,−0.09) 162.0o 1.85

For the actual example, we run the parameterized equations around 6000 times,

each run consisting of a maximum of 4000 evaluations. It took the computer, a Power

PC with processor G4 at 500MHz, around 5 seconds per run when the initial value

converged to a solution; otherwise, it took about 12 seconds to compute the 4000

evaluations. The total time was of 18 hours. Out of the 6000 runs, it converged to a

root in 1190 of them. Notice that roughly one of each six initial conditions converged

to a root; however, many were repeated due to the random initial conditions and only

133 were different. Out of those, we obtain 19 real solutions for the RRR robot.

The same task positions were used to solve, also numerically, the reduced design

equations. We use the same numerical solver and strategy.

The task positions for this example are presented in Table 5.11, and one of the 19

142



Figure 5.12: A spatial RRR robot reaching five positions

solutions is shown in Figure 5.12 and Table 5.12. The rest of solutions can be found

in Appendix A.

Table 5.12: One solution for the RRR chain

Joint Axis Direction Moment

G (0,−0.67, 0.74) (−0.06,−0.90,−0.82)

W (−0.17, 0.73, 0.66) (−4.19,−1.33, 0.38)

F (0,−0.49, 0.87) (−1.34, 0.66, 0.37)

5.4 Synthesis of Four-degree-of-freedom Robots

The group of four-degree-of-freedom robots presents a greater variety and some of

them have not been solved yet. This group includes robots with an S-joint, whose
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design equations are easy to state just by defining the geometric constraints of the

chain, see [12] and more recently [27], but present some particularities when defining

them using the dual quaternion formulation, see Chapter 4. The main three groups of

kinematic chains have two (RRPP), three (RRRP), and four (RRRR) revolute joints;

the rest are particular cases.

5.4.1 Spatial RPRP robot

The RPRP robot is a case of orientation-limited robot. Its design equations are solved

both in parameterized form and in reduced form, for five complete positions and four

additional translations. In the following section, four constraints are defined on the

prismatic joints to define an RPC robot. The reduced design equations for the RPC

robot are created and solved to obtain closed algebraic solutions.

The spatial RPRP robot is a four-degree-of-freedom robot. The fixed axis G =

g + εg0 allows rotation of angle θ about it. This is followed along the chain by a

translation d along an arbitrary direction h, a rotation of angle φ about an arbitrary

axis W = w + εw0, and a translation b along an arbitrary direction u , see Figure

5.13.

A brief history

The RPRP robot was first solved in [73] using the dual quaternion methodology. For

the general case no closed algebraic solution was presented, even though it is possible

to solve the problem using resultant techniques. The CC robot can be considered as
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G(θ)

H(d)

W(φ)

U(b)

Figure 5.13: The RPRP robot

an RPRP robot in which there are constraints defining the prismatic joints. It is one

of the dyads that were successfully solved early by imposing geometric constraints,

see [96], and [58] for a complete algebraic solution. From the point of view of the dual

quaternion synthesis, the CC robot is alike other RPRP robots with defined prismatic

joints. In [73], we solved the perpendicular RPC robot (an RPC robot with its first

prismatic joint perpendicular to the revolute joints), and obtained a closed algebraic

solution that yields 6 complex solutions.
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The design equations

The dual quaternion kinematics equations are obtained by composing the dual quater-

nions that represent each joint axis,

Q̂RPRP (θ, d, φ, b) = Ĝ(θ, 0)Ĥ(0, d)Ŵ (φ, 0)Û(0, b), (5.60)

which expand to the dual scalar and the dual vector, Q̂RPC = Q̂0 + Q,

Q̂0 = c
θ
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−
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(5.61)
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s
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2
),

(5.62)

where c and s stand for cosine and sine respectively.

We use the formulas in Eqs.(3.16), (3.17) and (3.19) with r = 2, t = 2, to count

the maximum number of goal dual transformations that we can specify. We obtain

nmax = 7 and nR = 5; the maximum number of complete positions we can define

is five, but in addition nT = 9 and we can specify four more arbitrary translations

whose orientations must belong to the workspace of the RPRP robot.

We create the design equations for the complete positions by equating the expres-
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sions in Eq.(5.60) to the goal dual quaternions,

Q̂RPRP (θi, di, φi, bi) = P̂ i, i = 2, 3, 4, 5, (5.63)

and the design equations for the partially specified positions by equating the dual

components of Eq.(5.60), Q0
RPRP , to the dual components of the four extra dual

quaternions,

Q̂0
RPRP (θi, di, φi, bi) = P̂ i

0, i = 6, 7, 8, 9. (5.64)

Here we need to remark that the dual components in Eq.(5.64) are defined for a

chosen orientation in the workspace, and considering that, we can solve to define the

robot. If we want to do the opposite, that is, define a task translation and adjust the

rotation to whatever is needed, then we can define as many extra translations as we

want, because the robot is not constrained if we consider translations only.

Solving the design equations

We solve separately for the directions of the revolute joint axes g and w using the real

part of each dual quaternion equality in Eq.(5.63), applying the elimination method

shown in [54] to obtain six complex solutions.

We now use the workspace of orientations of the robot for each of the real solutions

to specify orientations for the rest of the task positions. We can pick any orientation

belonging to the workspace to construct the four additional dual quaternions with

arbitrary task translations.
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Table 5.13: Real solutions for the directons of the revolute joints of the RPRP robot.

Joint Axis Direction

g (−0.48,−0.78, 0.39)

w (0.33,−0.23, 0.91)

g (0.04, 0.05, 0.99)

w (0.70, 0.48, 0.53)

The dual design equations, once we substitute the values of g and w, contain dual

parts only, that is,

Q0i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

qx0

qy0

qz0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

i

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

px0

py0

pz0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

i

, i = 2, . . . 9,

h · h = 1, u · u = 1,

g · g0 = 0, w ·w0 = 0. (5.65)

We solve the dual part of the design equations numerically.

Example

We define five complete task dual quaternions randomly. They are labeled 1 to 5 in

Table 5.14 and Figure 5.14.

Solve algebraically for the directions of the revolute joints g and w to obtain two

real solutions only, showed in Table 5.13 . See Appendix A for the complete set of

solutions.

We can now define the workspace of orientations of the robot for each of the real
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Table 5.14: The five complete plus four translational goal positions for an RPRP

robot.

Position Axis Rot. Trans.

1 (1.0, 0.0, 0.0; 0.0, 0.0, 0.0) 0 0

2 (0.98,−0.14, 0.16;−0.51,−1.81, 1.51) 1.75 2.21

3 (0.28,−0.46,−0.84;−0.01,−2.18, 1.20) 2.34 −1.20

4 (0.44,−0.31, 0.84;−2.61,−1.41, 0.86) 2.82 −0.68

5 (−0.08,−0.01,−0.99; 1.09,−0.43,−0.09) 2.83 1.85

6 (0.35, 0.69, 0.63; 0.44,−0.44, 0.23) 2.92 5.72

7 (−0.61,−0.64,−0.46;−0.51,−0.98, 2.04) 2.16 4.17

8 (−0.09, 0.08, 0.99;−1.62,−0.30,−0.12) 4.71 −2.48

9 (0.82, 0.37, 0.44; 1.22,−1.34,−1.12) 1.74 −0.88

solutions. For this example we used solution 2 of Table 5.13. We pick orientations

belonging to the workspace to construct the four additional dual quaternions with

arbitrary translations. These are shown in Table 5.14.

If we choose to work with the dual reduced design equations, we need to solve a

set of eight multi-linear equations in h, u, g0 and w0 of total degree 6561. Because

of the multi-linearity, we can reduce the bound for the number of roots to a multi-

linear Bezout number of 70. We solve these equations using polynomial homotopy

continuation [60]. For this purpose we use the softare PHC developed by Verschelde

[104]. We use a random linear product start system with 1120 start solutions. It took

the program 44 minutes in a Power PC at 700 MHz to find the solutions for each

of the two sets of equations. (One set for each real solution of g, w). We obtained
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Table 5.15: An RPRP robot that reaches 5 complete positions plus 4 translations.

Joint Axis Direction Moment

G (0.04, 0.05, 0.99) (1.43,−0.09,−0.06)

h (−0.33,−0.45, 0.83)

W (0.70, 0.48, 0.53) (1.85,−1.40,−1.16)

u (0.30, 0.84, 0.44)

a total of 152 solutions for the first case, out of which only 21 are regular and, of

those, 7 are real roots. For the second set, we obtained 153 solutions, with again 21

regular solutions and 5 real roots. The real results are presented in Appendix A. In

Table 5.15 and Figure 5.14 we present solution 2 of the second set reaching the nine

positions.

We also solved the design equations numerically by using the fsolve function on

Matlab, with a Levenberg-Marquardt algorithm and using random initial conditions.

For the dual parameterized equations we performed 1000 runs of 4000 iterations per

run. Each run took approximately 14 seconds, with a total time of about four hours

on a Mac G4 at 733 MHz. We obtained one solution. For the reduced equations, we

use the same numerical solver also for 1000 runs of 3000 iterations each. One iteration

took approximately 21 seconds, and the total time was about six hours. We obtained

3 different solutions.
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Figure 5.14: A solution for the RPRP robot reaching the task positions
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Figure 5.15: The RPC robot

5.4.2 The RPC robot

The RPC robot is a special case of the spatial RPRP robot presented in Section

5.4.1. If we impose as constraints that the last prismatic direction must be equal to

the direction of the previous revolute joint, we obtain the RPC robot of Figure 5.15.

Notice that the P and R joints that create the cylindrical joint need not be coincident.

According to the counting from previous section, we need to add four constraints

in order to be able to solve for five complete positions. We define the constraints

g · h = 0 , w · h = 0.

w × u = �0. (5.66)

that make the first prismatic joint perpendicular to both revolute joints, and the last

pair R-P joints into a cylindrical joint.
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A brief history

Sandor [90] used the loop closure equations to state the design equations for the

RPC robot, and partially solved the problem for 3 task positions, fixing some design

variables and using objective functions to improve the performance. The RPC robot

was completely solved in [73], together with the general RPRP robot, using the dual

quaternion methodology. A closed algebraic solution was found by solving separately

the orientation part from the rest.

The design equations

The dual quaternion kinematics equations,

Q̂RPC(θ, d, φ, b) = Ĝ(θ, 0)Ĥ(0, d)Ŵ (φ, b), (5.67)

are expanded and simplified by making u = w and g · h = 0,w · h = 0 in Eq.(5.61)

and Eq.(5.62). If we compute the number of complete positions that we can design

for, with r = 2, t = 2, but considering the constraints in Eq. (5.66), we obtain

nmax = 5 complete spatial goal positions, same value that we obtain for nR. The five

task positions are equated to the kinematics equations to obtain parameterized set of

design equations,

Q̂RPC(θi, di, φi, bi) = P̂ i, i = 2, 3, 4, 5. (5.68)
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Solving the design equations

We reduce the system by solving linearly for θ, φ, d as in Eqs.(3.51) and (3.52). We

invert the matrix as in Eq.(3.54), where the submatrices are

[
A−1

]
=

1

(g × w) · (g ×w)

⎡

⎢⎢
⎢
⎢
⎢⎢
⎣

g − (g · w)w 0

w − (g · w)g 0

g × w 0

(g · w)g × w (g × w) · (g × w)

⎤

⎥⎥
⎥
⎥
⎥⎥
⎦

(5.69)

and, using the constraints we defined,

[
C−1

]
=

1

h · (g ×w)

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

−g 0

−w 0

(h · (g ×w))h −g · w
�0 1

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

. (5.70)

The solution for the rotational components is the same for any other orientation-

limited 2R robot, see for instance Eq.(5.18).
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The solution for the translational components corresponding to the dual part,

d
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(5.71)

are a function of the joint variable b.

To create the reduced design equations, we impose the conditions of Eqs.(3.57)

and (3.58). The first one gives the direction equation R in Eq.(4.19), and the other

two become two linear equations in b.

If we denote them L1 : A1
b
2
+B1 = 0, L2 : A2

b
2
+B2 = 0, we create the second-step

reduced design equation by equating both solutions for b,

M :
B1

A1

=
B2

A2

. (5.72)

These two reduced design equations, plus the set of Plücker and extra constraints,
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form the final set of 15 reduced equations in 15 parameters,

{R,M}i, i = 1, . . . 4,

g · g = 1, g · g0 = 0,

w · w = 1, w · w0 = 0,

h · h = 1, h · g = 0, h · w = 0. (5.73)

To obtain a closed solution, we solve separately for the set of orientation equations

{R}i as presented in 5.3.2. That procedure gives a maximum of six complex roots.

Once we have g and w, the prismatic direction h is completely specified by the two

constrains in Eq.(5.66). The translation equations {M}i are linear in the moment

components of the revolute joints, g0 and w0. Due to this linearity, there exist a

maximum of six complex solutions for the five-position synthesis of the RPC robot

with the given constraints.

For the design example, the goal displacements shown on Table 5.16 have been

randomly generated. The algebraic solution of the reduced design equations yields

six solutions, out of which two are real, see Appendix A. Figure 5.16 shows one of the

real solutions obtained while reaching positions 1 to 5.

For comparison purposes, we solved also the parameterized design equations nu-

merically using the fsolve Levenberg-Marquardt algorithm in Matlab. We did 100

runs starting with random initial values, each of the runs consisting of 3000 itera-

tions. Each run took about 9 seconds. Overall the process took about 15 minutes on

a Mac G4 at 733 MHz. We obtain the two real solutions repeated 7 and 6 times.

