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1 Introduction 3 Geometry of the RR Chain

Three position synthesis of a spatial RR chain has been showrThe workspace of the RR chain is the set of displacements
to yield two solutions that combine to form a spatial 4R linkagé D (6, ¢)] defined by the kinematics equations,
known as Bennett’s linkage. Initially, Veldkanjft] obtained this
result for three instantaneous positions. $2hobtained numeri- [D1=[GI[Z(6,0][X(«,a)][Z(¢,0)][H], ©)
cal results that showed that the solution of the finite pOSitiOI’l SyWhere[G] and [H] are the initial and final transformations from
thesis problem also yielded two solutions that formed a Benngfe fixed frame to the fixed axis and from the moving axis to the
linkage. Finally, Tsai and Rotf8] reduced ten quadratic designend effector, respectively. This workspace plays an important role
equations to a single polynomial and showed that it always hgssimplifying the design equations.
two solutions. i Choosing a reference configuratipR,], we can construct the
Recent study of Bennett's linkage has focused on the set Qf; of the relative displacemerf®;]=[D;][D,] %,
finite displacement screws that define the movement of the cou-
pler [4]. The axes of these screws form a ruled surface known as [D;]=[T(A6; ,G)][T(Ap ,WH], 4
a cylindroid. We show that this cylindroid defines a coordinate

frame that simplifies the design equations for spatial RR synthes ere

The result is three linear equations and one cubic polynomial in [T(A60,G)]1=[GI[Z(6,0][Z(60,0] '[G] %,

four design parameters. (5)
[T(A¢p,WH]=([GI[Z(60,0][X(a,2))[Z(¢.0)]

2 The Bennett Linkage [Z($0,00] H([GI[[Z(60,0) ][ X(a,a)]) .

Bennett’s linkagg5] moves with one degree of freedom, due tarhis equation defines the workspace of RR chain directly in terms
its special geometry. The mobility of a general 4R spatial linkagsf the the rotations\ @ and A¢ about the fixed and moving axes,
is obtained by applying Gruebler’s criterion, G andW?, respectively.

m Introduce the dual quaternioBottema and Roth6]) that rep-
M=6(n—1)— > pyC=6(4—1)—4.5=—2. (1) resent the relative displacemen®§(A6,G)] and[T(A é,WhH]
k=1

given by
Thus, in general, this assembly of links and joints forms a ~[AO A6 Y
structure. G > =cos(7 +snn(7)G,
The twist angles and link lengths of the opposite sides of Ben-
nett’s linkage, &,a) and (y,g), must be equal, see Fig. 1. Thisand
together with the condition
(A Ag|  [Ag|
sina  siny W ——|=cog ——| +sinl — |W". (6)
- -7 ) 2 2 2

a 9

ensures that the linkage moves with one degree of freedom.

We use the design equations for the spatial RR chain in orderd
design a Bennett linkage. The spatial RR chain consists of a fixed 0 A6 A AO A
revolute axisG=(G,BXG)"=(G,R)T connected to a moving cos( lI)=cos—cos——sin—sin—G-W1, )
revolute axisw = (W',P' x W) T=(W/,V)T by a rigid link. The 22 22
vectorG denotes the direction of the fixed axis aBds a point on and the dual vector
this line. The vectoW' is the direction of the moving axis in the l:// A6 Ad Ab AG
ith position and®' a point on this line. We choodg andP' to be | i o . 1
the intersection points of these lines with the common nohal sm( 7) S1i=SiN—5-C0S—- GHsin—-cos - W
to the two axes, Fig. 2.

The RR chain is defined by the directio@sand W and the +sinﬁsinA—¢GxW1 o)
points B and P that locate the line§s and W* in space. This 2 2 '
yields a total of ten design parameters.

