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Dimensional Synthesis of Bennett
Linkages
Three position synthesis of a spatial RR chain yields two solutions that can be asse
to form a Bennett linkage. In this paper, we show that the cylindroid associated
Bennett’s linkage can be generated directly from the three specified positions, and u
simplify the design equations. Analysis of these equations shows that there are alwa
solutions and that their symmetry yields a Bennett linkage. An example desi
presented.@DOI: 10.1115/1.1539507#
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1 Introduction
Three position synthesis of a spatial RR chain has been sh

to yield two solutions that combine to form a spatial 4R linkag
known as Bennett’s linkage. Initially, Veldkamp@1# obtained this
result for three instantaneous positions. Suh@2# obtained numeri-
cal results that showed that the solution of the finite position s
thesis problem also yielded two solutions that formed a Ben
linkage. Finally, Tsai and Roth@3# reduced ten quadratic desig
equations to a single polynomial and showed that it always
two solutions.

Recent study of Bennett’s linkage has focused on the se
finite displacement screws that define the movement of the c
pler @4#. The axes of these screws form a ruled surface known
a cylindroid. We show that this cylindroid defines a coordina
frame that simplifies the design equations for spatial RR synthe
The result is three linear equations and one cubic polynomia
four design parameters.

2 The Bennett Linkage
Bennett’s linkage@5# moves with one degree of freedom, due

its special geometry. The mobility of a general 4R spatial linka
is obtained by applying Gruebler’s criterion,

M56~n21!2(
k51

m

pkck56~421!24•5522. (1)

Thus, in general, this assembly of links and joints forms
structure.

The twist angles and link lengths of the opposite sides of B
nett’s linkage, (a,a) and (g,g), must be equal, see Fig. 1. Th
together with the condition

sina

a
5

sing

g
, (2)

ensures that the linkage moves with one degree of freedom.
We use the design equations for the spatial RR chain in orde

design a Bennett linkage. The spatial RR chain consists of a fi
revolute axisG5(G,BÃG)T5(G,R)T connected to a moving
revolute axisWi5(W i ,Pi3W i)T5(W i ,V i)T by a rigid link. The
vectorG denotes the direction of the fixed axis andB is a point on
this line. The vectorW i is the direction of the moving axis in th
ith position andPi a point on this line. We chooseB andPi to be
the intersection points of these lines with the common normaN
to the two axes, Fig. 2.

The RR chain is defined by the directionsG and W1 and the
points B and P1 that locate the linesG and W1 in space. This
yields a total of ten design parameters.
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3 Geometry of the RR Chain
The workspace of the RR chain is the set of displaceme

@D(u,f)# defined by the kinematics equations,

@D#5@G#@Z~u,0!#@X~a,a!#@Z~f,0!#@H#, (3)

where@G# and @H# are the initial and final transformations from
the fixed frame to the fixed axis and from the moving axis to
end effector, respectively. This workspace plays an important
in simplifying the design equations.

Choosing a reference configuration@D1#, we can construct the
set of the relative displacements@D1i #5@Di #@D1#21,

@D1i #5@T~Du i ,G!#@T~Df i ,W1!#, (4)

where

@T~Du,G!#5@G#@Z~u,0!#@Z~u0,0!#21@G#21,
(5)

@T~Df,W1!#5~@G#@@Z~u0,0!#@X~a,a!# !@Z~f,0!#

@Z~f0,0!#21~@G#@@Z~u0,0!#@X~a,a!# !21.

This equation defines the workspace of RR chain directly in te
of the the rotationsDu andDf about the fixed and moving axes
G andW1, respectively.

