Dimensional Synthesis of Bennett Linkages

DETC'00
2000 ASME Design Engineering Technical Conferences
10-13 September 2000
Baltimore, Maryland, USA

Alba Perez (maperez@uci.edu), J. M. McCarthy (jmmccart@uci.edu)
Robotics and Automation Laboratory
Department of Mechanical and Aerospace Engineering
University of California
Irvine, California 92697

- Introduction
- The Bennett linkage
- The workspace of the RR chain
- The cylindroid
- The design equations
- Bennett linkage coordinates
- Solving the design equations
- Examples
- Conclusions

Literature review

- Synthesis

- Bennett, G.T., (1903) A New Mechanism. Engineering, vol. 76, pp. 777-778.
- Veldkamp, G.R., (1967) Canonical Systems and Instantaneous Invariants in Spatial Kinematics. Journal of Mechanisms, vol. 3, pp. 329-388.
- Suh, C.H., (1969) On the Duality in the Existence of R-R Links for Three Positions. J. Eng. Ind. Trans. ASME, vol. 91B, pp. 129-134.
- Tsai, L.W., and Roth, B.,(1973) A Note on the Design of Revolute-Revolute Cranks. Mechanisms and Machine Theory, vol. 8, pp. 23-31.
- Perez, A., McCarthy, J.M., (2000), Dimensional Synthesis of Spatial RR Robots. 7th. International Symposium on Advances in Robot Kinematics, Piran-Portoroz, Slovenia.

- Analysis

- Suh, C.H., and Radcliffe, C.W., (1978), Kinematics and Mechanisms Design. John Wiley.
- Yu, H.C., (1981) The Bennett Linkage, its Associated Tetrahedron and the Hyperboloid of its Axes. Mechanism and Machine Theory, vol. 16, pp. 105-114.
- Huang, C., (1996), The Cylindroid Associated with Finite Motions of the Bennett Mechanism. Proc. of the ASME Design Engineering Technical Conferences, Irvine, CA.
- Baker, J.E., (1998), On the Motion Geometry of the Bennett Linkage. Proc. 8th Internat. Conf. on Engineering Computer Graphics and Descriptive Geometry, Austin, Texas, USA, vol. 2, pp. 433-437.

- Linear Systems of Screws

- Hunt, K.H.,(1978), Kinematic Geometry of Mechanisms. Clarendon Press.
- Parkin, I.A., (1997), Finding the Principal Axes of Screw Systems. Proc. of the ASME Design Engineering Technical Conferences, Sacramento, CA.

The Bennett Linkage - Spatial closed 4R chain

- Formed by connecting the end links of two spatial RR chains $\{G, W\}$ and $\{\mathrm{H}, \mathrm{U}\}$ to form a coupler link.
- Mobility: For a general 4R closed spatial chain:

$$
M=6(n-1)-\sum_{k=1}^{m} p_{k} c_{k}=6.3-4.5=-2
$$

However, the Bennett linkage can move with one degree of freedom.

- Special geometry:
- Link lenght and twist angle (a, α) and (g, γ) must be the same for opposite sides.
- Ratio of the sine of the twist angle over the link length:

$$
\frac{\sin \alpha}{a}=\frac{\sin \gamma}{g}
$$

- The joints of the Bennett linkage form the vertices of a tetrahedron

The Design Theory - The Workspace of the RR Chain

- Synthesis Theory- Find the kinematic chain that reaches exactly a number of specified positions

- The specified positions must lie on the workspace of the chain.
- The kinematics equation for the RR chain defines its workspace

The Kinematics Equation for the RR Chain

- The kinematics equation in matrix form:The set of displacements [$D(\theta, \phi)$] of the RR chain.

$$
[D]=[G][Z(\theta, 0)][X(\alpha, a)][Z(\phi, 0)][H]
$$

- If we choose a reference configuration [D_{1}], we can write the workspace of the relative displacements $\left[D_{1 i}\right]=\left[D_{i}\right]\left[D_{1}\right]^{-1}$.

$$
\left[D_{1 i}\right]=\left[T\left(\theta_{i}, \mathrm{G}\right)\right]\left[T\left(\phi_{i}, \mathrm{~W}\right)\right]
$$

where

$$
\begin{aligned}
{[T(\Delta \theta, \mathrm{G})] } & =[G][Z(\theta, 0)]\left[Z\left(\theta_{0}, 0\right)\right]^{-1}[G]^{-1} \\
{[T(\Delta \phi, \mathrm{~W})] } & =\left([G] [[Z (\theta _ { 0 } , 0)] [X (\rho , r)]) [Z (\phi , 0)] [Z (\phi _ { 0 } , 0)] ^ { - 1 } \left([G]\left[\left[Z\left(\theta_{0}, 0\right)\right][X(\rho, r)]\right)^{-1}\right.\right.
\end{aligned}
$$

The Kinematics Equation for the RR Chain Dual quaternion formulation

- We can also formulate the workspace using dual quaternions to express the relative displacements.