156



Table 5.16: The task positions for an RPC robot.

Axis Rot. Trans.

(1.0, 0.0, 0.0; 0.0, 0.0, 0.0) 0 0

(−0.15, 0.36, 0.92;−0.98,−1.93, 0.60) 1.49 −1.05

(−0.64,−0.53, 0.55; 0.53, 1.17, 1.76) 0.66 1.19

(−0.43,−0.47, 0.77; 2.35,−0.17, 1.20) 2.94 −0.29

(0.48, 0.21, 0.85; 1.52,−0.33,−0.78) 0.67 1.09

Figure 5.16: One RPC solution reaching positions 1,2,3,4 and 5.

5.4.3 Spatial PRRR robot

The spatial PRRR is a four-degree-of-freedom robot consisting of a prismatic joint H

and three revolute joints G, W, F, which are arbitrarly located in space, see Figure

5.17.
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Figure 5.17: The spatial PRRR robot

A brief history

The general PRRR robot or any of the topologies formed by permuting its axes

(RPRR, RRPR, RRRP) has not been solved so far except in this work. A particular

case, when the first revolute and the prismatic joint directions are the same, creating

a CRR robot, was solved in [74]. Another particular case, when two of the revolute

joints intersect and form a T joint, was solved in [72]. A well-known case is obtained

when all three revolute joints intersect at a point, creating a spherical joint. The PS

robot has been solved stating the geometric constraint equations.
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The design equations

The dual quaternion kinematics equations for the PRRR robot,

Q̂PRRR(d, θ, φ, ψ) = Ĥ(0, d)Ĝ(θ, 0)Ŵ (φ, 0)F̂ (ψ, 0), (5.74)

or, if we expand them,
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Q = s
θ

2
c
φ

2
c
ψ

2
G + c

θ

2
s
φ

2
c
ψ

2
W + c

θ

2
c
φ

2
s
ψ

2
F + s

θ

2
s
φ

2
c
ψ

2
G × W + s

θ

2
c
φ

2
s
ψ

2
G × F +

c
θ

2
s
φ

2
s
ψ

2
W × F + s

θ

2
s
φ

2
s
ψ

2
((G × W) × F − (G · W)F) + ε

d

2

(
c
θ

2
c
φ

2
c
ψ

2
H +

s
θ

2
c
φ

2
c
ψ

2
H × G + c

θ

2
s
φ

2
c
ψ

2
H × W + c

θ

2
c
φ

2
s
ψ

2
H × F + s

θ

2
s
φ

2
c
ψ

2
(H × (G × W) − G · WH)

+ s
θ

2
c
φ

2
s
ψ

2
(H × (G × F) − G · FH) + c

θ

2
s
φ

2
s
ψ

2
(H × (W × F) − W · FH) +

s
θ

2
s
φ

2
s
ψ

2
(H × ((G × W) × F) − G · WH × F − G × W · FH)

)
, (5.76)

are equated to the task dual quaternions to create the design equations. The PRRR

robot, with r = 3 and t = 1, can reach any orientation, and the count gives nmax = 8

complete task positions. The set of parameterized design equations,

Q̂PRRR(di, θi, φi, ψi) = P̂ i, i = 2, . . . , 8, (5.77)

consists of 49 equations in 49 unknowns, out of which 21 are structural parameters

and 28 are values of the joint variables to reach each of the task positions.
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Solving the design equations

Table 5.17: The task positions for a PRRR robot.

Axis Rot. Trans.

(1.0, 0.0, 0.0; 0.0, 0.0, 0.0) 0 0

(0.66,−0.62, 0.43; 1.36,−0.77,−3.21) 2.89 −2.04

(−0.65,−0.67, 0.33;−0.37, 0.12,−0.51) 2.33 2.90

(0.50, 0.68,−0.53;−2.05, 1.06,−0.57) 2.31 0.37

(−0.49, 0.46, 0.74; 1.01,−0.06, 0.71) 1.58 0.15

(−0.56, 0.39,−0.73;−1.48, 0.87, 1.58) 2.79 0.43

(0.75,−0.51, 0.43;−0.68,−0.95, 0.06) 0.75 0.83

(−0.60, 0.78, 0.15;−1.15,−1.07, 0.96) 0.68 −0.19

The set of design equations in Eq.(5.77) has been solved in the parameterized

form only. A possible reduction scheme would be like the one presented in Section

5.4.5, eliminating first two revolute and one prismatic joint variable and the last

revolute joint variable in a second step. However, the equations so obtained are of

high degree and their numerical solution becomes more costly than the solution of

the parameterized set, as shown in Section 5.4.1.

For the parameterized solution, we performed 2500 runs with random initial values,

each run of 4000 iterations. Each iteration took about 14 seconds on a G4 at 733

MHz, which accounts to a total time of 9.8 hours. We obtained 91 real solutions; we

present the first ten in Appendix A, sorted by increasing total link length, defined as

the sum of the Denavit-Hartenberg parameters aij and di. In Figure 5.18 we can see
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Figure 5.18: One PRRR solution reaching the eight task positions

161



the first solution reaching the eight task positions.

5.4.4 The CRR robot

The CRR robot is a special case of the PRRR serial chain in which the direction of

the axes of the initial revolute and prismatic joints are parallel. Let the fixed axis

G = g + εg0 allow a rotation by θ and be connected to an axis H = h + εh0 that

allows the translation d, and require the directions h and g to be parallel. The third

joint is a rotation of angle φ about an axis W = w + εw0, and the fourth joint is a

rotation ψ about an axis F = f + εf 0, see Figure 5.19.

 

  

 

 
θ

φ

ψ

Figure 5.19: The CRR robot
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A brief history

A solution for the CRR robot has been presented for the first time in [74], using the

dual quaternion formulation and solving the equations numerically.

The design equations

The dual quaternion kinematics equations for the CRR robot can be expressed in a

compact way as

Q̂CRR(θ, d, φ, ψ) = Ĝ(θ, d)Ŵ (φ, 0)F̂ (ψ, 0), (5.78)

because if h = g in Eq.(5.74), then Ĥ(0, d)Ĝ(θ, 0) = Ĝ(θ, d). The expansion of the

kinematics equations can be obtained from Eq.(5.76) adding this condition.

To create the design equations, we consider r = 3, t = 1 and the two extra

conditions that make g = h. We obtain nmax = 7 task positions. The design

equations are

Q̂CRR(θi, di, φi, ψi) = P̂ i, i = 2, . . . 7. (5.79)

It is a set of 42 equations in 42 unknowns, out of which 24 define the values of the

joint variables.

Solving the design equations

Solve linearly for three joint variables as explained in section 3.8.2. The parameterized

design equations in Eq.(5.79) can be written as a linear transformation for the vector
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of Eq.(3.47) with joint variables θ, φ and d. We solve for V̂ (θ, φ, d) as demonstrated

in Eqs.(3.55) and (3.56), but now the solutions are functions of the joint variable ψ.

The subspaces of solutions, defined by the relations Eq.(3.57) and Eq.(3.58), have

the structure

Ai cos2 ψ

2
+ Bi cos

ψ

2
sin

ψ

2
+ Ci sin

2 ψ

2
= 0, i = 1, 2, 3. (5.80)

We solve linearly for cos2 ψ
2

and sin2 ψ
2

using two 2 × 2 systems. Equating both

results for each variable, we get two reduced design equations,

M1 :
C1(−A3B2C1 + A2B3C1 + A3B1C2 − A1B3C2 − A2B1C3 + A1B2C3)

(A2C1 − A1C2)(A3C1 − A1C3)
= 0,

M2 :
A1(A3B2C1 − A2B3C1 − A3B1C2 + A1B3C2 + A2B1C3 − A1B2C3)

(A2C1 − A1C2)(A3C1 − A1C3)
= 0.

(5.81)

These two reduced design equations, plus the set of Plücker constraints, form the

final set of 18 equations in 18 parameters,

{M1,M2}i, i = 1, . . . 6,

g · g = 1, w · w = 1, f · f = 1,

g · g0 = 0, w ·w0 = 0, f · f0 = 0. (5.82)

Numerical Example

The goal positions for the following example have been randomly generated and are

specified as screw axis, rotation and translation in Table 5.18.

164



Table 5.18: The task positions for a CRR robot

Pos. Axis Rot. Transl.

1 (1.0, 0.0, 0.0) + ε(0.0, 0.0, 0.0) 0 0

2 (0.66,−0.62, 0.43) + ε(1.36,−0.77,−3.21) 2.89 −2.04

3 (−0.65,−0.68, 0.33) + ε(−0.37, 0.11,−0.51) 2.33 2.90

4 (0.50, 0.68,−0.53) + ε(−2.05, 1.06,−0.57) 2.31 0.37

5 (−0.49, 0.46, 0.74) + ε(1.01,−0.06, 0.71) 1.58 0.15

6 (−0.57, 0.39,−0.73) + ε(−1.48, 0.87, 1.58) 2.79 0.43

7 (0.75,−0.51, 0.43) + ε(−0.68,−0.95, 0.06) 0.75 0.83

We solved the parameterized design equations using Matlab’s fsolve on a MacG4

at 733MHz. Starting with random initial conditions, we obtained 52 different real

solutions from 1000 runs of 3000 iterations each. Each run took approximately 15

seconds; in whole, the process took about 4 hours.

The solution of the reduced design equations yielded eight real solutions using also

random initial conditions and 1000 runs of 3000 iterations each. The increased com-

plexity of the equations required 14 hours to complete the process. Thus, numerical

solution of the original parameterized equations seems more efficient. However, he

reduced equations can be further simplified.

We present numerical data of 10 of the solutions in Appendix A, for those chains

with shortest total link length, defined as the sum of the Denavit-Hartenberg param-

eters a12 + d2 + a23. Figure 5.20 presents solution 11 reaching the seven positions.
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Figure 5.20: A solution for the CRR robot reaching the seven goal positions

5.4.5 The TPR robot

The TPR serial robot is a four-degree-of-freedom robot that can be seen as a special

case of the RRPR robot, for which the base joint T consists of two revolute joints

of perpendicular axes that intersect on a point. The fixed axis G1 allows rotation of

angle θ1 about it. Located at 90o and intersecting G1 is the revolute axis G2, which

allows rotation of angle θ2. We denote by c the intersection point of the two rotation

axes G1 and G2.

The T joint is followed along the chain by a translation d along an arbitrary

direction h and finally a rotation of angle φ about an arbitrary axis W, see Figure
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W

φ

θ1

θ2

d

Figure 5.21: The spatial TPR robot

5.21.

A brief history

The first solution for the finite position synthesis of the TPR robot was presented in

[75], where it was solved numerically using the dual quaternion formulation.

The design equations

The dual quaternion representation for the relative displacements of the chain is given

by

Q̂TPR = Ĝ1(θ1, 0)Ĝ2(θ2, 0)Ĥ(0, d)Ŵ (φ, 0). (5.83)

When applying the dual quaternion product we obtain the expression Q̂TPR =
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Q0 + Q, where the point is

Q0 = c
θ1

2
c
θ2

2
c
φ

2
− s

θ1

2
c
θ2

2
s
φ

2
G1 · W − c

θ1

2
s
θ2

2
s
φ

2
G2 · W −

s
θ1

2
s
θ2

2
s
φ

2
(G1 × G2) · W − ε

(d

2
s
θ1

2
c
θ2

2
c
φ

2
G1 · H +

d

2
c
θ1

2
s
θ2

2
c
φ

2
G2 · H

+
d

2
c
θ1

2
c
θ2

2
s
φ

2
H · W +

d

2
s
θ1

2
s
θ2

2
c
φ

2
(G1 × G2) · H +

d

2
s
θ1

2
c
θ2

2
s
φ

2
(G1 × H) · W

+
d

2
c
θ1

2
s
θ2

2
s
φ

2
(G2 × H) · W +

d

2
s
θ1

2
s
θ2

2
s
φ

2
((G1 × G2) × H) · W

)
, (5.84)

and the dual vector

Q = s
θ1

2
c
θ2

2
c
φ

2
G1 + c

θ1

2
s
θ2

2
c
φ

2
G2 + c

θ1

2
c
θ2

2
s
φ

2
W + s

θ1

2
s
θ2

2
c
φ

2
G1 × G2 +

s
θ1

2
c
θ2

2
s
φ

2
G1 × W + c

θ1

2
s
θ2

2
s
φ

2
G2 × W + s

θ1

2
s
θ2

2
s
φ

2
(G1 × G2) × W +

ε
(d

2
c
θ1

2
c
θ2

2
c
φ

2
H +

d

2
s
θ1

2
c
θ2

2
s
φ

2
((G1 × H) × W − (G1 · H)W) +

d

2
c
θ1

2
s
θ2

2
s
φ

2
((G2 × H) × W − (G2 · H)W) +

d

2
s
θ1

2
c
θ2

2
c
φ

2
G1 × H +

d

2
c
θ1

2
s
θ2

2
c
φ

2
G2 × H +

d

2
s
θ1

2
s
θ2

2
c
φ

2
(G1 × G2) × H +

d

2
c
θ1

2
c
θ2

2
s
φ

2
H × W +

d

2
s
θ1

2
s
θ2

2
s
φ

2
(((G1 × G2) × H) × W − ((G1 × G2) · H)W)

)
. (5.85)

The T-joint axis is formulated so that the coordinates of the intersection point c

appear explicitely,

G1 = (g1x, g1y, g1z) + ε((cx, cy, cz) × (g1x, g1y, g1z))

G2 = (g2x, g2y, g2z) + ε((cx, cy, cz) × (g2x, g2y, g2z)) (5.86)

Use Eq.(3.16) with r = 3 revolute joints, t = 1 prismatic joint, and the two extra

constraints that make G1 and G2 a T joint, to compute nmax = 7 positions. Equate
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Eqs.(5.83) to the task dual quaternions,

Q̂TPR(θi
1, θ

i
2, d

i, φi) − P̂ i = �0, i = 2, . . . , 7, (5.87)

to obtain the set of design equations. It consists of 42 equations in 42 unknowns, out

of which 24 correspond to the inverse kinematics for the joint variables.