Introduce the dual quaternions~Bottema and Roth@6#! that rep-
resent the relative displacements@T(Du,G)# and @T(Df,W1)#
given by

ĜS Du

2 D5cosS Du

2 D1sinS Du

2 DG,

and

Ŵ1S Df

2 D5cosS Df

2 D1sinS Df

2 DW1. (6)

The displacementŜ1i of the end-link is computed using the du
quaternion productŜ1i5ĜŴ1 @7#, which yields the dual scalar

cosS ĉ1i

2 D 5cos
Du

2
cos

Df

2
2sin

Du

2
sin

Df

2
G•W1, (7)

and the dual vector

sinS ĉ1i

2 DS1i5sin
Du

2
cos

Df

2
G1sin

Df

2
cos

Du

2
W1

1sin
Du

2
sin

Df

2
G3W1. (8)

The dual angleĉ1i defines the relative rotationc1i and translation
t1i of the end-link along the screw axisS1i . Equation~8! yields
the screw axes of displacements reachable by the RR chain.
is called a third order screw system by Huang@8#.

the
2.
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magnitude and pitch of these screws. From this we obtainMa
5sinc12/2 and Mb5sinc13/2 as their respective magnitudes.
Their pitches are computed to be
If the RR chain is part of a Bennett linkage, then Hunt@9#
shows that the values ofu andf related by

tan
f

2
5

sin
a1g

2

sin
a2g

2

tan
u

2
5K tan

u

2
, (9)

whereK is the constant obtained from the dimensionsa andg. We
translate this into a condition on the relative anglesDu5u i2u1 to
obtain

Fig. 1 A Bennett linkage

Fig. 2 A spatial RR robot
Journal of Mechanical Design
tan
Df

2
5

K tan
Du

2 S 11tan2
u1

2 D
11~K221!tan

u1

2
tan

Du

2
1K2S tan2

u1

2 D . (10)

Substitute this relation into the equation defining the screw axe
the RR chain, Eq.~8!, in order to obtain the set of screw axes f
Bennett’s linkage,

a sina sin
c1i

2

a sina cos
c1i

2
2

t1i

2
cosa sin

c1i

2

S 1,

t1i

2

tan
c1i

2

D S1i

5tan
Du

2 S G1KuW11tan
Du

2
KuG3W1D , (11)

where

Ku5
K~11K1

2!

11K2K1
21tan

Du

2
K1~K221!

,

and

K15tan
u1

2
. (12)

Vary Du5u i2u1 in order to obtain the set of relative scre
axes that define the movement of the coupler of a Bennett linka
It is remarkable that the set of axes of these screws forms acy-
lindroid.

4 The Cylindroid
A cylindroid is a ruled surface that has a nodal line cutting

generators at right angles. See Fig. 3. The cylindroid appear
the set of axes of a real linear combination of two screws~Hunt
@9#!.

If we designed the RR chain to reach the three spatial posit
M1 , M2 andM3 , then the relative screw axesS12 andS13 must
lie on the cylindroid defined by Eq.~11!. In fact the real linear
combination of these two screws must generate this cylindr
This is the key to our new formulation of the RR design proble

To describe the geometry of the cylindroid, let us consider
screws obtained from the design positions,

Va5sin
ĉ12

2
S12, Vb5sin

ĉ13

2
S13. (13)

The dual number sinĉ /25(sinc /2,t /2 cosc /2) defines the
Fig. 3 The cylindroid as viewed first from the top along the central axis, then from the side
and finally, from an angle
MARCH 2003, Vol. 125 Õ 99
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Fig. 4 The principal axes as located from the initial screws S12 and S13
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Pa5
t12

2 tan
c12

2

, Pb5
t13

2 tan
c13

2

. (14)

For reference see Parkin@10#.
We now generate the cylindroid as a linear combination of

two screwsVa and Vb . For the following calculationsd̂5(d,d)
be the dual angle betweenS12 andS13 which are the axes ofVa
andVb .

4.1 The Principal Axes. The cylindroid has a set ofprinci-
pal axesconsisting of the nodal line and a pair of rulings th
intersect in a right angle. This occurs at the midpoint of the
lindroid along the nodal line@9,11#. The position of the principal
axes relative to the screwVa is defined by the dual angleŝ
5(s,z0). See Fig. 4.