The dual quaternion form of the workspace is given by:

$$
\widehat{D}_{1 i}=\hat{G}(\Delta \theta) \hat{W}(\Delta \phi)
$$

$$
\begin{aligned}
& \cos \left(\frac{\widehat{\psi}_{1 i}}{2}\right)=\cos \frac{\Delta \theta}{2} \cos \frac{\Delta \phi}{2}-\sin \frac{\Delta \theta}{2} \sin \frac{\Delta \phi}{2} G \cdot W, \\
& \sin \left(\frac{\hat{\psi}_{1 i}}{2}\right) S_{1 i}=\sin \frac{\Delta \theta}{2} \cos \frac{\Delta \phi}{2} G+\sin \frac{\Delta \phi}{2} \cos \frac{\Delta \theta}{2} W+\sin \frac{\Delta \theta}{2} \sin \frac{\Delta \phi}{2} G \times W
\end{aligned}
$$

where $\mathrm{S}_{1 i}$ is the screw axis of the relative displacement and $\hat{\psi}_{1 i}=\left(\phi_{1 i}, d_{1 i}\right)$ is the associated rotation about and slide along this axis for each displacement in the workspace.

- Every pair of values $\Delta \theta$ and $\Delta \phi$ defines a screw axis $S_{1 i}$ that represents a relative displacement from position 1 to position i.

The Workspace of the Bennett Linkage

- Restriction to a Bennett linkage: The angles θ and ϕ are not independent. There exist the input/coupler angular relation:

$$
\tan \frac{\phi}{2}=-\frac{\sin \frac{\gamma+\alpha}{2}}{\sin \frac{\gamma-\alpha}{2}} \tan \frac{\theta}{2}=K \tan \frac{\theta}{2}
$$

- The workspace of the Bennett linkage: The set of screw axes obtained applying the input/coupler relation to the workspace of the RR chain,

$$
\tan \left(\frac{\hat{\psi}_{1 i}}{2}\right) \mathrm{S}_{1 i}=\frac{\mathrm{G}+K^{\prime} \mathrm{W}^{1}+K^{\prime} \tan \frac{\theta}{2} \mathrm{G} \times \mathrm{W}^{1}}{\cot \frac{\theta}{2}-K^{\prime} \tan \frac{\theta}{2} \mathrm{G} \cdot \mathrm{~W}^{1}} .
$$

generates a cylindroid

The cylindroid

- Simply-Ruled surface that has a nodal line cutting all generators at right angles.

$$
z\left(x^{2}+y^{2}\right)+\left(P_{X}-P_{Y}\right) x y=0
$$

- It appears as generated by the real linear combination of two screws.
- The cylindroid has a set of principal axes located in the midpoint of the nodal line.

- The principal axes can be located from any pair of generators.

$$
\begin{gathered}
\tan 2 \sigma=\frac{-\left(P_{b}-P_{a}\right) \cot \delta+d}{\left(P_{b}-P_{a}\right)+d \cot \delta} \\
z_{0}=\frac{1}{2}\left(d-\left(P_{b}-P_{a}\right) \frac{\cos \delta}{\sin \delta}\right)
\end{gathered}
$$

Bennett linkage coordinates

- Yu, 1981: The Bennett linkage can be determined using a tetrahedron defined by four parameters (a, b, c, κ).
- The principal axes are located in the middle of the tetrahedron.
- The joint axes \mathbf{G} and \mathbf{W}^{1} are given by the cross product of the edges. This ensures that the chosen points $\mathbf{B}, \mathbf{P}^{1}$ are on the common normal.

$$
\begin{aligned}
& \mathbf{G}=K_{g}(\mathbf{Q}-\mathbf{B}) \times\left(\mathbf{P}^{1}-\mathbf{B}\right)+\epsilon K_{g} \mathbf{B} \times\left((\mathbf{Q}-\mathbf{B}) \times\left(\mathbf{P}^{1}-\mathbf{B}\right)\right) \\
& \mathbf{W}^{1}=K_{w}\left(\mathbf{B}-\mathbf{P}^{1}\right) \times\left(\mathbf{C}^{1}-\mathbf{P}^{1}\right)+\epsilon K_{w} \mathbf{P}^{1} \times\left(\left(\mathbf{B}-\mathbf{P}^{1}\right) \times\left(\mathbf{C}^{1}-\mathbf{P}^{1}\right)\right)
\end{aligned}
$$