Solving the design equations

We reduced the design equations for the TPR robot in two different ways. Here

we present the results obtained when eliminating two rotation angles first and the

translation and the third angle in two successive steps.

Every direction will be reached by moving the rotation axes accordingly to the

third rotation parameter as appears in the solution of the linear system,

[R(φ)]V (θ1, θ2) = P (5.88)

with the matrix

[R(φ)] =
[
G1W (φ) G2W (φ) G1G2W (φ) W (φ)

]
, (5.89)

whose columns are the quaternions,

G1W (φ) = − sin
φ

2
g1 ·w + cos

φ

2
g1 + sin

φ

2
g1 × w

G2W (φ) = − sin
φ

2
g2 ·w + cos

φ

2
g2 + sin

φ

2
g2 × w

G1G2W (φ) = − cos
φ

2
g1 · g2 − sin

φ

2
(g1 × g2) · w +

cos
φ

2
g1 × g2 + sin

φ

2
((g1 × g2) × w − (g1 · g2)w)

W (φ) = cos
φ

2
+ sin

φ

2
w (5.90)
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The matrix [R(φ)] is orthogonal when we solve for variables whose axes are per-

pendicular. Solve for the T-joint angles by transposing the matrix [R(φ)] to obtain

sin
θ1

2
cos

θ2

2
= cos

φ

2
g1 · p + sin

φ

2
((g1 × w) · p− pwg1 ·w)

cos
θ1

2
sin

θ2

2
= cos

φ

2
g2 · p + sin

φ

2
((g2 × w) · p− pwg2 ·w)

sin
θ1

2
sin

θ2

2
= cos

φ

2
(g1 × g2) · p + sin

φ

2
(((g1 × g2) × w) · p − pw(g1 × g2) · w)

cos
θ1

2
cos

θ2

2
= cos

φ

2
pw + sin

φ

2
w · p (5.91)

When we impose the constraint of Eq.(3.42) on the T-joint angles, we obtain the

condition for the angle φ,

(
(g1 · p)(g2 · p) − pw(g1 × g2) · p

)
cos2 φ

2
+

(
(g1 × g2) · w(1 − 2p · p) − 2pw(g1 · w)(g2 · p) − 2(g1 · p)(p× w) · g2

)
cos

φ

2
sin

φ

2
+

(
((g1 × g2) · p + 2(g1 · (p× w))(g2 · w))pw + (g2 · (p× w))(g1 · (p ×w)) +

(g1 × g2) · (p× w)(p · w) + (1 − p · p)(g1 · w)(g2 ·w)
)

sin2 φ

2
= 0, (5.92)

which we denote as

A0 cos2 φ

2
+ B0 sin2 φ

2
+ C0 cos

φ

2
sin

φ

2
= 0. (5.93)

To eliminate the translation d and the rotation φ, the solutions for the angles θ1, θ2

are substituted in the three moment equations of the dual quaternion. They are linear

in the joint translation d and quadratic in the joint rotation φ, and have the structure

(A1id + A0i) cos2 φ

2
+ (B1id + B0i) sin2 φ

2
+ (C1id + C0i) cos

φ

2
sin

φ

2
+ D0i = 0,

i = 1, 2, 3. (5.94)
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To eliminate the joint variable φ we add to these the condition of Eq.(5.93), to

create the homogeneous system

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

A11d + A01 B11d + B01 C11d + C01 D01

A12d + A02 B12d + B02 C12d + C02 D02

A13d + A03 B13d + B03 C13d + C03 D03

A0 B0 C0 0

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

cos2 φ
2

sin2 φ
2

cos φ
2

sin φ
2

1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

= �0 (5.95)

Impose that the determinant must be equal to zero to have solutions. The subspace

of solutions from the matrix corresponding to the first three rows are a function of

the prismatic joint variable d. The relation between these three solutions,

cos2 φ

2
+ sin2 φ

2
= 1

(cos2 φ

2
)(sin2 φ

2
) = (cos

φ

2
sin

φ

2
)2, (5.96)

lead to two equations, a cubic and a quartic equations in d. These two conditions,

together with the quadratic equation from the determinant of the matrix of eq.(5.95),

K4id
4 + K3id

3 + K2id
2 + K1id + K0i = 0, i = 1, 2, 3 (5.97)

or in matrix form,

⎡

⎢
⎢
⎢
⎣

0 0 K21 K11 K01

0 K32 K22 K12 K02

K43 K33 K23 K13 K03

⎤

⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d4

d3

d2

d

1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0

0

0

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.98)

are used to eliminate the parameter d, to obtain two final reduced design equations

{M1,M2} per goal dual quaternion.
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The final set of design equations consists of twelve reduced equations and six

Plücker constraints,

{M1,M2}i, i = 2, . . . , 7,

g1 · g1 = 1, g2 · g2 = 1, w · w = 1, h · h = 1,

g1 · g2 = 0, w · w0 = 0, (5.99)

that are solved for the 18 unknowns corresponding to the four joint axes.

Numerical example

Table 5.19: The task positions for a TPR robot

Pos. Real part Dual part

pos. 1 (1.0, 0.0, 0.0) (0.0, 0.0, 0.0)

pos. 2 (−0.21, 0.07,−0.10, 0.97) (−0.46, 0.36,−0.20,−0.15)

pos. 3 (−0.11, 0.21, 0.88, 0.41) (0.36, 2.43,−0.81, 0.62)

pos. 4 (0.58,−0.62,−0.49,−0.20) (−2.14,−2.35, 0.61,−0.37)

pos. 5 (−0.19, 0.14,−0.55, 0.80) (−1.33,−0.48, 0.51, 0.11)

pos. 6 (−0.28, 0.24,−0.00, 0.93) (−0.00,−0.42, 0.43, 0.11)

pos. 7 (0.00,−0.01,−0.03, 1.00) (0.07,−0.17,−0.65,−0.02)

We solved both the parameterized and the reduced design equations. For the

parameterized solution, we used the fsolve algorithm in Matlab on a G4 at 733 MHz.

We performed runs of 10.000 iterations each, that took about 50 seconds each. After

880 runs we obtained 6 different solutions. The reduced equations were less suited
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for the Newton-Raphson algorithm and we were able to obtain at most two solutions

after many trials.

Figure 5.22: A TPR robot reaching the seven task positions

Table 5.19 presents the task positions and Figure 5.22 and Table 5.20 show one of

the solutions; the complete set can be found in Appendix A.

5.4.6 Spatial RRRR robot

The spatial RRRR is the most general four-degree-of-freedom robot, consisting of

four revolute joints G, W, F, and U which are arbitrarly located in space, see Figure
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Table 5.20: The joint axes for the first TPR solution

Joint Axis Direction Moment

g1 (−0.72, 0.13,−0.68)

g2 (−0.54, 0.51, 0.67)

c (−3.07, 2.02,−2.58)

h (0.45, 0.89,−0.11)

W (0.29,−0.88,−0.36) (−2.66,−1.61, 1.79)

5.23.

A brief history

The synthesis equations for the 4R robot were stated and partially solved in [89] using

the loop equations. They used optimization to solve for up to four task positions,

fixing the extra design parameters. No complete solution has been published for the

4R robot, to our knowledge. There are results for the particular case obtained if we

make three of the revolute joints into an S joint, see [12].

The design equations

The kinematics equations in dual quaternion form,

Q̂4R(θ, φ, ψ, ξ) = Ĝ(θ, 0)Ŵ (φ, 0)F̂ (ψ, 0)Û(ξ, 0), (5.100)

174



G
θW

F

U

φψ

ξ

Figure 5.23: The spatial RRRR robot

are expanded to
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and
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where s and c stand for sin and cos, respectively.

The maximum number of task positions to define is computed using Eq.(3.16).

With r = 4 revolute joints, we obtain nmax = 9 task positions to synthesize a finite

number of 4R robots.

To create the design equations, we identify the kinematics equations with the task

dual quaternions,

Q̂4R(θi, φi, ψi, ξi) = P̂ i, i = 2, . . . , 9. (5.103)

This set of parameterized equations consists of 56 equations in 56 unknowns, out

of which 32 correspond to joint variables and 24 define the structure of the robot.

Solving the design equations

We solved the parameterized design equations for the nine random dual quaternions

presented in Table 5.21, using Matlab’s fsolve algorithm on a 500Mhz G4 processor.
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Figure 5.24: An RRRR solution reaching nine task positions

We performed 5000 runs of 6000 iterations each, to obtain 11 solutions, see Figure

5.24 and data in Appendix A. Each run took around 36 seconds, and the total time

was of approximately 48 hours.

5.5 Synthesis of Five-degree-of-freedom Robots

Robots with five degrees of freedom present the greatest complexity from the synthesis

point of view. Only those robots with S-joints have been solved, see [12] and more

recently [27]. For these, the geometric constraints are easy to identify. The main three

sets of kinematic chains considered here have three (RRRPP), four (RRRRP), and
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Axis Rot. Trans.

(1.0, 0.0, 0.0; 0.0, 0.0, 0.0) 0 0

(0.79,−0.60, 0.12; 0.99, 1.78, 2.22) 2.67 2.67

(−0.95, 0.18, 0.26;−0.48,−1.10,−0.98) 2.28 1.37

(0.50, 0.56,−0.66;−0.82,−0.26,−0.84) 0.47 −1.80

(0.50, 0.33,−0.80;−1.50,−1.65,−1.60) 2.97 0.42

(−0.69,−0.69, 0.20;−0.33, 0.78, 1.52) 2.90 2.59

(−0.37,−0.03, 0.93; 0.03,−0.67,−0.00) 2.94 2.99

(0.52,−0.51, 0.69; 0.22,−1.62,−1.36) 0.88 −2.09

(−0.64, 0.20, 0.74;−0.15, 2.48,−0.81) 2.85 2.72

Table 5.21: The task positions for an RRRR robot

five (RRRRR) revolute joints. It is not difficult to create the dual quaternion design

equations for five-degree-of-freedom robots, but the parameterized solution becomes

very costly because of the high number of joint variables.

5.5.1 The PPS robot

The PPS robot is a five-degree-of-freedom robot. The fixed prismatic joint of direction

h is followed along the chain by another prismatic direction f . This is linked to

a spherical joint S that we can model as three revolute joints G1, G2 and G3 at

perpendicular directions and intersecting on a point, or as an arbitrary direction S

located also on the same point, see Figure 5.25.
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Figure 5.25: The PPS robot

A brief history

As most of the three-link robots that contain a spherical joint, the design equations for

the PPS robot were stated by Chen and Roth [12] using geometric constraints. Later,

Nielsen and Roth [64] solved those equations using Sylvester resultants to obtain ten

solutions. Recently, the solutions of this same group of robots have been studied by

Su [27].

The design equations

The spherical joint can be modeled as three perpendicular axes at a point, or also

as an axis of different direction for each task position. Both formulations lead to the

same results, as it has been discussed in Chapter 4. For uniformity reasons, we use
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here three axes to model the spherical joint. We have the kinematics equations

Q̂PPS = Ĥ(0, d)F̂ (0, c)Ĝ1(θ1, 0)Ĝ2(θ2, 0)Ĝ3(θ3, 0). (5.104)

The dual quaternion product yields

Q̂PPS =

⎧
⎨

⎩
α1g1 + α2g2 + α3g3

α4

⎫
⎬

⎭
+

ε

⎧
⎨

⎩
α1(g0

1 + (d
2h + c

2 f) × g1) + α2(g0
2 + (d

2h + c
2 f ) × g2) + α3(g0

3 + (d
2h + c

2 f) × g3) + α4(d
2h + c

2 f)

−α1(d
2h · g1 + c

2 f · g1) − α2(d
2h · g2 + c

2 f · g2) − α3(d
2h · g3 + c

2 f · g3)

⎫
⎬

⎭

(5.105)

The values for αi are presented in Eq.(4.41) and are a combination of the three

rotations that define the spherical joint, see Chapter 4 for details.

If we use explicitly the intersection point c of the three revolute joints, by writing

g0
i = c × gi, the previous expression can be rewritten as

Q̂PPS =

⎧
⎨

⎩
α1g1 + α2g2 + α3g3

α4

⎫
⎬

⎭
+

ε

⎧
⎨

⎩
(c + d

2
h + c

2
f) × (α1g1 + α2g2 + α3g3) + α4(

d
2
h + c

2
f)

−(d
2
h + c

2
f) · (α1g1 + α2g2 + α3g3)

⎫
⎬

⎭
(5.106)

We apply Eq.(3.16) and Eq.(3.17) we need to consider the particularities of both

the spherical joint and the plane defined by the prismatic joints. There is no limit

in the orientations, and the counting gives a limit of nmax = 6 positions to obtain a

finite number of solutions. We equate Eqs.(5.104) to the task dual quaternions,

Q̂PPS(di, ci, θi
1, θ

i
2, θ

i
3) − P̂ i = �0, i = 2, . . . , 6, (5.107)

to obtain the set of design equations. It consists of 32 equations in 32 unknowns, out

of which 25 correspond to the inverse kinematics for the joint variables.
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Solving the design equations

The elimination of the joint variables is done in two steps. We eliminate the revolute

joint variables from the orientations. Linear solution of the prismatic joint variables

leads to a reduced design equation. This can be solved algebraically.