The displacemerﬁsy of the end-link is computed using the dual
yaternion producs,;;= GW?* [7], which yields the dual scalar

The dual angle/,; defines the relative rotatiof;; and translation
Contributed by the Mechanics and Robotics Committee for publication in '[ht i of the end-link al.ong the screw aX&“ § Equatlon(S) yleld.s .
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" Ground link

Fig. 1 A Bennett linkage

If the RR chain is part of a Bennett linkage, then H{at
shows that the values @fand ¢ related by

_aty
t —sm 2 t 6?—Kt o 9
an2— Ta—y anz— an2, 9)
sin—

whereK is the constant obtained from the dimensiarsndy. We
translate this into a condition on the relative angles= 6, — 6, to
obtain

Moving Axis

G

Fixed Axis B

Fig. 2 A spatial RR robot

Ag 0,
Ad K tanT ( 1+tanz7)
tanT =

(10

2 2

Substitute this relation into the equation defining the screw axes of
the RR chain, Eq(8), in order to obtain the set of screw axes for
Bennett's linkage,

6 A6 AN
1+(K2- 1)tan?1 tan— +K?2 tanz—l)

asinasin@ tﬂ
2 1 2 S
asin cos@—tﬂcos sin@ 'tan@ !
R R R 2
A6 A6
=tan7 G+K9W1+tan7KgG><W1 , (11)
where
K(1+K?2)
K@Z )
22 Ao 2
1+ KK+ tan—-Ky(K? - 1)
and
01
K1=tan7. (12)

Vary A= 6,— 6, in order to obtain the set of relative screw
axes that define the movement of the coupler of a Bennett linkage.
It is remarkable that the set of axes of these screws formg a
lindroid.

4 The Cylindroid

A cylindroid is a ruled surface that has a nodal line cutting all
generators at right angles. See Fig. 3. The cylindroid appears as
the set of axes of a real linear combination of two scréksnt
[9)).

If we designed the RR chain to reach the three spatial positions
M1, M, andM3, then the relative screw ax&s, and S;3 must
lie on the cylindroid defined by Eq11). In fact the real linear
combination of these two screws must generate this cylindroid.
This is the key to our new formulation of the RR design problem.

To describe the geometry of the cylindroid, let us consider the
screws obtained from the design positions,

Va=sin¢—12512, V= sian13

2 813.

(13)
The dual number sifzfli/2=(sin nil2 1,12 cosyn;/2) defines the
magnitude and pitch of these screws. From this we obl4jn
=siny,l2 and My=siny,42 as their respective magnitudes.
Their pitches are computed to be

Fig. 3 The cylindroid as viewed first from the top along the central axis, then from the side

and finally, from an angle
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Fig. 4 The principal axes as located from the initial screws Si;and Sy,
tyo ti3 - Ay 0
Pam—— Py — (14) [(Tul=|p A A | (18)
2 tanT 2 tanT HEH h

whereDy; is the 3X3 skew-symmetric matrix obtained such that
For reference see Parkji0]. [Dyily=dsi Xy.

We now generate the cylindroid as a linear combination of the Dual vector algebrd13] allows us to represent the constant
two screwsV, andV,. For the following calculationsﬁs:((g,d) twist angle and distance constraints for the RR chain as the equa-
be the dual angle betweey, and S;; which are the axes o7, tons,
andVy .

4.1 The Principal Axes. The cylindroid has a set gfrinci- h | ¢ th . el | N
pal axesconsisting of the nodal line and a pair of rulings thaf "€ real part of these equations yield two scalar direction con-
intersect in a right angle. This occurs at the midpoint of the cyraints.

G- [Ty—1IWi=0, i=2,3. (19)

lindroid alqng the nodal IinéQ,;l]. The position of the principal G-[A;—1TW!=0, i=2,3, (20)
axes relative to the screw, is defined by the dual angle
=(o,2y). See Fig. 4. and the dual part provides two scalar moment constraint equations
The angleo is given by 1 1 T 1
G[A]_,*I]V +W [A]_,*l] R+G[D1,A1,]W :0,
—(Py—Py)cots+d (21)
tan 20 = (15) i=23.

(Py—Pa) +dcots

This yields two angles separated by2. This defines the direc- These equations ensure that the dual awagte(,a) is constant
tions of both principal axeX andY. The offsetz, measured from in the three positions.