We obtain:

$$
\mathrm{G}=K_{g}\left\{\begin{array}{c}
2 b c \sin \frac{\kappa}{2} \\
2 b c \cos \frac{\kappa}{2} \\
4 a b \cos \frac{\kappa}{2} \sin \frac{\kappa}{2}
\end{array}\right\}+\epsilon K_{g}\left\{\begin{array}{c}
b \cos \frac{\kappa}{2}\left(4 a^{2} \sin ^{2} \frac{\kappa}{2}+c^{2}\right) \\
-b \sin \frac{\kappa}{2}\left(4 a^{2} \cos ^{2} \frac{\kappa}{2}+c^{2}\right) \\
2 a b c\left(\cos ^{2} \frac{\kappa}{2}-\sin ^{2} \frac{\kappa}{2}\right)
\end{array}\right\}
$$

and

$$
\mathbf{W}^{1}=K_{w}\left\{\begin{array}{c}
-2 a c \sin \frac{\kappa}{2} \\
2 a c \cos \frac{\kappa}{2} \\
4 a b \cos \frac{\kappa}{2} \sin \frac{\kappa}{2}
\end{array}\right\}+\epsilon K_{w}\left\{\begin{array}{c}
-a \cos \frac{\kappa}{2}\left(4 b^{2} \sin ^{2} \frac{\kappa}{2}+c^{2}\right) \\
-a \sin \frac{\kappa}{2}\left(4 b^{2} \cos ^{2} \frac{\kappa}{2}+c^{2}\right) \\
2 a b c\left(\cos ^{2} \frac{\kappa}{2}-\sin ^{2} \frac{\kappa}{2}\right)
\end{array}\right\}
$$

Using the principal axes and the tetrahedron formulation, we can write the coordinates of the joint axes of the Bennett linkage with only four parameters .

The design equations for an RR dyad

- The constant dual angle constraint: $\hat{\alpha}=(\alpha, a)$, the angle and distance between the fixed and moving axes, must remain constant during the movement.

$$
\mathrm{G} \cdot\left[\widehat{T}_{1 i}-I\right] \mathrm{W}^{1}=0, i=2,3,
$$

Usign the equivalent screw triangle formulation and separating real and dual part,

1. The direction equations

$$
\tan \frac{\psi_{1 i}}{2}=\frac{\mathrm{G} \cdot\left(\mathrm{~S}_{1 i} \times \mathbf{W}^{1}\right)}{\left(\mathrm{S}_{1 i} \times \mathrm{G}\right) \cdot\left(\mathrm{S}_{1 i} \times \mathbf{W}^{1}\right)}, \quad i=2,3 .
$$

2. The distance equations

$$
\left(\mathrm{B}-\mathrm{P}^{1}\right) \cdot \mathrm{S}_{1 i}-\frac{t_{1 i}}{2}=0, \quad i=2,3 .
$$

- The normal constraints: The normal line to \mathbf{G} and $\mathbf{W}, \mathbf{P}^{i}-\mathbf{B}$,remains the same.

$$
\begin{aligned}
& \mathbf{G} \cdot\left(\left[T_{1 i}\right] \mathbf{P}^{1}-\mathbf{B}\right)=0, \\
& \mathbf{W}^{1} \cdot\left(\mathbf{P}^{1}-\left[T_{1 i}\right]^{-1} \mathbf{B}\right)=0, i=1,2,3 .
\end{aligned}
$$

Total equations: $2(n-1)+2 n$
Total parameters: 10
Number of positions needed for a finite number of solutions: $n=3$.

The standard algebraic formulation of the synthesis problem consists on solving ten equations in ten parameters .

Solving the design equations in the principal axes frame

- The six common normal constraints are automatically satisfied.
- We solve system of four equations in four parameters a, b, c, κ.