The solution for the coefficients α1, α2, α3, α4 containing the revolute joint vari-

ables is computed linearly from the real part of Eq.(5.106) equated to the task goal

quaternion. If we denote by p the real vector and pw the real scalar of the task dual

quaternion P̂ , we have

α1 = g1 · p, α2 = g2 · p, α3 = g3 · p, α4 = pw (5.108)

The PPS chain does not have more revolute joints, hence the relation among the

α coefficients does not impose any restriction on the directions of the joint axes g1,

g2, g3 except for these to be perpendicular. We substitute these values in the dual

part of the design equations. The set is linear in the prismatic variables d, c,

[
v1 v2 v3

]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d

c

1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= �0 (5.109)

where the column vectors are

v1 =
1

2
(pwh + h× (g1 · pg1 + g2 · pg2 + g3 · pg3))

v2 =
1

2
(pwf + f × (g1 · pg1 + g2 · pg2 + g3 · pg3))

v3 = −p0 + c × (g1 · pg1 + g2 · pg2 + g3 · pg3)) (5.110)
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The reduced design equation is formulated as the determinant of the matrix in

Eq.(5.109). In this determinant, the prismatic directions h and f appear as the cross

product defining the normal direction to their plane, n = h × f . Using this and

noticing that g1 · pg1 + g2 · pg2 + g3 · pg3 = p, the design equation simplifies to

R : (1 − p · p)(n · c × p− n · p0) + pw(n× p · c × p− n · p × p0) − p · p0n · p = 0.

(5.111)

The final set of reduced design equations

{R}i, i = 2, . . . , 6, n · n = 1 (5.112)

is solved either directly or transformed into a univariate polynomial using resultant

methods, to obtain as many as ten complex solutions.

Numerical example

Table 5.22: The task positions for a PPS robot

Pos. Dir. Mom. Rot. Trans.

pos. 1 (1.0, 0.0, 0.0) (0.0, 0.0, 0.0) 0 0

pos. 2 (0.98, 0.02,−0.18) (0.00, 1.16, 0.15) 0.90 -0.53

pos. 3 (0.41, 0.84, 0.35) (1.23,−0.47,−0.29) 2.07 -0.93

pos. 4 (0.06, 0.53, 0.84) (−0.62, 0.10,−0.02) 5.62 2.89

pos. 5 (0.54,−0.74, 0.40) (0.74, 0.63, 0.16) 2.89 -0.59

pos. 6 (0.08, 0.33,−0.94) (−1.03,−1.53,−0.63) 3.02 2.44

We solved the reduced design equations of Table 5.22 to obtain 10 solutions; for
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Figure 5.26: A PPS robot reaching the six task positions

this example, we have six real solutions. Figure 5.26 shows solution 4 while reaching

the task positions. The complete set of solutions can be found in Appendix A.

5.5.2 The RCC robot

The RCC robot is a five-degree-of-freedom robot. The fixed revolute joint G allows

rotation θ about it. It is followed along the chain by a cylindric joint W(φ, d) and

another cylindric joint F(ψ, b) . See Figure 5.27.

A brief history

The equations for the RCC robot appear in the list of design equations that Tsai [97]

was able to formulate using the equivalent screw triangle. He gives also the maximum

number of design positions for this chain. To our knowledge, the design equations for

the RCC robot have not been solved before.
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Figure 5.27: The RCC robot

The design equations

We have the kinematics equations

Q̂RCC = Ĝ(θ, 0)Ŵ (φ, d)F̂ (ψ, b). (5.113)

The dual quaternion product yields

Q0 = cos
θ

2
cos

φ̂

2
cos

ψ̂

2
− sin

θ

2
sin

φ̂

2
cos

ψ̂

2
G · W − cos

θ

2
sin

φ̂

2
sin

ψ̂

2
W · F −

sin
θ

2
cos

φ̂

2
sin

ψ̂

2
G · F − sin

θ

2
sin

φ̂

2
sin

ψ̂

2
(G × W) · F,

Q = sin
θ

2
cos

φ̂

2
cos

ψ̂

2
G + cos

θ

2
sin

φ̂

2
cos

ψ̂

2
W + cos

θ

2
cos

φ̂

2
sin

ψ̂

2
F +

sin
θ

2
sin

φ̂

2
cos

ψ̂

2
(G × W) + sin

θ

2
cos

φ̂

2
sin

ψ̂

2
(G × F) + cos

θ

2
sin

φ̂

2
sin

ψ̂

2
(W × F) −

sin
θ

2
sin

φ̂

2
sin

ψ̂

2
(G · W)F + sin

θ

2
sin

φ̂

2
sin

ψ̂

2
(G × W) × F. (5.114)
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Notice that the dual angles φ̂ and ψ̂ contain the values of the translations d and b.

In principle, this expression assumes that the cylindric joints W and F are such that

the prismatic axis is coincident with the revolute axis in each of them. However, if

we expand the product and separate the real and dual parts, we can see that only

the direction of the prismatic joints appear, and hence we can use this as the general

expression.

Applying Eq.(3.16) we obtain nmax = 13 positions to obtain a finite number of

solutions. We equate Eqs.(5.113) to the task dual quaternions,

Q̂RCC(θi, φi, di, ψi, bi) − P̂ i = �0, i = 2, . . . , 13, (5.115)

to obtain the set of parameterized design equations. It consists of 78 equations in 78

unknowns, out of which 18 are structural variables and 60 give the inverse kinematics

for the joint variables.

Solving the design equations

We solved numerically the set of 72 independent parameterized design equations plus

the 8 equations corresponding to Plücker constraints. We used the fsolve function in

Matlab on a Power PC G4 at 500 MHz, with random initial conditions. After 900

runs of 10.000 iterations each, we obtained one real solution. Each complete run took

58 seconds, the total time was around 14.7 hours.

Table 5.23 contains the task positions and in Table 5.24 and Figure 5.28 we can

see the obtained solution in some of the task positions.
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Table 5.23: The task positions for a RCC robot

Pos. Dir. Mom. Rot. Trans.

pos. 1 (1.0, 0.0, 0.0) (0.0, 0.0, 0.0) 0 0

pos. 2 (0.98, 0.02,−0.18) (0.00, 1.16, 0.15) 0.90 -0.53

pos. 3 (0.41, 0.84, 0.35) (1.23,−0.47,−0.29) 2.07 -0.93

pos. 4 (0.52,−0.47, 0.71) (−1.59, 0.41, 1.45) 3.40 1.14

pos. 5 (0.54,−0.74, 0.40) (0.74, 0.63, 0.16) 2.89 -0.59

pos. 6 (0.08, 0.33,−0.94) (−1.03,−1.53,−0.63) 3.02 2.44

pos. 7 (0.23, 0.86,−0.46) (1.85,−0.65,−0.28) 1.62 -0.05

pos. 8 (0.60, 0.72, 0.34) (0.50,−0.65, 0.49) 1.02 1.00

pos. 9 (−0.37,−0.93,−0.08) (−2.33, 0.65, 3.00) 2.58 0.11

pos. 10 (0.98,−0.14, 0.16) (−0.51,−1.81, 1.51) 1.75 2.21

pos. 11 (0.28,−0.46,−0.84) (−0.01,−2.18, 1.20) 2.34 -1.20

pos. 12 (0.44,−0.31, 0.84) (−2.61,−1.41, 0.86) 2.82 -0.68

pos. 13 (−0.08,−0.01,−0.996) (1.09,−0.43,−0.09) 2.83 1.85

Table 5.24: An RCC robot that reaches 13 positions

Joint Axis Direction Moment

G (−0.03,−0.97,−0.24) (−7.29,−0.37, 2.50)

W (0.15, 0.92,−0.36) (0.99,−1.47,−3.29)

F (−0.93, 0.33,−0.13) (1.86, 2.76,−6.31)

5.6 Summary

In this chapter, we presented the constrained robots that we have solved using the

dual quaternion synthesis approach. For each case, we stated the design equations and
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Figure 5.28: An RCC robot reaching positions 2, 5, 7, 8, 10 and 13

used different strategies to solve them. The chapter shows the growing complexity of

the problem from the almost trivial case of the spatial RP chain to the most general

robots with five degrees of freedom, for which we lack an efficient method to solve the

equations. The different methods that we used to solve the design equations include

resultants to reduce the problem to a univariate polynomial, the use of polynomial

continuation algorithms, and also the standard Newton-Raphson methods to find a

single solution for the problem. Both the closed algebraic solution and the polynomial

homotopy continuation methods give the total number of solutions, while the set of

solutions of the Newton-Raphson solver will be closer to the total number of solutions

when we perform a high number of runs; the discrepance on the number of roots for

different robots in this last case is also due to the fact that the Newton-Raphson

algorithm only finds the real roots. This chapter illustrates the use of the theory
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presented in chapters 3 and 4, and provides synthesis results for some robots that

had not been synthesized before.
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Chapter 6

A Simplification for the Spatial RR

Robot

6.1 Overview

Three position synthesis of a spatial RR chain has been shown to yield two solutions

that combine to form a spatial 4R linkage, known as Bennett’s linkage. Initially,

Veldkamp [103] obtained this result for three instantaneous positions. Suh [95] ob-

tained numerical results that showed that the solution of the finite position synthesis

problem also yielded two solutions that formed a Bennett linkage. Finally, Tsai and

Roth [99] reduced 10 quadratic design equations to a single polynomial and showed

that it always has two solutions.

Recent study of Bennett’s linkage has focussed on the set of finite displacement

screws that define the movement of the coupler [34]. The axes of these screws form a

ruled surface known as a cylindroid.
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In Chapter 5 we applied the dual quaternion methodology to the spatial RR chain

to obtain a system of 12 equations in 12 unknowns (in reality, 8 equations in 8

unknowns if we use the Plücker conditions on the axes to eliminate four variables),

that we solve numerically to obtain two real solutions. In this Chapter we present

a methodology to reduce these equations to a univariate polynomial of third degree

plus three linear equations. This methodology is based on transforming the problem

to a coordinate system that captures the symmetry of the workspace of relative screw

displacements of the two RR solutions, which combine to form a Bennett linkage.

This result might be generalized for simplifying the solutions of other constrained

robots. However, the RR is among the simplest cases and it may be that the complex-

ity in computing the symmetries in the workspace of more complicated cases makes

the method non practical.

6.2 The Bennett Linkage

Bennett’s linkage [8] moves with one degree of freedom, due to its special geome-

try. The mobility of a general 4R spatial linkage is obtained by applying Gruebler’s

criterion,

M = 6(n − 1) −
m∑

k=1

pkck = 6(4 − 1) − 4 · 5 = −2. (6.1)

Thus, in general, this assembly of links and joints forms a structure.

The twist angles and link lengths of the opposites sides of Bennett’s linkage, (α, a)

190



g

α

γ
G

W

U

H

Ground link

a

Figure 6.1: A Bennett linkage

and (γ, g), must be equal, see Figure 6.1. This, together with the condition

sin α

a
=

sin γ

g
, (6.2)

ensures that the linkage moves with one degree of freedom.

6.3 The Workspace of the RR Chain

The kinematics equations for the spatial RR chain in Eq.(5.15) define the relative

rotation and translation of the end-link as a screw axis S1i, of dual angle ψ̂1i for

each value of the angles θ and φ in Figure 5.3. We use the definition of the pitch

corresponding to screws representing finite displacements in [68]. By varying the joint

angles θ and φ we obtain a set of screw axes that form a screw system of third order

[33]. The workspace for the Bennett linkage is based on the same expression with the
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constraint that now the joint angles are related by the expression

tan
φ̄

2
=

sin α+γ
2

sin α−γ
2

tan
θ̄

2
= K tan

θ̄

2
, (6.3)

where K is the constant obtained from the dimensions α and γ and θ̄ and φ̄ are

absolute angles, see [37]. The condition of Eq.(6.3) translates into a condition on the

relative angles θ = θi − θ1 with respect to the reference configuration,

tan
φ

2
=

K tan θ
2
(1 + tan2 θ1

2
)

1 + (K2 − 1) tan θ1

2
tan θ

2
+ K2(tan2 θ1

2
)
. (6.4)

We include the constraint of Eq.(6.4) in Eq.(5.15) to obtain

a sin α sin ψ1i

2

a sin α cos ψ1i

2
− t1i

2
cos α sin ψ1i

2

(1,
t1i

2

tan ψ1i

2

)S1i =

= tan
θ

2

(
G + KθW

1 + tan
θ

2
KθG × W1

)
, (6.5)

where

Kθ =
K(1 + K2

1 )

1 + K2K2
1 + tan θ

2
K1(K2 − 1)

,

K1 = tan
θ1

2
. (6.6)

The set of axes of the screws generated for different values of θ forms a cylindroid,

Figure 6.2.

