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The Bennett Linkage - Spatial closed 4R chain

Ground link

e Formed by connecting the end links of two spatial RR chains {G, W} and
{H, U} to form a coupler link.
e Mobility: For a general 4R closed spatial chain:

M=6(n—1) —Zpkck —63-45=_2
k=1
However, the Bennett linkage can move with one degree of freedom.
e Special geometry:

— Link lenght and twist angle (a, o) and (g, ) must be the same for opposite sides.
— Ratio of the sine of the twist angle over the link length:
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— The joints of the Bennett linkage form the vertices of a tetrahedron



The Design Theory - The Workspace of the
RR Chain

e Synthesis Theory- Find the kinematic chain that reaches exactly a num-
ber of specified positions
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End Effector

e The specified positions must lie on the workspace of the chain.

e The kinematics equation for the RR chain defines its workspace



The Kinematics Equation for the RR Chain
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e The kinematics equation in matrix form:The set of displacements
[D(6, ¢)] of the RR chain.

[D] = [G1[Z(6,0)][X (e, a)][Z (9, 0)][H]

e If we choose a reference configuration [D1], we can write the workspace
of the relative displacements [D1;] = [D;][D1]~ 1.

[D1:] = [T(0;, G)][T(¢i, W)]
where
[T(A6,6)] = [G][Z(8,0)][Z (60, 0)] *G] ™,
[T(Ap,W)] = ([GIL[Z (60, 0)][X (p, )D[Z (¢, 0)][Z (¢0, 0)]* ([G][[Z (60, O] [X (o, 7)) "



The Kinematics Equation for the RR Chain

Dual quaternion formulation

e We can also formulate the workspace using dual quaternions to express
the relative displacements.

The dual quaternion form of the workspace is given by:

Dy = G(AQ)W(ACI»

)1 YAN) A YAN) A
wl)=cos—cos—¢—sin—sin—¢G-W,
2 2 2 2 2

by A A A A A A
Y1 )S1; = sin —ecos —¢G + sin —d)cos —9W+sin —esin —¢G x W
2 2 2 2 2 2

cos(

sin(

where Sy; is the screw axis of the relative displacement and f@li = (¢1i,d1;) is the

associated rotation about and slide along this axis for each displacement in the workspace.

e Every pair of values AO and A¢ defines a screw axis S1; that represents
a relative displacement from position 1 to position 1.



The Workspace of the Bennett Linkage

e Restriction to a Bennett linkage: The angles 6 and ¢ are not indepen-
dent. There exist the input/coupler angular relation:

e The workspace of the Bennett linkage: The set of screw axes obtained
applying the input/coupler relation to the workspace of the RR chain,

%)Su _ G+ K'W' 4+ K'tan £G x W!

tan
( 2 cotg—K’tangGW1

generates a cylindroid







The cylindroid

e Simply-Ruled surface that has a nodal line cutting all generators at right
angles.

z2(2® +y*) + (Px — Py)zy =0

e |t appears as generated by the real linear combination of two screws.

e The cylindroid has a set of principal axes located in the midpoint of the
nodal line.

K

/

e The principal axes can be located from any pair of generators.

—(P,— P,)cotd+d

tan 20 =
(P, — P,) 4+ dcoté

Cos
siné

0= 35(d— (A~ P)S)



Bennett linkage coordinates

e Yu, 1981: The Bennett linkage can be determined using a tetrahedron defined by four
parameters (a, b, ¢, K).

e The principal axes are located in the middle of the tetrahedron.

e The joint axes G and W are given by the cross product of the edges. This ensures that
the chosen points B, P! are on the common normal.

G=K,(Q—-B)x (P! —B) + ¢K,B x ((Q—B)x(Pl—B))

W! = K,(B —P!) x (C! —P!) + eK,P! x ((B —PYH x (Ct - P1)>

We obtain:

2bcsin & bcos £(4a?sin® £ + ¢?)
G=K, 2bccos £ + €K, § —bsin £(4a cos? & + ¢?)
4ab cos £ sin & 2abc(cos? £ — sin® £

and

—2acsin £ —acos £(4b?sin® £ 4 ¢?)
W' =K, < 2accosh p+eKy< —asin5(4b?cos? s + )

Egin k& 2K _gin2k
4abcos 5 sin 5 2abc(cos® 5 —sin® 2

Using the principal axes and the tetrahedron formulation, we can write the coor-
dinates of the joint axes of the Bennett linkage with only four parameters .
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The design equations for an RR dyad

e The constant dual angle constraint: & = (o, a),the angle and dis-
tance between the fixed and moving axes,must remain constant during the
movement.

G- [Ty —IIW=0,i=2,3,

Usign the equivalent screw triangle formulation and separating real and
dual part,

1. The direction equations

. . . 1
tan Y4 = G- BuxW) —, i=2,3,
2 (S1: X G) - (S1; x W7)
2. The distance equations
1 t1i
(B—P)Sh—?—o, 222,3

e The normal constraints: The normal line to G andW, P? — B remains
the same.

G- ([Ty]P*-—B) =0,
w!. (P! —[Ty]'B) =0,i =1,2,3.