$$
\begin{gather*}
\tan \frac{\psi_{12}}{2}=\frac{\mathrm{G} \cdot\left(\mathrm{~S}_{12} \times \mathrm{W}^{1}\right)}{\left(\mathrm{S}_{12} \times \mathrm{G}\right) \cdot\left(\mathrm{S}_{12} \times \mathbf{W}^{1}\right)} \tag{1}\\
\tan \frac{\psi_{13}}{2}=\frac{\mathrm{G} \cdot\left(\mathrm{~S}_{13} \times \mathrm{W}^{1}\right)}{\left(\mathrm{S}_{13} \times \mathrm{G}\right) \cdot\left(\mathbf{S}_{13} \times \mathbf{W}^{1}\right)} \tag{2}\\
\left(\mathrm{B}-\mathrm{P}^{1}\right) \cdot \mathrm{S}_{12}-\frac{t_{12}}{2}=0 \tag{3}\\
\left(\mathrm{~B}-\mathrm{P}^{1}\right) \cdot \mathrm{S}_{13}-\frac{t_{13}}{2}=0 \tag{4}
\end{gather*}
$$

Solution for a and b :the distance equations (3) and (4) are linear in a, b.

$$
\begin{aligned}
& \frac{t_{12}}{2}+(a-b) \cos \delta_{1} \cos \frac{\kappa}{2}+(a+b) \sin \delta_{1} \sin \frac{\kappa}{2}=0 \\
& \frac{t_{13}}{2}+(a-b) \cos \delta_{2} \cos \frac{\kappa}{2}+(a+b) \sin \delta_{2} \sin \frac{\kappa}{2}=0
\end{aligned}
$$

Defining the constraints:

$$
\begin{aligned}
K_{s} & =\frac{t_{12} \cos \delta_{2}-t_{13} \cos \delta_{1}}{2 \sin \left(\delta_{1}-\delta_{2}\right)} \\
K_{d} & =\frac{t_{13} \sin \delta_{1}-t_{12} \sin \delta_{2}}{2 \sin \left(\delta_{1}-\delta_{2}\right)}
\end{aligned}
$$

We obtain:

$$
\begin{aligned}
& a=\frac{K_{s}}{2 \sin \frac{\kappa}{2}}+\frac{K_{d}}{2 \cos \frac{\kappa}{2}} \\
& b=\frac{K_{s}}{2 \sin \frac{\kappa}{2}}-\frac{K_{d}}{2 \cos \frac{\kappa}{2}} .
\end{aligned}
$$

Solution for c :

- Substitute the values of a and b in the direction equations (1) and (2) and make the algebraic substitution $y=\tan \frac{\kappa}{2}$.

$$
\frac{\tan \frac{\psi_{12}}{2}\left(\frac{K_{s}^{2}}{K_{d}^{2}}-y^{2}\right)+c^{2} \frac{\tan \frac{\psi_{12}}{2}}{2 K_{d}^{2}}\left(y^{2}\left(\cos 2 \delta_{1}-1\right)+\cos 2 \delta_{1}+1\right)-2 \frac{c y}{K_{d}}\left(\cos \delta_{1}+\frac{K_{s} \sin \delta_{1}}{K_{d}}\right)}{\left(\frac{K_{s}^{2}}{K_{d}^{2}}-y^{2}\right)+\frac{c^{2}}{2 K_{d}^{2}}\left(y^{2}\left(\cos 2 \delta_{1}-1\right)+\cos 2 \delta_{1}+1\right)}=0,
$$

$$
\frac{\tan \frac{\psi_{13}}{2}\left(\frac{K_{s}^{2}}{K_{d}^{2}}-y^{2}\right)+c^{2} \frac{\tan \frac{\psi_{13}}{2}}{2 K_{d}^{2}}\left(y^{2}\left(\cos 2 \delta_{2}-1\right)+\cos 2 \delta_{2}+1\right)-2 \frac{c y}{K_{d}}\left(\cos \delta_{2}+\frac{K_{s} \sin \delta_{2}}{K_{d}}\right)}{\left(\frac{K_{s}^{2}}{K_{d}^{2}}-y^{2}\right)+\frac{c^{2}}{2 K_{d}^{2}}\left(y^{2}\left(\cos 2 \delta_{2}-1\right)+\cos 2 \delta_{2}+1\right)}=0,
$$

- The numerator and denominator share the roots associated with $c=0$, which are not a solution of the spatial problem. Eliminate them from the numerator forcing the linear system to have more solutions than the trivial.

$$
\left[\begin{array}{lc}
\tan \frac{\psi_{12}}{2} & \frac{\tan \frac{\psi_{12}}{2}}{2 K_{d}^{2}}\left(y^{2} c\left(\cos 2 \delta_{1}-1\right)+\cos 2 \delta_{1}+1\right)-2 \frac{y}{K_{d}}\left(\cos \delta_{1}+\frac{K_{s} \sin \delta_{1}}{K_{d}}\right) \\
\tan \frac{\psi_{13}}{2} & \frac{\tan \frac{\psi_{13}}{2}}{2 K_{d}^{2}}\left(y^{2} c\left(\cos 2 \delta_{2}-1\right)+\cos 2 \delta_{2}+1\right)-2 \frac{y}{K_{d}}\left(\cos \delta_{2}+\frac{K_{s} \sin \delta_{2}}{K_{d}}\right)
\end{array}\right]\left\{\begin{array}{c}
\left(K_{s}^{2} / K_{d}^{2}-y^{2}\right) \\
c
\end{array}\right\}=0 .
$$