6.4 The Cylindroid

A cylindroid is a ruled surface that has a nodal line cutting all generators at right

angles. The cylindroid appears as the axes of a real linear combination of two screws

[37].
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Figure 6.2: Top, side and angle views of the cylindroid.

We design the RR chain to reach the three spatial positions M1, M2 and M3. The

relative screw axes obtained from the design positions,

Va = sin
ψ̂12

2
S12, Vb = sin

ψ̂13

2
S13. (6.7)

must lie on the cylindroid defined by Eq. (6.5), and in fact the real linear combination

of these two screws generates this cylindroid.

The dual number sin ψ̂1i

2
= (sin ψ1i

2
, t1i

2
cos ψ1i

2
) = sin ψ1i

2
(1, P ) contains the magni-

tude and pitch of the screw, where the pitch P is given by the expression

Pa =
t12

2 tan ψ12

2

, Pb =
t13

2 tan ψ13

2

. (6.8)

For reference see Parkin [68].

The two screws Va and Vb, when independent, generate a cylindroid. We can

express the cylindroid as a function of the parameters of these two screws; for the

following calculations δ̂ = (δ, d) is the dual angle between S12 and S13 which are the

axes of Va and Vb.
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Figure 6.3: The principal axes as located from the initial screws S12 and S13

6.4.1 The Principal Axes

The cylindroid defines a nodal line which is the common normal to all screw axes

belonging to it. We can define a set of principal axes consisting of the nodal line and

the only pair of lines of the cylindroid that intersect at a right angle. This occurs at

the midpoint of the cylindroid along the nodal line [37, 69].

The expression of the cylindroid in the coordinate frame defined by the principal

axes is considerably simpler. We locate the principal axes from the original relative

screw Va by using the dual angle σ̂ = (σ, z0).

The angle at which we locate the principal axis from Va is σ, given by

tan 2σ =
−(Pb − Pa) cot δ + d

(Pb − Pa) + d cot δ
. (6.9)

This yields two angles separated by π/2. They define the directions of the principal

axes X and Y of the cylindroid.
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The offset z0 measured from Va to the principal axes is given by

z0 =
1

2
(d − (Pb − Pa)

cos δ

sin δ
). (6.10)

The principal axes of this cylindroid provide a convenient coordinate frame for the

synthesis of RR chains.

6.5 Locating the Linkage

6.5.1 Bennett linkage coordinates

Yu [108] introduced a coordinate frame aimed to simplify the expression of the Bennett

linkage. The joints of the Bennett linkage can be determined using a tetrahedron:

each joint passes through one of the four vertices and its direction is perpendicular

to the adjacent sides. The construction is showed in Figure 6.4.

Let B, P1, Q, C1 be the vertices of the tetrahedron. The edges are given by the

difference of the vertices. The tetrahedron is oriented so that the K line forms the

common normal to the lines defined by B−C1 and P1−Q, [34, 5]. Let 2a = |B−C1|

and 2b = |P1 − Q|, and let c and κ be the distance and angle between both edges

along K.

We can completely describe the Bennett linkage in the principal axes frame using

the four parameters of the tetrahedron a, b, c, κ. The coordinates of the vertices are
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Figure 6.4: The tetrahedron that defines the Bennett linkage.

given by

B =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a cos κ
2

a sin κ
2

−c
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, P1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b cos κ
2

−b sin κ
2

c
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

Q =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−b cos κ
2

b sin κ
2

c
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, C1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−a cos κ
2

−a sin κ
2

−c
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (6.11)

To find the direction of the joint axes g and w1 we compute the cross product of

the edges

g = Kg(Q − B) × (P1 − B) = Kg

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2bc sin κ
2

2bc cos κ
2

4ab cos κ
2

sin κ
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(6.12)
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and

w1 = Kw(B − P1) × (C1 −P1) = Kw

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−2ac sin κ
2

2ac cos κ
2

4ab cos κ
2

sin κ
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (6.13)

where the constants Kg and Kw normalize the vectors. The expressions of the screws

G = (g,B × g)T and W1 = (w1,P1 × w1)T in the principal axis coordinates are

G = Kg

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2bc sin κ
2

2bc cos κ
2

4ab cos κ
2
sin κ

2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+ εKg

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b cos κ
2
(4a2 sin2 κ

2
+ c2)

−b sin κ
2
(4a2 cos2 κ

2
+ c2)

2abc(cos2 κ
2
− sin2 κ

2
)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(6.14)

and

W1 = Kw

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−2ac sin κ
2

2ac cos κ
2

4ab cos κ
2

sin κ
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+ εKw

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−a cos κ
2
(4b2 sin2 κ

2
+ c2)

−a sin κ
2
(4b2 cos2 κ

2
+ c2)

2abc(cos2 κ
2
− sin2 κ

2
)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (6.15)

Similarly, the coordinates of the second RR solution, which we denote by H and U1,

are given by the expressions

H = Kh(C
1 − Q) × (B− Q) + εKhQ × ((C1 −Q) × (B −Q)

)

U1 = Ku(P
1 − C1) × (Q − C1) + εKuC

1 × ((P1 −C1) × (Q −C1)
)
. (6.16)

6.5.2 The tetrahedron and the cylindroid

The tetrahedron completely defines the Bennett linkage. In order to locate the tetra-

hedron with respect to the given relative positions,with screw axes S12 and S13, we

need to relate the tetrahedron to the principal axes of the cylindroid. In Appendix

7.2, we show that the principal axes {X, Y, K} are located in the midpoint of the tetra-
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hedron and bisecting the angle κ [72], as seen in Figure 6.4. There we also include

the coordinate transformation from the initial frame to the principal axes frame.

6.5.3 Transforming the design equations

The design equations for the RR chain defined in Section 5.2.2 are equivalent to those

obtained from the geometric constraints imposed by the link connecting the moving

and fixed axes as defined in [98, 96, 54], and also equivalent to the screw triangle

formulation of Tsai [97], see Section 3.8.2.

By using the Bennett linkage coordinates to define G and W1 as in Eq.(6.14) and

Eq.(6.15), we reduce the number of design parameters in the design equations from

ten to four. The result is four equations in the unknowns a, b, c and κ.

6.6 Solving the Design Equations

We now transform the task positions [Ti] to the principal axis frame and determine

the relative screw axes

S12 =sin
ψ̂12

2
(cos δ̂1X + sin δ̂1Y)

S13 =sin
ψ̂13

2
(cos δ̂2X + sin δ̂2Y), (6.17)

where ψ̂1i = (ψ1i, t1i) are the angle and translation of the screw displacements. The

dual angles δ̂i are defined relative to the principal axes frame.

Substitute Eq.(6.17) in the equation created from the part corresponding to the

198



translation in Eq.(5.15) to obtain two linear equations in a and b,

t12
2

+ (a − b) cos δ1 cos
κ

2
+ (a + b) sin δ1 sin

κ

2
= 0

t13
2

+ (a − b) cos δ2 cos
κ

2
+ (a + b) sin δ2 sin

κ

2
= 0.

They can be solved to obtain

a =
Ks

2 sin κ
2

+
Kd

2 cos κ
2

,

b =
Ks

2 sin κ
2

− Kd

2 cos κ
2

. (6.18)

The constants Ks and Kd combine information from the relative screws and are

listed in Table 6.1.

Next we substitute Eq.(6.18) into the direction part of Eq.(5.15) and introduce the

definition of y = tan κ
2

to eliminate the sine and cosine functions of κ. The result is

two rational equations in c and y,

tan ψ12

2 (K2
s

K2
d
− y2) + c2 tan

ψ12
2

2K2
d

(y2(cos 2δ1 − 1) + cos 2δ1 + 1) − 2 cy
Kd

(cos δ1 + Ks sin δ1
Kd

)

(K2
s

K2
d
− y2) + c2

2K2
d
(y2(cos 2δ1 − 1) + cos 2δ1 + 1)

= 0,

(6.19)

tan ψ13

2 (K2
s

K2
d
− y2) + c2 tan

ψ13
2

2K2
d

(y2(cos 2δ2 − 1) + cos 2δ2 + 1) − 2 cy
Kd

(cos δ2 + Ks sin δ2
Kd

)

(K2
s

K2
d
− y2) + c2

2K2
d
(y2(cos 2δ2 − 1) + cos 2δ2 + 1)

= 0,

(6.20)

The numerator and denominator share two roots associated with c = 0, that is

c = 0, y = ±Ks

Kd
, (6.21)
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Table 6.1: Constants computed from the task positions for the RR robot.

Constant Expression

Ks
t12 cos δ2−t13 cos δ1

2 sin(δ1−δ2)

Kd
t13 sin δ1−t12 sin δ2

2 sin(δ1−δ2)

K12
t12/2

tan
ψ12
2

(
1

sin2 δ1−sin2 δ2

)

K13
t13/2

tan
ψ13
2

(
1

sin2 δ1−sin2 δ2

)

which we eliminate them from the numerator forcing the following linear system to

have more solutions than the trivial,
⎡

⎢
⎣

tan ψ12

2

tan
ψ12
2

2K2
d

(y2c(cos 2δ1 − 1) + cos 2δ1 + 1) − 2 y
Kd

(cos δ1 + Ks sin δ1
Kd

)

tan ψ13

2

tan
ψ13
2

2K2
d

(y2c(cos 2δ2 − 1) + cos 2δ2 + 1) − 2 y
Kd

(cos δ2 + Ks sin δ2
Kd

)

⎤

⎥
⎦

⎧
⎨

⎩

K2
s

K2
d
− y2

c

⎫
⎬

⎭
= 0.

(6.22)

In order for this set of equation to have roots other than those given by Eq.(6.21),

the determinant of the coefficient matrix must be zero. This yields an equation that

is linear in c. Solve this to obtain

c = (K13 − K12) sin κ, (6.23)

where the constants K12 and K13 are shown in Table 6.1.

In order to determine κ, we substitute the expressions for a, b and c into one of

the direction equations in Eq.(5.15). We obtain a cubic polynomial in y2,

P : C3y
6 + C2y

4 + C1y
2 + C0 = 0 (6.24)

200



with the coefficients given by

C3 = −K2
d ,

C2 = K2
s − 2K2

d + 4(K12 − K13)(K13 sin2 δ1 − K12 sin2 δ2),

C1 = 2K2
s − K2

d − 4(K12 − K13)(K13 cos2 δ1 − K12 cos2 δ2),

C0 = K2
s . (6.25)

Substitute x = y2, and solve the cubic polynomial to determine its three roots. We

can show that the polynomial P (x) has only one positive real root for x, which we

denote x	. To do this we compute the values,

P (0) = K2
s ,

P (−1) = −4(K12 − K13)
2,

P (+x∞) ≈ −K2
d(+x∞)3,

P (−x∞) ≈ −K2
d(−x∞)3. (6.26)

Notice that P (0) > 0, while for large positive values of x we have P (+x∞) < 0. From

this we conclude that the polynomial has at least one positive real root. Furthermore,

P (−1) < 0 for all values of its coefficients, and for large negative values of x the

polynomial is positive, P (−x∞) > 0. This leads to the conclusion that there are at

least two negative real roots. The cubic polynomial only has three roots, therefore

one is positive and two are negative. This gives in turn two real roots for the original

polynomial equation.
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Table 6.2: The two sets of solutions for the Bennett linkage

Solution 1 Solution 2

G( a, b, c, κ) = H(−b,−a,−c,−κ)

W( a, b, c, κ) = U(−b,−a,−c,−κ)

H( a, b, c, κ) = G(−b,−a,−c,−κ)

U( a, b, c, κ) = W(−b,−a,−c,−κ)

To determine κ, we compute the square root of the single positive real root x	,

tan
κ

2
= ±√

x	. (6.27)

The result is two sets of solutions (a, b, c, κ) and (−b,−a,−c,−κ).

The design procedure yields two unique algebraic solutions for the three position

synthesis of the RR chain. According to the location on the tetrahedron, the second

solution, given by the values (−b,−a,−c,−κ), corresponds to the coordinates of the

RR chain associated with the other two axes of the Bennett linkage, as defined in

Eq.(6.16) and as can be seen in Table 6.2. Hence this procedure yields two RR chains,

which combine to form a Bennett linkage.

6.7 Summary

In this chapter we developed a method to simplify the set of design equations obtained

in Chapter 5 for the spatial RR chain, to obtain a closed algebraic solution. We

performed a change of coordinates that simplified the original set of twelve nonlinear

equations in twelve unknowns to three linear equations plus a third-degree polynomial.
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The new reference frame for the problem is called Bennett linkage coordinates and

is located at the principal axes of the workspace of relative screws generated by the

Bennett linkage defined by the two real solutions of the RR problem.

We defined the workspace of the Bennett linkage from the dual quaternion workspace

of the RR chain with a given relation between both joint variables, and identified this

with the cylindroid generated by three task positions. We proved that this cylindroid

lies in the center of the tetrahedron defined by the Bennett linkage, and calculated the

transformation from the original frame. When the design equations were transformed

to the new frame, they simplified to four equations that can be solved algebraically.
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Chapter 7

Conclusions and Future Research

7.1 Contributions

In this dissertation we presented a methodology for the finite position synthesis of

constrained robots based on the expression of the kinematics equations in dual quater-

nion form.

We developed the relation between the standard kinematics equations in 4 × 4

homogeneous matrix form and that in dual quaternion form, and showed that we can

derive the dual quaternion form to the matrix form by transforming to relative dis-

placments, to obtain successive screw displacements, which turns out to be equivalent

to the product of exponentials based on Lie algebra methods.