V, to the principal axes is given by In orde_r to ensure that the common normal passes through the
same pointd andP'=[T;;]P* on both axes, we requife — B to
1 de(Po— cosd be perpendicular t& and[T;] *B—P* to be perpendicular to
Zp= (Po—=Pa) =— |- (16) i - . . .
2 siné W in each position. That is, we have the six equations,
The principal axes of this cylindroid provide a convenient co- G-([Ty]PL-B)=0, WL.(P'—[T,] 'B)=0
ordinate frame for our synthesis of RR chains. : ’ ' (22
i=1,2,3.
. . The ten equation&20), (21), (22) are solved to determin@ and
5 The Design Equations WL

The design equations for the RR chain are obtained from the
geometric constraints imposed by the link connecting the movirtqu
and fixed axes|3,12], and[13]. In particular, the twist anglex
and the distanca between these axes must remain constant d
ing the movement, and the common normal line to both axes
constrained to pass though the same points of both axes.

5.2 The Equivalent Screw Triangle. The equivalent screw
angle formulation[14] provides another approach to the con-
Lﬁt_raint equations for the RR chain. For each relative displacement,
We construct the screw axi8;; and a rotation angle;; and a
translationt; . The equivalent screw triangle defines the relation-
ship between the screw ax®; and the fixed and moving ax&s

5.1 The matrix formulation. Let the three design positions and W?.
be defined by the 44 homogeneous transforms Let C4; be a reference point on the screw aS8ig. The direc-
[A] d tion constraint in Eq(20) can be reformulated to yield,

1 I

[T‘]_[o 0 0 1

where[A;] is a 33 rotation matrix andl; is a 3X1 translation
vector. We define the relative displacemefils;]=[T;][T;'], where[By;] is the skew-symmetric matrix corresponding to Rod-
i =2,3. Associated with each of these matrices is<&@oordinate rigues’ vectorBq;=tan(;/2)S;;, such thaf B,;]Jv=B,; X V. This
transformation for screws, allows us to write the direction equation as

. i=1,2,3, 17)

2 T
[A—1]= W[Bli_BliBli]: (23)
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kG- ([Sy]-K'[S]SihW?
=KG- (Syx W) —KkK'((SX G) - (S x W) (24)
which yields the equation used by Tsai and Ri&h

i G- (SyXW?)
"2 T (Si%XG) (SyxWD” (25)

The properties of the screw triangle also yield an alternative sg

of equations for the moment constraints. Notice that the geometr
of the dyad triangle requires the common normal linestand

W' to be separated by a distange/2 alongS;;. Thus the com-
ponent ofB— P! in the directionS,; is given by

" ty o
(BfP)-Slif?—O, i=2,3. (26)
To complete the set of design equations, we transform the ex-
pressions in Eq(22) to obtain and
. 1_ =
G- (P*—B)=0, @7)
wt.(P'-B)=0,

and
G'[l _SliSL](B_Cli)ZO,
W2 [1-S;;S[](P'~Cy))=0, =23,

(28)

G=K4(Q—B)X(P'-B)=K,

1=K, (B—PYx(C'-PH=K,,

> —acosy
Q= b sin~. ct={ —asins
2 ' 2

c -c

2 2

To find the direction of the joint axe& and W! we compute
;59 cross product of the edges

2be sin~
CSlnE

2bc cosg (30)

4ab coss sin.
a 00525|n2

2 . K
aCSII’l2

2 K
accos= ,
2

4ab cosm sine
a COSESlnE

31

where the constantsg andK,, normalize the vectors. The expres-

whereCy; is any point onS;; .

sions of the screw&=(G,BXG)T and W!= (W, P! xWHT in

This is a set of 10 quadratic equations in ten unknowns thtite principal axis coordinates are

define the coordinates of the lir@ and the lineW? in its first
position.

6 Bennett Linkage Coordinates

Yu [15] introduced a coordinate frame that simplified his analy-
sis of Bennett's linkage, which we adapt for our purposes. To
identify this frame, we begin by noting that the sides of Bennett's
linkage form a tetrahedron. Denote its vertices by the pdits
P!, Q, C! obtained from two RR chains. The edggs C! and
Pl—Q are calleddiagonalsof the linkage and have dimensions
2a=|B—C!| and =|P'—Q|, respectively. See Fig. 5.

The axisK of the tetrahedron is defined by the common normal
to the diagonal8—C! andP'—Q. Let (x,c) be the dual angle
between these edges alokigThe axisK is of central importance
because the screw axes of the movement of Bennett's linkage
perpendicular to this line. That is, it forms the nodal line of the
cylindroid [4,16,17.

