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The Bennett Linkage - Spatial closed 4R chain
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• Formed by connecting the end links of two spatial RR chains {G, W} and

{H, U} to form a coupler link.

• Mobility: For a general 4R closed spatial chain:

M = 6(n− 1)−
m∑

k=1

pkck = 6.3− 4.5 = −2

However, the Bennett linkage can move with one degree of freedom.

• Special geometry:

– Link lenght and twist angle (a, α) and (g, γ) must be the same for opposite sides.

– Ratio of the sine of the twist angle over the link length:

sinα

a
=

sin γ

g

– The joints of the Bennett linkage form the vertices of a tetrahedron
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The Design Theory - The Workspace of the
RR Chain

• Synthesis Theory- Find the kinematic chain that reaches exactly a num-

ber of specified positions

Fixed Axis

Moving Axis

End Effector

{M 3}
{M 2}

{M 1}

{F}

• The specified positions must lie on the workspace of the chain.

• The kinematics equation for the RR chain defines its workspace
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The Kinematics Equation for the RR Chain
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• The kinematics equation in matrix form:The set of displacements
[D(θ, φ)] of the RR chain.

[D] = [G][Z(θ,0)][X(α, a)][Z(φ,0)][H]

• If we choose a reference configuration [D1], we can write the workspace
of the relative displacements [D1i] = [Di][D1]−1.

[D1i] = [T (θi, G)][T (φi, W)]

where

[T (∆θ, G)] = [G][Z(θ,0)][Z(θ0,0)]−1[G]−1,

[T (∆φ, W)] = ([G][[Z(θ0,0)][X(ρ, r)])[Z(φ,0)][Z(φ0,0)]−1([G][[Z(θ0,0)][X(ρ, r)])−1

5



The Kinematics Equation for the RR Chain
Dual quaternion formulation

• We can also formulate the workspace using dual quaternions to express

the relative displacements.

The dual quaternion form of the workspace is given by:

D̂1i = Ĝ(∆θ)Ŵ (∆φ)

cos(
ψ̂1i

2
) = cos

∆θ

2
cos

∆φ

2
− sin

∆θ

2
sin

∆φ

2
G ·W,

sin(
ψ̂1i

2
)S1i = sin

∆θ

2
cos

∆φ

2
G + sin

∆φ

2
cos

∆θ

2
W + sin

∆θ

2
sin

∆φ

2
G×W

where S1i is the screw axis of the relative displacement and ψ̂1i = (φ1i, d1i) is the

associated rotation about and slide along this axis for each displacement in the workspace.

• Every pair of values ∆θ and ∆φ defines a screw axis S1i that represents

a relative displacement from position 1 to position i.
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The Workspace of the Bennett Linkage
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• Restriction to a Bennett linkage: The angles θ and φ are not indepen-
dent. There exist the input/coupler angular relation:

tan
φ

2
= −

sin γ+α

2

sin γ−α

2

tan
θ

2
= K tan

θ

2

• The workspace of the Bennett linkage: The set of screw axes obtained
applying the input/coupler relation to the workspace of the RR chain,

tan(
ψ̂1i

2
)S1i =

G + K ′W1 + K ′ tan θ
2
G×W1

cot θ
2
−K ′ tan θ

2
G ·W1

.

generates a cylindroid

7





The cylindroid

• Simply-Ruled surface that has a nodal line cutting all generators at right
angles.

z(x2 + y2) + (PX − PY )xy = 0

• It appears as generated by the real linear combination of two screws.

• The cylindroid has a set of principal axes located in the midpoint of the

nodal line.

S13

S12

K

X
σ

Y

z0

• The principal axes can be located from any pair of generators.

tan2σ =
−(Pb − Pa) cot δ + d

(Pb − Pa) + d cot δ

z0 =
1

2
(d− (Pb − Pa)

cos δ

sin δ
)
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Bennett linkage coordinates
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• Yu, 1981: The Bennett linkage can be determined using a tetrahedron defined by four
parameters (a, b, c, κ).

• The principal axes are located in the middle of the tetrahedron.