The dual quaternion kinematics equations are equated to a set of task position

expressed as dual quaternions. The number of task positions that we can define to

obtain a finite number of robots needs to be known. We were able to create formulas,

based on the parameters of each joint and the number of joint variables, to count
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for the maximum number of positions that can be defined for each robot topology.

This formula computes the maximal set of general positions that can be fitted in the

surface that defines the workspace of the robot. Designing for a smaller number of

task positions is also possible and leads to an infinity of solutions.

We identified special cases in which the robot is orientation-limited and translation-

unconstrained, due to the semi-direct product structure of the group of spatial dis-

placements. Orientation-limited robots can reach a certain number of orientations

that is less than the maximum number of translations that they can reach. This can

be solved with two different approaches: extra constraints can be defined so that the

robot can reach at most as many translations as orientations; or, in addition to a cer-

tain number of general task positions, an extra number of task positions can be defined

in which the translation is general but the orientation belongs to the workspace of the

chain. These orientations can be computed from the chain or can be approximated

from arbitrarily specified positions. We also identified the translation-unconstrained

robots, those orientation-limited robots that are not constrained in the translations.

The design equations obtained by equating the dual quaternion kinematics equa-

tions to the set of task positions are parameterized by the joint variables, in the

sense that, assigning the whole range of values to the joint variables, we obtain the

workspace of the robot for the given values of the parameters of the axes. The pa-

rameterized equations contain trigonometric functions and can be solved numerically.

We have found that, for some algorithms, it is preferred to have a higher number of
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equations of lower degree, and this is the case of the parameterized equations, while

others are better with a smaller number of equations of higher degree.

We devised a methodology to eliminate these non-structural joint variables, to

obtain a set of algebraic equations that, in the simplest cases, have been proved to be

equivalent to the equations obtained stating the geometric constraints of the chain

or using the equivalent screw triangle. The method consists of eliminating linearly a

combination of the joint variables, and creating reduced design equations by imposing

the relations among the variables we are solving for. The goal of this elimination is,

on one hand, to create equations that may be easier to solve numerically using certain

methods, and, on the other hand, to work toward a closed algebraic solution in those

cases where it is possible.

We have solved the design equations using different methods, depending on their

complexity. For the most complex cases, numerical algorithms based on Newton-

Raphson methods have been applied to the parameterized equations. These numerical

algorithms have been also applied to reduced sets of equations. In cases of relative

complexity, we have applied polynomial homotopy continuation methods. Finally,

in some cases, we have been able to find closed algebraic solutions by using mainly

resultant methods.

The work presented in Chapter 6 is a different methodology to simplify the design

equations, applied to the spatial RR chain. It is basically a change of coordinates

that simplifies the original set of twelve nonlinear equations in twelve unknowns to
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three linear equations plus a third-degree polynomial.

We studied a reference frame that captures the symmetry of the solution by looking

at the screws that generate the workspace of relative displacements of the chain;

the new coordinates for the problem is called Bennett linkage coordinates and the

reference frame is located at the principal axes of the screw system generated by the

movement of the Bennett linkage, which is defined by the two real solutions of the

RR problem.

We defined the workspace of the Bennett linkage from the dual quaternion workspace

of the RR chain with a given relation between both joint variables, and identified this

with the cylindroid generated by the three task positions. We computed the principal

axes of the cylindroid and proved that this cylindroid lies in the center of the tetra-

hedron defined by the Bennett linkage, then calculated the transformation from the

original frame. When the design equations are transformed to the new frame, they

simplify to four equations that we solved algebraically.

7.2 Future Research

Future research can be developed in three different directions. The actual synthesis

equations obtained with the dual quaternion methodology are still too complicated to

be solved directly in the most complex cases, that is, those of five-degree-of-freedom

robots with no additional constraints. Some work needs to be done to characterize

the dimension of the solution set of these equations, and also to simplify them and
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to devise solution methods.

A second direction is in the synthesis of parallel robots. Dimensional synthesis

of parallel robots can be done by assembling together the different solutions of the

synthesis of serial chains. The dimensional synthesis methodology could be combined

with type synthesis methods to create a way to dimension a given workspace.

The last direction is the application of the methodology to solve different problems.

The immediate application is in software for the design of spatial mechanisms, and for

that some work is required to ensure that the solution methods are suited for computer

programming, and also to define routines for choosing among solutions from a finite or

infinite set based on some metrics. Other applications may include the identification

of the structure of actual systems based on data about their movement in space, for

instance the identification of skeletons in motion capture or the structure of molecules

such as proteins.
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Appendix A: Numerical Results

1. Solutions for the RR robot

Table A-1: The solutions for the RR chain

G (0.14, 0.94, 0.30), (−1.3,−0.33, 1.7)

W (0.59, 0.032, 0.81), (−0.81,−2.6, 0.69)

G (−0.54 − 0.02i, 1.03 + 0.21i, 0.34 − 0.66i), (−2.8 + 0.5i,−1.0 + 1.5i, 1.1 − 1.0i)

W (0.54 − 0.56i, 0.72 − 0.04i, 0.82 + 0.41i), (−0.9 − 1.5i,−1.2 − 1.3i, 2.8 + 0.1i)

G (−0.54 + 0.02i, 1.03 − 0.21i, 0.34 + 0.66i), (−2.8 − 0.5i,−1.0 − 1.5i, 1.1 + 1.0i)

W (0.54 + 0.56i, 0.72 + 0.04i, 0.82 − 0.41i), (−0.9 + 1.5i,−1.2 + 1.3i, 2.8 − 0.1i)

G (−0.88, 0.45, 0.17), (−1.6,−2.8,−0.73)

W (0.14, 0.94, 0.30), (−1.3,−0.33, 1.7)

G (1.6 − 0.04i, 0.76 + 0.44i, 0.20 − 1.38i), (−3.9 + 1.2i, 1.7 + 1.3i, 3.2 + 3.4i)

W (0.69 + 1.17i,−1.4 + 0.1i, 0.79 − 0.86i), (−1.1 − 1.5i, 0.4 + 2.4i,−3.7 + 3.2i)

G (1.6 + 0.04i, 0.76 − 0.44i, 0.20 + 1.38i), (−3.9 − 1.2i, 1.7 − 1.3i, 3.2 − 3.4i)

W (0.69 − 1.17i,−1.4 − 0.1i, 0.79 + 0.86i), (−1.1 + 1.5i, 0.4 − 2.4i,−3.7 − 3.2i)
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2. Solutions for the RRP robot
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3. Solutions for the TP robot

Table A-3: The solutions for the TP chain

Joint Axis Direction Moment

G1 (0,−0.67, 0.74) (−0.06,−0.90,−0.82)

G2 (−0.17, 0.73, 0.66) (−4.19,−1.33, 0.38)

H (0,−0.49, 0.87) (−1.34, 0.66, 0.37)

G1 (0,−0.67, 0.74) (5.01,−1.11,−1.01)

G2 (−0.17, 0.73, 0.66) (−6.83,−2.45, 0.92)

H (0, 0.66, 0.75) (−6.36, 0.36,−0.31)

G1 (0, 0.35, 0.93) (−3.82,−1.13, 0.43)

G2 (−0.99,−0.07, 0.02) (0.14,−3.13,−2.99)

H (0,−0.49, 0.87) (−2.29,−1.18,−0.67)

G1 (0, 0.35, 0.93) (−3.90,−1.40, 0.53)

G2 (−0.99,−0.07, 0.02) (0.55,−8.52,−1.06)

H (0, 0.66, 0.75) (−8.19,−1.23, 1.08)

G1 (0, 0.99, 0.17) (−3.55,−0.20, 1.196)

G2 (−0.52,−0.14, 0.84) (−2.01,−2.64,−1.70)

H (0, 0.66, 0.75) (−0.65,−2.54,−1.43)

G1 (0, 0.99, 0.17) (−8.54,−0.25, 1.48)

G2 (−0.52,−0.14, 0.84) (0.41,−5.72,−0.71)

H (0, 0.66, 0.75) (−7.13,−2.41, 2.11)
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4. Solutions for the RPP robot

Table A-4: The solutions for the RPP chain

Axis Direction Moment

G (0.98,−0.14, 0.16) (0.25, 1.45,−0.29)

n (−0.26, 0.93, 0.25)

G (0.98,−0.14, 0.16) 1016(2.3 − 0.5i, 4.9 − 9.7i,−9.6 − 5.2i)

n (−0.9 + 0.1i, 0.3 + 0.2i, 0.0 − 0.1i)

G (0.98,−0.14, 0.16) 1016(2.3 + 0.5i, 4.9 + 9.7i,−9.6 + 5.2i)

n (−0.9 − 0.1i, 0.3 − 0.2i, 0.0 + 0.1i)

G (0.98,−0.14, 0.16) 1015(2.0 + 0.4i, 7.7 − 5.99i,−5.8 − 7.8i)

n (0.9 − 0.1i,−0.7 + 0.2i, 0.3 + 0.5i)

G (0.98,−0.14, 0.16) 1015(2.0 − 0.4i, 7.7 + 6.0i,−5.8 + 7.8i)

n (0.9 + 0.1i,−0.7 − 0.2i, 0.3 − 0.5i)

G (0.98,−0.14, 0.16) 1016(−1.0, 0.05, 6.3)

n (0.98,−0.14, 0.16)
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5. Solutions for the RRR robot
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6. Solutions for the RPRP robot

Joint Axis Direction

g (−1.06 + 0.09i,−0.40 + 0.31i, 0.38 + 0.58i)

w (−0.29 − 0.08i, 0.76 + 0.96i, 1.27 − 0.59i)

g (−1.06 − 0.09i,−0.40 − 0.31i, 0.38 − 0.58i)

w (−0.29 + 0.08i, 0.76 − 0.96i, 1.27 + 0.59i)

g (−0.48,−0.78, 0.39)

w (0.33,−0.23, 0.91)

g (0.04, 0.05, 0.99)

w (0.70, 0.48, 0.53)

g (0.47 − 0.40i,−1.27 − 0.18i, 0.06 − 0.80i)

w (1.06 − 0.05i, 0.15 − 0.30i, 0.27 + 0.36i)

g (0.47 + 0.40i,−1.27 + 0.18i, 0.06 + 0.80i)

w (1.06 + 0.049i, 0.15 + 0.30i, 0.27 − 0.36i)

Table A-6: Solutions for the directons of the revolute joints of the RPRP robot
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g0 h w0 u

First real solution

(−5.17, 5.49, 4.64) (0.48, 0.36, 0.83) (0.73,−8.39,−2.38) (0.66,−0.53, 0.53)

(−3.69, 1.71,−1.15) (0.30,−0.22, 0.93) (−0.50, 0.01, 0.18) (0.36,−0.21, 0.91)

(0.11,−0.60,−1.07) (−0.06,−0.26, 0.96) (−2.61,−1.82, 0.50) (0.63,−0.13, 0.76)

(2.85, 0.415, 4.39) (0.46, 0.21, 0.86) (−0.18, 0.51, 0.19) (0.39,−0.78, 0.49)

(−0.75, 1.65, 2.40) (−0.56, 0.61, 0.56) (5.72, 7.44,−0.23) (−0.39, 0.50, 0.77)

(−8.27, 9.19, 8.25) (0.88, 0.25, 0.40) (3.43, 32.6, 6.94) (0.70,−0.66, 0.29)

(−1.09,−0.04,−1.43) (0.26,−0.22, 0.94) (−2.03,−0.51, 0.62) (0.39,−0.21, 0.90)

Second real solution

(3.35, 0.25,−0.15) (−0.71,−0.55, 0.44) (0.57,−0.47,−0.33) (−0.11,−0.98, 0.17)

(1.43,−0.09,−0.06) (−0.33,−0.45, 0.83) (1.85,−1.40,−1.16) (0.30, 0.84, 0.44)

(−70.4, 92.8,−1.31) (0.98, 0.16, 0.12) (−31.0,−92.1, 122.) (0.96,−0.09, 0.25)

(2.81, 4.81,−0.34) (0.05,−0.98, 0.18) (6.86,−5.55,−3.98) (0.67,−0.73, 0.13)

(−2.00, 1.68, 0.01) (−0.44, 0.24, 0.86) (9.94,−23.9, 8.37) (−0.36, 0.22, 0.90)

Table A-7: The real solutions for the RPRP robot
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7. Solutions for the RPC robot

Joint Axis Direction Moment

G (−0.42,−0.48, 0.77) (3.52,−0.36, 1.73)

h (0.29,−0.87,−0.39)

W (−0.92,−0.36, 0.12) (0.25,−0.05, 1.78)

G (0.20,−0.43, 0.88) (0.07, 1.18, 0.55)

h (0.44,−0.76,−0.47)

W (−0.37,−0.63, 0.68) (0.10, 0.32, 0.36)

G (−0.61 − 0.23i,−0.14− 0.01i, 0.83− 0.17i) (0.16 + 2.22i,−1.54− 2.93i,−0.93 + 0.96i)

h (−0.55 − 0.21i, 0.94− 0.17i,−0.11− 0.35i)

W (−0.17− 0.71i, 0.24 + 0.021i, 1.19− 0.11i) (0.69 − 0.81i,−1.45− 5.57i, 0.64 + 1.49i)

G (−0.61 + 0.23i,−0.14 + 0.01i, 0.83 + 0.17i) (0.16 − 2.22i,−1.54 + 2.93i,−0.93− 0.96i)

h (−0.55 + 0.21i, 0.94 + 0.17i,−0.11 + 0.35i)