Remarkably, the principal axis fram¢gX,Y,K}, of this cylin-
droid is located in the midpoint of segment aloKgoining the
diagonals, and oriented such that it bisects the argés it is
shown in[18]. Recall that this principal axis frame can be deter-
mined directly from the screw ax&, andS;; obtained from the
three design positions.

We now define the Bennett linkage in the principal axis frame
using the four parameters of the tetrahedeoi, ¢, . The coor-
dinates of the vertices are given by

K K
acosi b cosi
B= asin5 pl= —bsin5
27 27
—c c
2 2

(29)
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2bcsine
CSlnE

K
G=Kq4 2bc cosz

4ab coss sin.
a COSES”’]E

K K
b cos= | 4a? sin25 +c?

2

K K
+eK —bsinz 432 co§§+c2 ,

g

2abc

K K
co§§— sng

2 . K
ac SII’]E

K
2accosz

Wi=K,, 5

4ab coss sin.
a 00525|n2

_ K a2 sl 4 w2
acosz(4b sm22 +c)

(32

K K
+eK,y —asiny ( 4h? co§5 +c?

2abc|

K K
cos’-E— S|n25)

Similarly, the coordinates of the second RR dykdand Ul are
given by the expressions
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six conditions in Eqs(27, 28 are identically satisfied. The result
is four equations(25) and(26), in the unknowns, b, c and «.

7 Solving the Design Equations

We can transform the task positiof§;] to the principal axis
frame to obtain the relative screw axes in the form

Sio= sing%12 (c0331X+ sin 31Y)

(34)

Si3= sian13 (cos;SZX+ sin A52Y),

where the dual angle?s locate these screws in the principal axes
frame. Substitute this and the expressions of(E€) into Eq.(26)
to obtain two linear equations in the parametai@ndb,

t1o K . K
> +(a—b)cosés; cosz +(a+b)sinés; smi =0

t13 K . K
> +(a—b)cosé, cosE +(a+b)sins, smE =0.

These equations are solved to obtain,

K K
a=—>—+ —4
2 sinf 2 cos5
2 2 35
Fig. 5 The tetrahedron defines the Bennett linkage K K (35)
d
b=—"——

2 sinE 2 cosE
H=Ky(C'= Q)X (B=Q)+ Ky QX ((C'= Q)X (B=Q)) g5y ‘ g

1_ 1_clhyx(O—ch+ I ((P'=Cl X (O=CL)). The constant& a_nde are Iist_ed in Table 1. _
UT=K (P =CHX(Q=CH +eK CX((P=CHX(Q=C) Next we substitute Eq(35) into the Eq.(25) and definey
Using these coordinates to defi® and W!, we reduce the =tanx/2 to eliminate the sine and cosine functions of The
number of design parameters from ten to four. Furthermore, thesult is two equations in andy,

tan?22
K2 2 c Kssiné
tanl//—12 ——y?|+ci—— (yz(cos251—1)+cos2§1+1)—2—y(cos(Sl+S—l)
2 |K3 2K3 K Kq
2 = -0, (36)
——y2 |+ =5 (y4(cos 25,— 1) +c0s 25, + 1)
K3 2K2
tan?22
K2 2 c Kssiné.
tanw—13 ——y?|+ci—— (yz(cos2252—1)+(:05252+1)—2—y c0S8,+ 5—2)
2 K3 2K3 Kd Kg
K2 e =0. 37)
(%y2 + =5 (y?(cos 25,— 1) + cos 25,+ 1)
K2 2K3
The numerator and denominator of these equations share two roots associatee @iittinat is,
Ks
(c,y)=|0,x=—]. (38)
Kq

In order to solve Eqs(36), (37), we eliminate the root§38) by requiring nontrivial solutions to the linear system

- T‘/’_lz -
b2 2, y KSoy
FRPTS (Y?6(C26,~ 1)+ C28,+1) = 2| Cort Ky
s =0, (39)
T s c
s 2, y KsS52)
i TT Z—K(Zj(y c(C26,—1)+C26,+1) 2K_d Céor+ K—d |
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Table 1 Constants computed from the specified positions Table 3 Three specified positions