The angles is given by

tan 2s5
2~Pb2Pa!cotd1d

~Pb2Pa!1d cotd
. (15)

This yields two angles separated byp/2. This defines the direc
tions of both principal axesX andY. The offsetz0 measured from
Va to the principal axes is given by

z05
1

2 S d2~Pb2Pa!
cosd

sind D . (16)

The principal axes of this cylindroid provide a convenient c
ordinate frame for our synthesis of RR chains.

5 The Design Equations
The design equations for the RR chain are obtained from

geometric constraints imposed by the link connecting the mov
and fixed axes,@3,12#, and @13#. In particular, the twist anglea
and the distancea between these axes must remain constant d
ing the movement, and the common normal line to both axe
constrained to pass though the same points of both axes.

5.1 The matrix formulation. Let the three design position
be defined by the 434 homogeneous transforms

@Ti #5F @Ai # di

0 0 0 1G , i 51,2,3, (17)

where@Ai # is a 333 rotation matrix anddi is a 331 translation
vector. We define the relative displacements@T1i #5@Ti #@T1

21#,
i 52,3. Associated with each of these matrices is a 636 coordinate
transformation for screws,
, MARCH 2003
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@ T̂1i #5F A1i 0

D1iA1i A1i
G , (18)

whereD1i is the 333 skew-symmetric matrix obtained such th
@D1i #y5d1i3y.

Dual vector algebra@13# allows us to represent the consta
twist angle and distance constraints for the RR chain as the e
tions,

G•@ T̂1i2I #W150, i 52,3. (19)

The real part of these equations yield two scalar direction c
straints,

G•@A1i2I #W150, i 52,3, (20)

and the dual part provides two scalar moment constraint equat

G•@A1i2I #V11W1
•@A1i2I #TR1G•@D1iA1i #W

150,
(21)

i 52,3.

These equations ensure that the dual angleâ5(a,a) is constant
in the three positions.

In order to ensure that the common normal passes through
same pointsB andPi5@T1i #P

1 on both axes, we requirePi2B to
be perpendicular toG and @T1i #

21B2P1 to be perpendicular to
W1 in each position. That is, we have the six equations,

G•~@T1i #P
12B!50, W1

•~P12@T1i #
21B!50,

(22)
i 51,2,3.

The ten equations~20!, ~21!, ~22! are solved to determineG and
W1.

5.2 The Equivalent Screw Triangle. The equivalent screw
triangle formulation@14# provides another approach to the co
straint equations for the RR chain. For each relative displacem
we construct the screw axisS1i and a rotation anglec1i and a
translationt1i . The equivalent screw triangle defines the relatio
ship between the screw axisS1i and the fixed and moving axesG
andW1.

Let C1i be a reference point on the screw axisS1i . The direc-
tion constraint in Eq.~20! can be reformulated to yield,

@A1i2I #5
2

11tan2~c1i /2!
@B1i2B1i

T B1i #, (23)

where@B1i # is the skew-symmetric matrix corresponding to Ro
rigues’ vector,B1i5tan(c1i/2)S1i , such that@B1i #v5B1i3v. This
allows us to write the direction equation as
Transactions of the ASME
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kG•~@S1i #2k8@S1i
T S1i # !W1

5kG•~S1i3W1!2kk8~~S1i3G!•~S1i3W1!! (24)

which yields the equation used by Tsai and Roth@3#,

tan
c1i

2
5

G•~S1i3W1!

~S1i3G!•~S1i3W1!
. (25)

The properties of the screw triangle also yield an alternative
of equations for the moment constraints. Notice that the geom
of the dyad triangle requires the common normal lines toG and
Wi to be separated by a distancet1i /2 alongS1i . Thus the com-
ponent ofB2P1 in the directionS1i is given by

~B2P1!•S1i2
t1i

2
50, i 52,3. (26)

To complete the set of design equations, we transform the
pressions in Eq.~22! to obtain

G•~P12B!50,
(27)

W1
•~P12B!50,

and

G•@ I 2S1iS1i
T #~B2C1i !50,

(28)

W1
•@ I 2S1iS1i

T #~P12C1i !50, i 52,3,

whereC1i is any point onS1i .
This is a set of 10 quadratic equations in ten unknowns

define the coordinates of the lineG and the lineW1 in its first
position.