• The joint axes G and W1 are given by the cross product of the edges. This ensures that
the chosen points B, P1 are on the common normal.

G = Kg(Q−B)× (P1 −B) + εKgB×
(
(Q−B)× (P1 −B)

)
W1 = Kw(B− P1)× (C1 − P1) + εKwP1 ×

(
(B− P1)× (C1 − P1)

)
We obtain:

G = Kg

{
2bc sin κ

2

2bc cos κ
2

4ab cos κ
2
sin κ

2

}
+ εKg

{
b cos κ

2
(4a2 sin2 κ

2
+ c2)

−b sin κ
2
(4a2 cos2 κ

2
+ c2)

2abc(cos2 κ
2
− sin2 κ

2
)

}
and

W1 = Kw

{
−2ac sin κ

2

2ac cos κ
2

4ab cos κ
2
sin κ

2

}
+ εKw

{
−a cos κ

2
(4b2 sin2 κ

2
+ c2)

−a sin κ
2
(4b2 cos2 κ

2
+ c2)

2abc(cos2 κ
2
− sin2 κ

2
)

}
Using the principal axes and the tetrahedron formulation, we can write the coor-

dinates of the joint axes of the Bennett linkage with only four parameters .
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The design equations for an RR dyad

• The constant dual angle constraint: α̂ = (α, a),the angle and dis-
tance between the fixed and moving axes,must remain constant during the
movement.

G · [T̂1i − I]W1 = 0, i = 2,3,

Usign the equivalent screw triangle formulation and separating real and
dual part,

1. The direction equations

tan
ψ1i

2
=

G · (S1i ×W1)

(S1i ×G) · (S1i ×W1)
, i = 2,3.

2. The distance equations

(B− P1) · S1i −
t1i

2
= 0, i = 2,3.

• The normal constraints: The normal line to G andW, Pi−B,remains
the same.

G · ([T1i]P
1 −B) = 0,

W1 · (P1 − [T1i]
−1B) = 0, i = 1,2,3.

Total equations: 2(n− 1) + 2n

Total parameters: 10

Number of positions needed for a finite number of solutions: n = 3.

The standard algebraic formulation of the synthesis problem consists on solving
ten equations in ten parameters .
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Solving the design equations in the principal
axes frame

• The six common normal constraints are automatically satisfied.

• We solve system of four equations in four parameters a, b, c, κ.

tan
ψ12

2
=

G · (S12 ×W1)

(S12 ×G) · (S12 ×W1)
(1)

tan
ψ13

2
=

G · (S13 ×W1)

(S13 ×G) · (S13 ×W1)
(2)

(B− P1) · S12 −
t12

2
= 0 (3)

(B− P1) · S13 −
t13

2
= 0 (4)

Solution for a and b :the distance equations (3) and (4) are linear in a, b.

t12

2
+ (a− b) cos δ1 cos

κ

2
+ (a + b) sin δ1 sin

κ

2
= 0

t13

2
+ (a− b) cos δ2 cos

κ

2
+ (a + b) sin δ2 sin

κ

2
= 0

Defining the constraints:

Ks =
t12 cos δ2 − t13 cos δ1

2 sin(δ1 − δ2)

Kd =
t13 sin δ1 − t12 sin δ2

2 sin(δ1 − δ2)

We obtain:

a =
Ks

2 sin κ
2

+
Kd

2cos κ
2

b =
Ks

2 sin κ
2

− Kd

2cos κ
2

.
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Solution for c :

• Substitute the values of a and b in the direction equations (1) and (2) and make the
algebraic substitution y = tan κ

2
.

tan
ψ12
2

(
K2

s

K2
d

− y2) + c2
tan

ψ12
2

2K2
d

(y2(cos 2δ1 − 1) + cos2δ1 + 1)− 2 cy

Kd
(cos δ1 +

Ks sin δ1
Kd

)

(
K2

s

K2
d

− y2) + c2

2K2
d

(y2(cos 2δ1 − 1) + cos2δ1 + 1)