- Making the determinant of the matrix equal to zero we obtain a linear equation in c.
- Define the constants

$$
\begin{aligned}
& K_{12}=\frac{t_{12} / 2}{\tan \frac{\psi_{12}}{2}}\left(\frac{1}{\sin ^{2} \delta_{1}-\sin ^{2} \delta_{2}}\right) \\
& K_{13}=\frac{t_{13} / 2}{\tan \frac{\psi_{13}}{2}}\left(\frac{1}{\sin ^{2} \delta_{1}-\sin ^{2} \delta_{2}}\right)
\end{aligned}
$$

- We obtain the expression for c :

$$
c=\left(K_{13}-K_{12}\right) \sin \kappa
$$

Solution for κ :

- Substitute the expressions for a, b, c in one of the direction equations, (1) or (2). We obtain a cubic polynomial in y^{2}.

$$
P: \quad C_{3} y^{6}+C_{2} y^{4}+C_{1} y^{2}+C_{0}=0
$$

- The coefficients are:

$$
\begin{aligned}
& C_{3}=-K_{d}^{2} \\
& C_{2}=K_{s}^{2}-2 K_{d}^{2}+4\left(K_{12}-K_{13}\right)\left(K_{13} \sin ^{2} \delta_{1}-K_{12} \sin ^{2} \delta_{2}\right) \\
& C_{1}=2 K_{s}^{2}-K_{d}^{2}-4\left(K_{12}-K_{13}\right)\left(K_{13} \cos ^{2} \delta_{1}-K_{12} \cos ^{2} \delta_{2}\right) \\
& C_{0}=K_{s}^{2}
\end{aligned}
$$

- Solve the cubic polynomial for $z=y^{2}$. This polynomial has one and only one real positive root z_{0} :

$$
\begin{aligned}
& P(0)=K_{s}^{2} \\
& P(\infty)=-K_{d}^{2} \\
& P(-1)=-4\left(K_{12}-K_{13}\right)^{2}
\end{aligned}
$$

- The square root of the positive root gives the two solutions for κ.

$$
\tan \frac{\kappa}{2}= \pm \sqrt{z_{0}}
$$

The Solutions

- The two sets of solutions $(a, b, c,+\kappa)$ and $(-b,-a,-c,-\kappa)$ correspond to both dyads of the Bennett mechanism:

Solution 1	Solution 2
$\mathrm{G}(a, b, c, \kappa)$	$=\mathrm{H}(-b,-a,-c,-\kappa)$
$\mathrm{W}(a, b, c, \kappa)$	$=\mathrm{U}(-b,-a,-c,-\kappa)$
$\mathrm{H}(a, b, c, \kappa)$	$=\mathrm{G}(-b,-a,-c,-\kappa)$
$\mathrm{U}(a, b, c, \kappa)$	$=\mathrm{W}(-b,-a,-c,-\kappa)$

- The synthesis procedure yields the two RR dyads that form a Bennett linkage.

Example

Tsai and Roth positions (Tsia ind Roth, 1973)

- The specified positions:

	x	y	z	θ	ϕ	ψ
M_{1}	0.0	0.0	0.0	0°	0°	0°
M_{2}	0.0	0.0	0.8	0°	0°	40°
M_{3}	1.11	0.66	0.05	$18.8{ }^{\circ}$	-28.0°	67.2°

- The joint axes in the initial frame:

Axis	
G	$(0.36,0.45,0.81),(0.26,1.05,-0.70)$
W^{1}	$(0.60,0.36,0.72),(0.87,0.83,-1.14)$
H	$(0.60,-0.36,0.72),(0.87,-0.83,-1.14)$
U^{1}	$(0.36,-0.45,0.81),(0.26,-1.05,-0.70)$

Conclusions

- Using the geometry of the RR chain to formulate the problem leads to a simple convenient set of equations.
- The design procedure for three positions for an RR chain yields a Bennett linkage.
- A Mathematica notebook with the complete synthesis procedure can be downloaded from: http://www.eng.uci.edu/ mccarthy/Pages/ResProjects.html
- The synthesis routine is to be used in a robot design environment for continuous tasks.