6 Bennett Linkage Coordinates
Yu @15# introduced a coordinate frame that simplified his ana

sis of Bennett’s linkage, which we adapt for our purposes.
identify this frame, we begin by noting that the sides of Benne
linkage form a tetrahedron. Denote its vertices by the pointsB,
P1, Q, C1 obtained from two RR chains. The edgesB2C1 and
P12Q are calleddiagonalsof the linkage and have dimension
2a5uB2C1u and 2b5uP12Qu, respectively. See Fig. 5.

The axisK of the tetrahedron is defined by the common norm
to the diagonalsB2C1 andP12Q. Let (k,c) be the dual angle
between these edges alongK. The axisK is of central importance
because the screw axes of the movement of Bennett’s linkage
perpendicular to this line. That is, it forms the nodal line of t
cylindroid @4,16,17#.

Remarkably, the principal axis frame,$X,Y,K%, of this cylin-
droid is located in the midpoint of segment alongK joining the
diagonals, and oriented such that it bisects the anglek as it is
shown in@18#. Recall that this principal axis frame can be det
mined directly from the screw axesS12 andS13 obtained from the
three design positions.

We now define the Bennett linkage in the principal axis fra
using the four parameters of the tetrahedrona, b, c, k. The coor-
dinates of the vertices are given by

B55
a cos

k

2

a sin
k

2
2c

2

6 , P155
b cos

k

2

2b sin
k

2
c

2

6 ,

(29)
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Q55
2b cos

k

2

b sin
k

2
c

2

6 , C155
2a cos

k

2

2a sin
k

2
2c

2

6 .

To find the direction of the joint axesG and W1 we compute
the cross product of the edges

G5Kg~Q2B!3~P12B!5Kg5
2bc sin

k

2

2bc cos
k

2

4ab cos
k

2
sin

k

2

6 (30)

and

W15Kw~B2P1!3~C12P1!5Kw5
22ac sin

k

2

2ac cos
k

2

4ab cos
k

2
sin

k

2

6 ,

(31)

where the constantsKg andKw normalize the vectors. The expres
sions of the screwsG5(G,BÃG)T and W15(W1,P13W1)T in
the principal axis coordinates are

G5Kg5
2bc sin

k

2

2bc cos
k

2

4ab cos
k

2
sin

k

2

6
1eKg5

b cos
k

2 S 4a2 sin2
k

2
1c2D

2b sin
k

2 S S 4a2 cos2
k

2
1c2D

2abcS cos2
k

2
2sin2

k

2 D 6 ,

and

W15Kw5
22ac sin

k

2

2ac cos
k

2

4ab cos
k

2
sin

k

2

6
1eKw5

2a cos
k

2 S 4b2 sin2
k

2
1c2D

2a sin
k

2 S 4b2 cos2
k

2
1c2D

2abcS cos2
k

2
2sin2

k

2 D 6 . (32)

Similarly, the coordinates of the second RR dyad,H andU1, are
given by the expressions
MARCH 2003, Vol. 125 Õ 101
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H5Kh~C12Q!3~B2Q!1eKhQ3~~C12Q!3~B2Q!!
(33)

U15Ku~P12C1!3~Q2C1!1eKuC13~~P12C1!3~Q2C1!!.

Using these coordinates to defineG and W1, we reduce the
number of design parameters from ten to four. Furthermore,

Fig. 5 The tetrahedron defines the Bennett linkage
d
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six conditions in Eqs.~27, 28! are identically satisfied. The resu
is four equations,~25! and ~26!, in the unknownsa, b, c andk.