W (−0.17 + 0.71i, 0.24− 0.021i, 1.19 + 0.11i) (0.69 + 0.81i,−1.45 + 5.57i, 0.64− 1.49i)

G (1.55 − 1.10i,−1.62− 1.57i, 0.83− 1.01i) (25.09 + 11.74i, 11.63− 23.31i, 7.64− 2.65i)

h (0.35 − 0.82i,−0.84 + 0.20i,−1.04− 0.44i)

W (−0.12 − 0.97i,−1.51 + 0.02i, 0.14− 0.61i) (6.49 − 1.83i,−2.16− 5.07i, 2.09− 1.81i)

G (1.55 + 1.10i,−1.62 + 1.57i, 0.83 + 1.01i) (25.09 − 11.74i, 11.63 + 23.31i, 7.64 + 2.65i)

h (0.35 + 0.82i,−0.84− 0.20i,−1.04 + 0.44i)

W (−0.12 + 0.97i,−1.51− 0.02i, 0.14 + 0.61i) (6.49 + 1.83i,−2.16 + 5.07i, 2.09 + 1.81i)

Table A-8: The six solutions for the RPC robot
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8. Solutions for the PRRR robot
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9. Solutions for the CRR robot

Table A-10: Five of the solutions for the CRR robot

Length Joint Line

1.66 G (−0.45,−0.14,−0.88) + ε(−1.91, 0.59, 0.89)

W (0.25,−0.89, 0.37) + ε(1.40,−0.87,−3.03)

F (−0.88,−0.23,−0.42) + ε(−0.96, 0.69, 1.64)

1.75 G (0.14, 0.98, 0.11) + ε(0.14,−0.02,−0.01)

W (−0.61,−0.60, 0.51) + ε(0.79,−0.20, 0.72)

F (0.44,−0.89, 0.12) + ε(−0.59,−0.50,−1.55)

2.59 G (−0.73,−0.07,−0.68) + ε(−1.50, 0.32, 1.60)

W (0.29,−0.82,−0.50) + ε(−1.14, 1.54,−3.22)

F (−0.49, 0.399,−0.78) + ε(−1.88, 2.14, 2.26)

2.65 G (0.39, 0.90,−0.18) + ε(−0.55, 0.025,−1.08)

W (−0.42, 0.54,−0.73) + ε(−1.45, 0.40, 1.14)

F (0.74, 0.13,−0.66) + ε(−0.66, 0.55,−0.63)

2.68 G (0.31, 0.95, 0.02) + ε(0.51,−0.16,−0.26)

W (0.71, 0.60,−0.37) + ε(0.01,−0.40,−0.62)

F (0.62,−0.61,−0.49) + ε(−2.15,−0.35,−2.29)
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Table A-11: The other five solutions for the CRR robot

Length Joint Line

2.99 G (0.31, 0.95, 0.02) + ε(0.51,−0.16,−0.26)

W (0.71, 0.60,−0.37) + ε(0.01,−0.40,−0.62)

F (0.62,−0.61,−0.49) + ε(−2.15,−0.35,−2.29)

3.00 G (−0.12,−0.98,−0.17) + ε(−1.32, 0.25,−0.46)

W (0.88, 0.28, 0.37) + ε(1.60,−2.84,−1.63)

F (0.26, 0.487,−0.83) + ε(−1.45, 0.67,−0.06)

3.06 G (0.18,−0.94,−0.27) + ε(−0.76, 0.32,−1.64)

W (0.98,−0.15,−0.09) + ε(−0.39,−1.93,−0.89)

F (−0.20,−0.55, 0.81) + ε(0.51,−0.76,−0.39)

3.08 G (0.05,−0.69,−0.71) + ε(−2.22, 0.25,−0.40)

W (−0.35,−0.25,−0.90) + ε(−2.75, 2.09, 0.47)

F (0.90, 0.36,−0.25) + ε(−0.07,−0.50,−0.99)

3.20 G (−0.146,−0.77,−0.62) + ε(−2.67, 0.17, 0.41)

W (−0.90, 0.41,−0.15) + ε(0.89, 2.10, 0.42)

F (−0.68,−0.09, 0.72) + ε(2.09, 0.59, 2.04)
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10. Real solutions for the TPR robot

Table A-12: Three real solutions for the TPR robot

Joint Axis Direction Moment

g1 (−0.72, 0.13,−0.68) (−3.07, 2.02,−2.58) × g1

g2 (−0.54, 0.51, 0.67) (−3.07, 2.02,−2.58) × g2

h (0.45, 0.89,−0.11)

W (0.29,−0.88,−0.36) (−2.66,−1.61, 1.79)

g1 (−0.60, 0.79,−0.15) (0.10, 3.6, 1.7) × g1

g2 (0.37, 0.44, 0.82) (0.10, 3.6, 1.7) × g2

h (−0.63, 0.32,−0.71)

W (0.58,−0.57,−0.59) (−1.3,−3.0, 1.6)

g1 (−0.27, 0.84, 0.47) (−2.7, 0.25,−0.60) × g1

g2 (0.76,−0.11, 0.64) (−2.7, 0.25,−0.60) × g2

h (−0.47,−0.66, 0.58)

W (−0.18, 0.034, 0.98) (−0.55, 2.7,−0.19)
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Table A-13: Three more real solutions for the TPR robot

Joint Axis Direction Moment

g1 (−0.13,−0.71, 0.69) (−0.86, 1.9, 0.67) × g1

g2 (−0.90,−0.21,−0.38) (−0.86, 1.9, 0.67) × g2

h (−0.49, 0.76,−0.44)

W (−0.062, 0.84, 0.54) (0.87, 0.86,−1.2)

g1 (0.42, 0.28, 0.86) (−1.0, 0.13,−4.1) × g1

g2 (0.91,−0.096,−0.41) (−1.0, 0.13,−4.1) × g2

h (−0.15, 0.18, 0.97)

W (0.74,−0.58, 0.34) (−0.74, 0.19, 2.0)

g1 (0.75,−0.069,−0.66) (0.078, 4.7, 2.5 × g1)

g2 (0.54,−0.51, 0.67) (0.078, 4.7, 2.5) × g2

h (0.16, 0.79,−0.60)

W (−0.73, 0.67, 0.11) (−0.63,−1.2, 2.7)
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11. Solutions for the RRRR robot
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12. Solutions for the PPS robot
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Sol. n c

1 (−0.377, 0.918, 0.123) (1.59, 2.51, 0.0385)

2 (0.212, 0.846, 0.489) (7.89,−1.96,−0.596)

3 (−0.565, 0.157, 0.810) (−11.2,−9.66,−7.10)

4 (0.573, 0.809, 0.131) (2.51,−2.40, 0.675)

5 (0.75 + 0.35i,−0.45 + 0.32i, 0.70 − 0.17i) (−2.39 + 1.06i,−0.75 + 0.16i, 2.61 + 3.13i)

6 (0.75 − 0.35i,−0.45 − 0.32i, 0.70 + 0.17i) (−2.39 − 1.06i,−0.75 − 0.16i, 2.61 − 3.13i)

7 (0.07 − 0.90i,−1.39 + 0.15i, 0.47 + 0.58i) (−0.41 − 1.06i, 1.281 + 0.17i, 0.30 − 1.28i)

8 (0.07 + 0.90i,−1.39 − 0.15i, 0.47 − 0.58i) (−0.41 + 1.06i, 1.28 − 0.17i, 0.30 + 1.28i)

9 (−0.22, 0.048, 0.975) (−7.33,−3.21,−2.16)

10 (−0.893,−0.234, 0.384) (−0.729,−1.22,−1.57)

Table A-15: Ten real solutions for the PPS robot

240



Appendix B: The Cylindroid in the

Tetrahedron

1. Bennett’s Linkage

Consider separately the input and output cranks of Bennett’s linkage which we denote

as GW and HU, respectively (Figure B-1). For the input crank, let N1 be the common

normal between the axes G and W of the revolute joints, and let B and P be their

points of intersection with N1. The angle α and distance a from G to W measured

around and along N1 define the dimensions of the input crank, and can be assembled

into the dual number α̂ = (α, a). The output crank HU of Bennett’s linkage has the

same dimensions, that is α̂ = (α, a) defines the angle and distance from H to U around

and along its common normal N2. Let Q and C be the intersections of N2 with H

and U, respectively.

In order to form the linkage, we assemble the base link so that the points B and Q

lie on the common normal between the fixed joint axes G and H, and P and C lie on

the common normal to the two moving axes W and U. The dimensions of these two

links are to be the same, such that γ̂ = (γ, g) defines the angle and distance between

these axes around the common normal.

It is possible to show that in order to achieve this assembly, the dimensions of
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Figure B-1: Bennett’s linkage defined by axes GWUH and their common normals.

Bennett’s linkage must satisfy the relation (Hao[29]),

sin α

a
=

sin γ

g
. (B-1)

For the analysis of the Bennett’s linkage, we introduce a frame F with origin at

the point B, its z-axis along the fixed axis G, and its x-axis along the common normal

between G and H.

The input-output equation for Bennett’s linkage [54] is derived from the fact that

that the points P and C must remain separated by the distance g as the linkage

moves. This constraint equation,

(C − P) · (C − P) = g2 (B-2)

yields

tan
ψ

2
= k± tan

θ

2
, (B-3)

where

k+ =
sin α+γ

2

sin α−γ
2

, and k− =
cos α−γ

2

cos α+γ
2

. (B-4)
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Hunt [37] shows that k+ is the correct root for the conventions that we have chosen for

the angles α and γ. The negative root yields the constant associated with a different

sign convention. In what follows we focus on the positive root, which we denote at k,

and drop the + superscript.

To relate the output angle ψ to the coupler angle φ (the angle measured around

W that defines the position of the coupler WU relative to the input crank), we write

the loop equations for the linkage. We equate the two expressions of the point C to

obtain

g(cosψ − cos φ) =0,

g sin α(sin ψ − sin φ) =0. (B-5)

Thus, we see that the coupler angle φ is equal to the output angle ψ. This allows us

to use (B-3) to compute

tan
φ

2
= k tan

θ

2
, (B-6)

where, as we have seen previously, k depends only on the linkage dimensions.

2. The Screw Surface

In this section we compute the expression of the screw axes belonging to the cylindroid

on a certain reference frame. The location of the cylindroid depends on the reference

configuration; to make this dependence explicit, we need to express the rotation angles

as the difference from the reference angle. We denote ∆θ = θ − θ0, ∆φ = φ − φ0,

being θ0, φ0 the angles that define the reference configuration.

Expanding the dual quaternion product according to this notation and the geom-

etry of the Bennett’s linkage, we obtain

cos
∆θ

2
cos

∆φ

2
= cos

∆ψ

2
−

∆t
2

sin ∆ψ
2

a sin α
(B-7)
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for the scalar, and dividing this result into the dual vector part, we obtain

F = M(∆ψ)

(

1,
∆t
2

tan ∆ψ
2

)

S = tan
∆θ

2
G + tan

∆φ

2
W + tan

∆θ

2
tan

∆φ

2
G × W,

(B-8)

where

M(∆ψ) =
a sin α sin ∆ψ

2

a sin α cos ∆ψ
2

− ∆t
2

sin ∆ψ
2

(B-9)

is the magnitude of each screw and S is the Plücker coordinates of its axis. The

parameter

P =
∆t
2

tan ∆ψ
2

, (B-10)

is the pitch of the screw.

The axes of the screws F are the axes of relative displacement screws of the coupler

of Bennett’s linkage, and form the screw surface for the movement.

The expression of the relative displacement screws can be computed using Eq.(B-

8), to be

F(θ, θ0) = tan
θ − θ0

2
G + tan

φ − φ0

2
W + tan

θ − θ0

2
tan

φ − φ0

2
G × W. (B-11)

We expand this equation using the standard reference frame to define G and W, and

the relationship between θ and φ given by the Bennett linkage condition. Factor the

common terms from the components of F to obtain the simplified expression F′,

F′(θ, θ0) =

⎛

⎜⎜
⎜
⎝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−(cα − cγ) sα s( θ+θ0

2
)

(cα − cγ) sα c( θ+θ0

2
)

sα (c( θ−θ0

2
) sα − c( θ+θ0

2
) sγ)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−a(cα − cγ) cα s( θ+θ0

2
)

a(cα − cγ) cα c( θ+θ0

2
)

a(cα − cγ) sα c( θ−θ0

2
)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎞

⎟⎟
⎟
⎠

, (B-12)

where “c” and “s” denote the cosine and sine functions.

Huang [34] has shown that this screw surface is a cylindroid. See Fig. 6.2 for

several views of a cylindroid.
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A change in the reference position,

[D1θ] = [D0θ][D10], (B-13)

where [D10] = [D(θ0, φ0)][D(θ1, φ1)]
−1, is a right translation of the constraint man-

ifold. It is important to note that this is not a rigid transformation of the screw

surface. In what follows, we show how the cylindroid is affected by a change in

reference position.

3. Principal Axes of the Cylindroid

Our computation of the principal axes follow the methodology of Hunt [37]. We

generate the cylindroid from two arbitrary screws U and V ,

U = M1(1, P1)S1, V = M2(1, P2)S2. (B-14)

The line K, which is the common normal to S1 and S2. Denote S1 = I and compute

J = K × I. Then, we can define S2 as

S2 = cos δ̂I + sin δ̂J, (B-15)

where δ̂ = (δ, d) is the dual angle from S1 to S2 measured around and along K.