Constant Expression X y z 0 ¢ v
KS t12C0552_t13C0561 Ml 0.0 0.0 0.0 0 deg 0 deg 0 deg
- M, 0.0 0.0 0.8 0 deg 0 deg 40 deg
2sin(é,— &) M; 111 066 005 188 deg —28.0 deg 67.2 deg
Kq t135in 6,—t1,SiN 6,
2sin(6,— &)
K2 ty,2 1 )
an?22 sinf 6,—sir’ 5, To determinex, we compute the square root of the single posi-
2 tive real rootx*, which yields the two solutions,
Kis t142 1
U \SIP o ST 5 x=2 arcta = \x*). (44)
an——

2 Substitute this into the formula85) and (40) and we obtain the
pair of solutions &,b,c,«x) and (—b,—a,—c,—«). Evaluating
the two RR chains obtained for these solutio8®) and(33), we
obtain the results in Table 2. The symmetry of this result shows

Table 2 The two sets of solutions that these solutions necessarily define a Bennett linkage.
Solution 1 Solution 2
G(a,b,c,x) = H(—b,—a,—c,—«) 8 Example
1 = 1f_h —8 —r —
V&((;‘bb'cc',(")) _ g((_ bb,_aa,_cc,_ K’;) In Table 3 and Fig. 6 we present three goal positions for the
Ulabck) = WY—b,—a,—c,—«) coupler of a Bennett linkage. They are defined in terms of a vector

(x,y,z) and the longitude, latitude and roll anglég ¢,s) that
define the locations for the moving frame.

Solving the design equations, we obtain the fixed joint &3es
andH and moving joint axe®V* and U. Table 4 presents their
where the capital letterS, S, T stand for cosine, sine and tangengoordinates in the original frame. Figure 7 shows the resulting
respectively. This is achieved by requiring that the coefficient mg€nnett linkage in each of the goal positions.
trix have the determinant zero. The result is an equation that is
linear inc, which yields

c=(K3—Kyp)sink, (40)

9 Conclusions

This paper presents a new formulation of the design equations

where the constants,, andK,; are shown in Table 1. for three position synthesis of a Bennett linkage. The procedure
In order to determinex, we substitute the expressions farb

andc into one of the direction equations in E@5). The result is
a cubic polynomial iny?,

P: Cay+Coy*+Cyy?+Co=0 (41) ST
with the coefficients
Cs=—Kj,
Co=KE—2K3+4(K 1~ K1) (Ky3Sin? 8;— Ky, sir? 8,),
C1=2KZ—Kj—4(K1;— K1) (Ki3c08 8, —K1,008 8y),
Co=K2 (42)

Substitutex=y?, and solve the cubic polynomial to determine it
three roots.

We can show that the polynomi&@(x) has only one positive
real root forx, which we denote*. To do this we compute the
values,

P(0)=K2,
P(—1)=—4(Kp— K92,

(43) : " .

P(+%,)~— K§(+Xx)3, Fig. 6 The specified positions

P(—X)~ —K§(—x.)%.
Notice thatP(0)>0, while for large positive values ofwe have Table 4 The joint axes of the Bennett linkage
P(+x.)<0. From this we conclude that the polynomial has at
least one positive real root. Furthermos,— 1)< 0 for all values  Axis Line coordinates
of its coefficients, and for large negative valuesxahe polyno- (0.36.0.45.0.81, (0.26,1.05-0.70
mial is positive,P(—x.,)>0. This leads to the conclusion that Wt (0:60:0:36:0:72 (0:87:0:83:71:119
there are at least two negative real roots. The cubic polynomial y (0.60~0.36,0.72, (0.87-0.83~1.14)
only has three roots, therefore one is positive and two are y! (0.36,-0.45,0.8}, (0.26,-1.05,-0.70

negative.
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combines the results of Tsai and RdtB] for the spatial RR
chain with the geometric properties of the cylindroid studied by
Huang[4]. Introduction of the principal axis frame of this cylin-
droid and a set of design parameters adapted to Bennett's linkage
reduces the formulation from ten quadratic equations in ten un-
knowns to four equations in four unknowns. We show that
the resulting equations have two real solutions that must form a
Bennett linkage.
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