7 Solving the Design Equations
We can transform the task positions@Ti # to the principal axis

frame to obtain the relative screw axes in the form

S125sin
ĉ12

2
~cosd̂1X1sin d̂1Y!

(34)

S135sin
ĉ13

2
~cosd̂2X1sin d̂2Y!,

where the dual anglesd̂ i locate these screws in the principal ax
frame. Substitute this and the expressions of Eq.~29! into Eq.~26!
to obtain two linear equations in the parametersa andb,

t12

2
1~a2b!cosd1 cos

k

2
1~a1b!sind1 sin

k

2
50

t13

2
1~a2b!cosd2 cos

k

2
1~a1b!sind2 sin

k

2
50.

These equations are solved to obtain,

a5
Ks

2 sin
k

2

1
Kd

2 cos
k

2

,

(35)

b5
Ks

2 sin
k

2

2
Kd

2 cos
k

2

.

The constantsKs andKd are listed in Table 1.
Next we substitute Eq.~35! into the Eq. ~25! and definey

5tank/2 to eliminate the sine and cosine functions ofk. The
result is two equations inc andy,
tan
c12

2 S Ks
2

Kd
22y2D 1c2

tan
c12

2

2Kd
2 ~y2~cos 2d121!1cos 2d111!22

cy

Kd
S cosd11

Ks sind1

Kd
D

S Ks
2

Kd
22y2D 1

c2

2Kd
2 ~y2~cos 2d121!1cos 2d111!

50, (36)

tan
c13

2 S Ks
2

Kd
22y2D 1c2

tan
c13

2

2Kd
2 ~y2~cos 2d221!1cos 2d211!22

cy

Kd
S cosd21

Ks sind2

Kd
D

S Ks
2

Kd
22y2D 1

c2

2Kd
2 ~y2~cos 2d221!1cos 2d211!

50. (37)

The numerator and denominator of these equations share two roots associated withc50, that is,

~c,y!5S 0,6
Ks

Kd
D . (38)

In order to solve Eqs.~36!, ~37!, we eliminate the roots~38! by requiring nontrivial solutions to the linear system

F T
c12

2

T
c12

2

2Kd
2 ~y2c~C2d121!1C2d111!22

y

Kd
S Cd11

KsSd1

Kd
D

T
c13

2

T
c13

2

2K2 ~y2c~C2d221!1C2d211!22
y

K S Cd21
KsSd2

K D G H Ks
2/Kd

22y2

c J 50, (39)
d d
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where the capital lettersC, S, T stand for cosine, sine and tange
respectively. This is achieved by requiring that the coefficient m
trix have the determinant zero. The result is an equation tha
linear in c, which yields

c5~K132K12!sink, (40)

where the constantsK12 andK13 are shown in Table 1.
In order to determinek, we substitute the expressions fora, b

andc into one of the direction equations in Eq.~25!. The result is
a cubic polynomial iny2,

P: C3y61C2y41C1y21C050 (41)

with the coefficients

C352Kd
2,

C25Ks
222Kd

214~K122K13!~K13 sin2 d12K12 sin2 d2!,

C152Ks
22Kd

224~K122K13!~K13 cos2 d12K12 cos2 d2!,

C05Ks
2. (42)

Substitutex5y2, and solve the cubic polynomial to determine
three roots.

We can show that the polynomialP(x) has only one positive
real root forx, which we denotex* . To do this we compute the
values,

P~0!5Ks
2,

P~21!524~K122K13!
2,

(43)
P~1x`!'2Kd

2~1x`!3,

P~2x`!'2Kd
2~2x`!3.

Notice thatP(0).0, while for large positive values ofx we have
P(1x`),0. From this we conclude that the polynomial has
least one positive real root. Furthermore,P(21),0 for all values
of its coefficients, and for large negative values ofx the polyno-
mial is positive,P(2x`).0. This leads to the conclusion tha
there are at least two negative real roots. The cubic polynom
only has three roots, therefore one is positive and two
negative.