Total equations: 2(n — 1) 4+ 2n
Total parameters: 10
Number of positions needed for a finite number of solutions: n = 3.

The standard algebraic formulation of the synthesis problem consists on solving
ten equations in ten parameters .
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Solving the design equations in the principal
axes frame

e The six common normal constraints are automatically satisfied.
e We solve system of four equations in four parameters a, b, c, k.

tan Y12 _ G- (Sl2 X Wl) (1)
2 (812 X G) . (Slg X Wl)
1
tan Y13 _ G- (S1zxW?) 2)
2 (813 X G) . (813 X Wl)
(B—Pl)-Sm—%=o (3)
(B—Pl)-Slg—%:O (4)

Solution for a and b :the distance equations (3) and (4) are linear in a, b.

t
%+(a—b)cos61cosg—i—(a-}-b)sinélsing=O

t
g+(a—b)coségcosg—|—(a—|—b)sin52sing:O

Defining the constraints:

. t12 COS do — t13 COS I

= 25sin(81 — &)
We obtain:
K Ky
“= 2sins  2cos3
b — K Kq

- R K
25|n§ 2cos§
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Solution for ¢ :

e Substitute the values of a and b in the direction equations (1) and (2) and make the
algebraic substitution y = tan .

o K2 tan £12 Kssiné
tan =2 (K—g —y?) 4+ 2K22 (y?(cos 261 — 1) + cos25; + 1) — 2%(cos51 + SK—dl)
d d
=0
K2 ’
(S —v?)+3 < 2 (y2(cos261 — 1) +cos2d1 + 1)
d
¢13 > > anw KssszQ
tan ( —y?) +c )

Z—(y?(cos 26, — 1) 4 cos26 + 1) — 2% (cosé +
K7

2
(%— 2) + C2(y2(C05252—1)+c05262+1)
d

e The numerator and denominator share the roots associated with ¢ = O, which are not

a solution of the spatial problem. Eliminate them from the numerator forcing the linear
system to have more solutions than the trivial.

b
tanﬁ Kssm&l)

tand%2 (y?c(cos281 — 1) + cos 261 + 1) — 2% (cos§1+

tan 1/’2#3 (y2c(cos28>, — 1) + cos28, + 1) — (cos 5> +

2K2
d

Making the determinant of the matrix equal to zero we obtain a linear equation in c.

Define the constants
t12/2 1
Ki2 = {p ) 5
tan% Sin“ §1 — sin“ 6

Koin — t13/2 1
13 —
tan% sin? §; — sin? 65

e We obtain the expression for c:

c = (K13 — K12) Sin k

12

21;3 (K3/KF—vy?
tanﬁ KSSII’]52) c

)}:0_



Solution for «

e Substitute the expressions for a, b, ¢ in one of the direction equations, (1) or (2). We
obtain a cubic polynomial in 72.

P: G +Coy*+C1°+Co=0

e The coefficients are:

Cs = —K,

Co = K? - 2K? + 4(K12 — K13)(K135in? 61 — K12Sin? 62),
C1 =2K? — K? — 4(K12 — K13) (K13 €0s? 81 — K15 COS? §2),
Co = K2

e Solve the cubic polynomial for = = 2. This polynomial has one and only one real
positive root zg:

P(0) = K?
P(c0) = —K
P(—1) = —4(K1> — K13)?

e The square root of the positive root gives the two solutions for k.

tan g = ++/20
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The Solutions

e The two sets of solutions (a, b, ¢, +k) and (—b, —a, —c, —k) correspond
to both dyads of the Bennett mechanism:

Solution 1 Solution 2
G(a, b,c, k) = H(-b,—a,—c,—k)
W(a, b,¢c, k) = U(-b,—a,—c,—k)
H(a, b,c, k) = G(-b,—a,—c,—kK)
U(Ca, b,c, k) = W(-b,—a,—c,—k)

e The synthesis procedure yields the two RR dyads that form a Bennett
linkage.
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Example

Tsai and Roth positions (tsi and Roth, 1073)

e The specified positions:

X y z 0 [0) P
M, 0.0 0.0 0.0 0° 0° 0°
Mo 0.0 0.0 0.8 0° 0° 40°
Ms; | 1.11 | 0.66 | 0.05 | 18.8° | -28.0° | 67.2°

e The joint axes in the initial frame:

Axis

Line coordinates

G

(0.36,0.45,0.81), (0.26,1.05, —0.70)

Wl

(0.60,0.36,0.72), (0.87,0.83, —1.14)

H

(0.60,—-0.36,0.72), (0.87,—0.83,—1.14)

Ul

(0.36,-0.45,0.81), (0.26,—1.05, —0.70)
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Conclusions

e Using the geometry of the RR chain to formulate the problem leads to a
simple convenient set of equations.

e The design procedure for three positions for an RR chain yields a Bennett
linkage.

e A Mathematica notebook with the complete synthesis procedure can be
downloaded from: http://www.eng.uci.edu/ mccarthy/Pages/ResProjects.html

e The synthesis routine is to be used in a robot design environment for

continuous tasks.
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