We can now write the linear combination of U and V as

F = a(1, P1) I + b(1, P2)(cos δ̂ I + sin δ̂ J),

=
(
a(1, P1) + b(1, P2) cos δ̂

)
I + b(1, P2) sin δ̂ J (B-16)

where we have absorbed the magnitudes M1 and M2 into the constants a and b,

respectively. This equation shows that the axes of all the screws F intersect K in a

right angle. K is nodal line of the cylindroid.

Using the nodal line, the axes of screws of the cylindroid can be located by mea-

suring the dual angle ζ̂ = (ζ, z) relative to I = S1 around the nodal line K, that
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is

F = M(1, P )(cos ζ̂ I + sin ζ̂ J). (B-17)

The parameter z is called the offset and locates the intersection of the axis of each

screw of the cylindroid with the nodal line K.

We can equate (B-16) and (B-17) and eliminate the constants a and b in order to

derive a formula for the offset z and pitch P of each screw in the cylindroid,
⎧
⎨

⎩
z(ζ)

P (ζ)

⎫
⎬

⎭
=

⎡

⎣− sin ζ cos ζ

cos ζ sin ζ

⎤

⎦

⎡

⎣P1 (P2 − P1) cot δ − d

0 P2 + d cot δ

⎤

⎦

⎧
⎨

⎩
cos ζ

sin ζ

⎫
⎬

⎭
. (B-18)

The screws with the maximum and minimum values of the pitch P are the principal

axes of the cylindroid. Set the derivative of the above expression to zero, to obtain

d

dζ

⎧
⎨

⎩
z

P

⎫
⎬

⎭
=

⎡

⎣−(P2 − P1) cot δ + d (P2 − P1) + d cot δ

(P2 − P1) + d cot δ (P2 − P1) cot δ − d

⎤

⎦

⎧
⎨

⎩
sin 2ζ

cos 2ζ

⎫
⎬

⎭
=

⎧
⎨

⎩
0

0

⎫
⎬

⎭
. (B-19)

The angles ζ = σ with extreme values of P are given by

tan 2σ =
−(P2 − P1) cot δ + d

(P2 − P1) + d cot δ
, (B-20)

which yields two angles separated by π/2. This defines the directions of principal axes

X and Y of the cylindroid. The offset s to the principal axes is given by substituting

σ into equation (B-18) to obtain

s =
1

2

(
d − (P2 − P1)

cos δ

sin δ

)
. (B-21)

Thus, the principal axes are located by the dual angle σ̂ = (σ, s), as

X = cos σ̂I + sin σ̂J, Y = − sin σ̂I + cos σ̂J. (B-22)

The height of the cylindroid is the distance along K between minimum and maxi-

mum offsets. This is calculated from from equation (B-19) to be

Lc =

√
(P2 − P1)2 + d2

sin δ
. (B-23)
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If the principal screws are used to define the cylindroid, then δ̂ = (δ, d) = (π/2, 0),

and the height is given by (Hunt [37]),

Lc = |PY − PX |. (B-24)

4. The Bennett Tetrahedron

The reference configuration of the Bennett linkage defines locations of the points

B,P,C, and Q that form the tetrahedron.

We introduce the line LCB that forms the edge of the tetrahedron defined by the

segment CB. Similarly, let LPQ be the line defined by PQ. The dual vectors for

these lines are calculated to be

LCB = (B −C,B × (B − C)) and LPQ = (Q −P,Q × (Q −P)) . (B-25)

Using the expressions of the points B, Q, P and C in the reference frame F , we can

compute

LCB =

⎛

⎜
⎜⎜
⎝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sin α cos γ cos θ0 − cos α sin γ

sin α cos γ sin θ0

sin α sin γ sin θ0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0

0

0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎞

⎟
⎟⎟
⎠

and

LPQ =

⎛

⎜⎜
⎜
⎝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sin γ − sin α cos θ0

− sin α sin θ0

0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0

0

−g sin α sin θ0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎞

⎟⎟
⎟
⎠

. (B-26)

We now show that the this tetrahedron is symmetric relative to the line joining the

midpoints of the edges CB and PQ. In particular, this line is the common normal
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to the two lines LCB and LPQ. Define the midpoints V1 and V2, such that

V1 =
B + C

2
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2
(g + a cos ψ0)

1
2
(a cos γ sin ψ0)

1
2
(a sin γ sin ψ0)

1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

and V2 =
P + Q

2
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2
(g + a cos θ0)

1
2
(a sin θ0)

0

1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

(B-27)

The vector T = V2 − V1 is perpendicular to the lines LCB and LPQ, if it is perpen-

dicular to the the direction components, L1 and L2, respectively. Computing the dot

product T · L1, we find that

(V2 − V1) · L1 = (a/2) ((g − a cos θ) cosψ − (a cos γ sin θ) sin ψ + (a + g cos θ))

= 0. (B-28)

A similar calculation yields T · L2 = 0. The line along T is the axis of the Bennett

tetrahedron,

The dual cross product T = LCB × LPQ defines a screw along the direction T,

T =

⎛

⎜
⎜
⎜
⎝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sin α sin θ0

sin γ − sin α cos θ0

cos α − cos γ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−g cot γ sin α sin θ0

g(cot γ sin α cos θ0 − cos α)

0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎞

⎟
⎟
⎟
⎠

. (B-29)

Compute the dual dot product

F′(θ, θ0) · T = (F,F◦) · (T,T◦) = (F · T,F◦ ·T + F · T◦) = (0, 0), (B-30)

which shows that the axis of T is the common normal to each of the axes of the screws

F′.

This proves that the axis of the Bennett tetrahedron is the nodal line of the cylin-

droid of relative screw axes. The proof of the location of the tetrahedron in the middle

point of the cylindroid for the general case is a tedious calculation that we did with

Mathematica and it is not included here. We include below the special case of the

folded configuration, in which the expressions become simpler.
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5. The Folded Configuration

The screw T, which defines the nodal line of the cylindroid, takes a simple form if the

initial configuration of the Bennett linkage is θ0 = 0. In this configuration the the

linkage folds to form a straight line. See Figure B-2.

Introduce the angles ξ = (α + γ)/2 and η = (α − γ)/2, substitute α = ξ + η and

γ = ξ − η into (B-29), and drop the common factor to obtain

T =

⎛

⎜
⎜
⎜
⎝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0

cos ξ

sin ξ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0

g cos η
sin(η−ξ)

0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎞

⎟
⎟
⎟
⎠

. (B-31)

It is easy to see that the axis of T is directed along a line that bisects the axes of G

and U parallel to the yz plane. We determine a point r on the axis of T = (T,T◦)

using the formula

r =
T · T◦

T · T =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a+g
2

0

0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (B-32)

In this calculation, we have used the fact that a = g sin α/ sin γ. Thus, the axis of T

intersects the x-axis midway along the length of the folded linkage.

We now introduce the coordinate frame M with its y-axis aligned the x-axis of F ,

its origin at r and its z-axis along T. Coordinates in the frame F are transformed to

M by the 6 × 6 matrix,

[T̂ ] =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

0 sin ξ − cos ξ 0 0 0

−1 0 0 0 0 0

0 cos ξ sin ξ 0 0 0

0 0 0 0 sin ξ − cos ξ

0 0 g+a
2

−1 0 0

0 −g+a
2

0 0 sin ξ − cos ξ

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

. (B-33)
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Figure B-2: The Bennett linkage with initial angle θ = 0 and θ = θ1

Applying this transformation to the screws F′ in the cylindroid (B-12), we obtain

F′ =

⎛

⎜⎜
⎜
⎝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cos θ
2

1
sin ξ

sin θ
2

0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g cos θ
2

sin η
sin(η−ξ)

−g sin θ
2

cos(ξ+η)
sin(η−ξ)

0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎞

⎟⎟
⎟
⎠

. (B-34)

The zero values in the z components of the two vectors defining F′ show that the

z-axis of M is the nodal line of this cylindroid.

In order to compute the principal screws, we choose two arbitrary screws of this

cylindroid and apply the formulas of the earlier section. For this purpose the screws
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U = F′(0) and V = F′(π) are convenient choices. We have

U =

⎛

⎜⎜
⎜
⎝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
sin ξ

0

0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g sin η
sin(η−ξ)

0

0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎞

⎟⎟
⎟
⎠

, V =

⎛

⎜⎜
⎜
⎝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0

1

0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0

−g cos(ξ+η)
sin(η−ξ)

0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎞

⎟⎟
⎟
⎠

. (B-35)

The axes of these screws, denoted X and Y, are easily seen to be the x and y axes of

M . Therefore, the angle between them is δ = π/2 and the normal distance is d = 0.

Equations (B-20) and (B-21) yield σ = 0 and s = 0 which means that X and Y are,

in fact, the principal axes of the cylindroid F′.

We can now calculate the pitch P (θ) of each of the screws in the cylindroid to be

P (θ) =

(
g sin ξ

sin(η − ξ)

)(
cos( θ

2
)2 sin η − sin( θ

2
)2 sin ξ cos(η + ξ)

cos( θ
2
)2 + sin( θ

2
)2 sin ξ2

)

. (B-36)

The z coordinate of their intersection with the axis of T is given by

z(θ) =
−g sin ξ cos ξ sin θ

2 sin(η − ξ)(cos(θ
2
)2 + sin( θ

2
)2 sin ξ2)

. (B-37)

This provides a complete characterization of the cylindroid associated with Ben-

nett’s linkage when displacements of the coupler are measured relative to its folded

configuration.

6. The Coordinate Transformation

The axis of the Bennett tetrahedron is known to be the line of symmetry for the

movement of the Bennett linkage, See Yu[108] and Baker [5]. We denote the axis of

the Bennett tetrahedron by K, as it coincides with the nodal line of the cylindroid. We

now construct a rectangular pyramid with K as its axis, that contains this tetrahedron.

This pyramid provides a convenient way to find the principal axes of the cylindroid.

See Figure B-3.

Consider the rectangle in a plane perpendicular to K that has vertices B and C

on its diagonal. Similarly, consider the second rectangle perpendicular to K, that
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Figure B-3: The pyramid associated with the Bennett Linkage GWUH.

has vertices P and Q on its diagonal. These two rectangles are cross sections of a

rectangular pyramid. The four vertices of these two cross-sections are labeled Ai and

Bi, i = 1, 2, 3, 4 counter-clockwise around the axis K. The vertices

A1 = B, B2 = Q, A3 = C, B4 = P, (B-38)

define the Bennett tetrahedron.

We now assume that the length m = |Q−P| is less than the length n = |C−B|,
which means the cross-section Ai can be viewed as the base of the reference pyramid.

Introduce the coordinate frame M ′ with its z-axis along K, and its x-axis directed

along A1 − A2, which means its y-axis is directed along A1 − A4. This allows us to

define the coordinates of Ai as

A1 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r

s

0

1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,A2 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−r

s

0

1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,A3 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−r

−s

0

1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,A4 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r

−s

0

1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (B-39)
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The coordinates of the points Ai and Bi are related by the fact that they lie

parallel cross-sections of the pyramid. Let H = (0, 0, H, 1)T define the apex of the

pyramid measured from the first cross-section along K, then we have

Bi = (1 − t)Ai + tH, i = 1, . . . , 4. (B-40)

The parameter t ranges between 0 and 1. The value of t that locates the second

cross-section is determined by computing the ratio of the lengths m = |Q − P| and

n = |C −B|, that is

t = 1 − m

n
. (B-41)

The lengths m and n are found using the cosine law, that is

m =
√

a2 + g2 − 2ag cos θ0, n =
√

a2 + g2 + 2ag cos φ0. (B-42)

The distance L between the two cross-sections and the height H of the pyramid

are related by the formula

L = tH. (B-43)

The value of L is obtained by evaluating the magnitude of the vector joining the

midpoints V1 and V2, which, after some algebra, is given by

L = |V2 − V1| =

√
1

2
ag(cos θ0 − cos φ0). (B-44)

In order to complete the specification of this pyramid, we determine the lengths r

and s that locate the points Ai. This is done using the identities a2 = (B4 − A1) ·
(B4 −A1) and g2 = (B2 −A1) · (B2 − A1), which yield the matrix equation

⎡

⎣ t2 (t − 2)2

(t − 2)2 t2

⎤

⎦

⎧
⎨

⎩
r2

s2

⎫
⎬

⎭
=

⎧
⎨

⎩
a2 − (tH)2

g2 − (tH)2

⎫
⎬

⎭
. (B-45)

This is easily solved to determine the values for r and s.
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The parameters r, s, t and L completely define the reference pyramid. They are

obtained from the reference configuration of the Bennett linkage as defined by the

specified input angle θ = θ0. See Figure B-2.

The coordinate transformation [D] = [A,d] from the standard frame F to the

frame M ′ located on the base of the pyramid in Figure B-3 can be obtained from the

matrix expression

⎡

⎣ [A] d

0 0 0 1

⎤

⎦

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

0 g g + a cos φ0 a cos θ0

0 0 a cos γ sin φ0 a sin θ0

0 0 a sin γ sin φ0 0

1 1 1 1

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

r −r(1 − t) −r r(1 − t)

s s(1 − t) −s −s(1 − t)

0 tH 0 tH

1 1 1 1

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

.

(B-46)

Given the coordinates of these points in both frames, we can multiply on the right by

the inverse of the matrix defined by points in F to compute the transformation [D].
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