= 0,

tan
ψ13
2

(
K2

s

K2
d

− y2) + c2
tan

ψ13
2

2K2
d

(y2(cos 2δ2 − 1) + cos2δ2 + 1)− 2 cy

Kd
(cos δ2 +

Ks sin δ2
Kd

)

(
K2

s

K2
d

− y2) + c2

2K2
d

(y2(cos 2δ2 − 1) + cos2δ2 + 1)

= 0,

• The numerator and denominator share the roots associated with c = 0, which are not
a solution of the spatial problem. Eliminate them from the numerator forcing the linear
system to have more solutions than the trivial.[

tan
ψ12
2

tan
ψ12
2

2K2
d

(y2c(cos 2δ1 − 1) + cos2δ1 + 1)− 2 y

Kd
(cos δ1 +

Ks sin δ1
Kd

)

tan
ψ13
2

tan
ψ13
2

2K2
d

(y2c(cos 2δ2 − 1) + cos2δ2 + 1)− 2 y

Kd
(cos δ2 +

Ks sin δ2
Kd

)

]{
(K2

s /K2
d
− y2)

c

}
= 0.

• Making the determinant of the matrix equal to zero we obtain a linear equation in c.

• Define the constants

K12 =
t12/2

tan
ψ12
2

(
1

sin2 δ1 − sin2 δ2

)
K13 =

t13/2

tan
ψ13
2

(
1

sin2 δ1 − sin2 δ2

)
• We obtain the expression for c:

c = (K13 −K12) sinκ
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Solution for κ :

• Substitute the expressions for a, b, c in one of the direction equations, (1) or (2). We
obtain a cubic polynomial in y2.

P : C3y
6 + C2y

4 + C1y
2 + C0 = 0

• The coefficients are:

C3 = −K2
d ,

C2 = K2
s − 2K2

d + 4(K12 −K13)(K13 sin2 δ1 −K12 sin2 δ2),

C1 = 2K2
s −K2

d − 4(K12 −K13)(K13 cos2 δ1 −K12 cos2 δ2),

C0 = K2
s .

• Solve the cubic polynomial for z = y2. This polynomial has one and only one real
positive root z0:

P (0) = K2
s

P (∞) = −K2
d

P (−1) = −4(K12 −K13)
2

• The square root of the positive root gives the two solutions for κ.

tan
κ

2
= ±√z0
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The Solutions

• The two sets of solutions (a, b, c,+κ) and (−b,−a,−c,−κ) correspond

to both dyads of the Bennett mechanism:

Solution 1 Solution 2

G( a, b, c, κ) = H(−b,−a,−c,−κ)

W( a, b, c, κ) = U(−b,−a,−c,−κ)

H( a, b, c, κ) = G(−b,−a,−c,−κ)

U( a, b, c, κ) = W(−b,−a,−c,−κ)

• The synthesis procedure yields the two RR dyads that form a Bennett

linkage.
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Example

Tsai and Roth positions (Tsai and Roth, 1973)

• The specified positions:

x y z θ φ ψ

M1 0.0 0.0 0.0 0◦ 0◦ 0◦

M2 0.0 0.0 0.8 0◦ 0◦ 40◦

M3 1.11 0.66 0.05 18.8◦ -28.0◦ 67.2◦

• The joint axes in the initial frame:

Axis Line coordinates

G (0.36,0.45,0.81) , (0.26,1.05,−0.70)

W1 (0.60,0.36,0.72) , (0.87,0.83,−1.14)

H (0.60,−0.36,0.72) , (0.87,−0.83,−1.14)

U1 (0.36,−0.45,0.81) , (0.26,−1.05,−0.70)
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Conclusions

• Using the geometry of the RR chain to formulate the problem leads to a

simple convenient set of equations.

• The design procedure for three positions for an RR chain yields a Bennett

linkage.

• A Mathematica notebook with the complete synthesis procedure can be

downloaded from: http://www.eng.uci.edu/ mccarthy/Pages/ResProjects.html

• The synthesis routine is to be used in a robot design environment for

continuous tasks.
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