Table 1 Constants computed from the specified positions

Constant Expression

Ks t12 cosd22t13 cosd1

2 sin~d12d2!
Kd t13 sind12t12 sind2

2 sin~d12d2!
K12 t12/2

tan
c12

2

S 1

sin2 d12sin2 d2
D

K13 t13/2

tan
c13

2

S 1

sin2 d12sin2 d2
D

Table 2 The two sets of solutions

Solution 1 Solution 2

G(a,b,c,k) 5 H(2b,2a,2c,2k)
W1(a,b,c,k) 5 U1(2b,2a,2c,2k)
H(a,b,c,k) 5 G(2b,2a,2c,2k)
U1(a,b,c,k) 5 W1(2b,2a,2c,2k)
Journal of Mechanical Design
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To determinek, we compute the square root of the single po
tive real rootx* , which yields the two solutions,

k52 arctan~6Ax* !. (44)

Substitute this into the formulas~35! and ~40! and we obtain the
pair of solutions (a,b,c,k) and (2b,2a,2c,2k). Evaluating
the two RR chains obtained for these solutions~32! and ~33!, we
obtain the results in Table 2. The symmetry of this result sho
that these solutions necessarily define a Bennett linkage.

8 Example
In Table 3 and Fig. 6 we present three goal positions for

coupler of a Bennett linkage. They are defined in terms of a vec
(x,y,z) and the longitude, latitude and roll angles~u,f,c! that
define the locations for the moving frame.

Solving the design equations, we obtain the fixed joint axesG
andH and moving joint axesW1 andU1. Table 4 presents their
coordinates in the original frame. Figure 7 shows the result
Bennett linkage in each of the goal positions.

9 Conclusions
This paper presents a new formulation of the design equati

for three position synthesis of a Bennett linkage. The proced

Fig. 6 The specified positions

Table 3 Three specified positions

x y z u f c

M1 0.0 0.0 0.0 0 deg 0 deg 0 deg
M2 0.0 0.0 0.8 0 deg 0 deg 40 deg
M3 1.11 0.66 0.05 18.8 deg 228.0 deg 67.2 deg

Table 4 The joint axes of the Bennett linkage

Axis Line coordinates

G ~0.36,0.45,0.81!, ~0.26,1.05,20.70!
W1 ~0.60,0.36,0.72!, ~0.87,0.83,21.14!
H ~0.60,20.36,0.72!, ~0.87,20.83,21.14!
U1 ~0.36,20.45,0.81!, ~0.26,21.05,20.70!
MARCH 2003, Vol. 125 Õ 103
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Fig. 7 The Bennett linkage at the three specified positions
104 Õ Vol. 125, MARCH 2003
combines the results of Tsai and Roth@3# for the spatial RR
chain with the geometric properties of the cylindroid studied
Huang@4#. Introduction of the principal axis frame of this cylin
droid and a set of design parameters adapted to Bennett’s lin
reduces the formulation from ten quadratic equations in ten
knowns to four equations in four unknowns. We show th
the resulting equations have two real solutions that must form
Bennett linkage.

Acknowledgments
The authors gratefully acknowledge the support of the Natio

Science Foundation and the Balsells Fellowship program, and
assistance of Haijun Su and Curtis Collins.

References
@1# Veldkamp, G. R., 1967, ‘‘Canonical Systems and Instantaneous Invarian

Spatial Kinematics,’’ J. Mec.,3, pp. 329–388.
@2# Suh, C. H., 1969, ‘‘On the Duality in the Existence of R-R Links for Thre

Positions,’’ ASME J. Ind.,91~B!, pp. 129–134.
@3# Tsai, L. W., and Roth, B., 1973, ‘‘A Note on the Design of Revolute-Revolu

Cranks,’’ Mech. Mach. Theory,8, pp. 23–31.
@4# Huang, C., 1996, ‘‘The Cylindroid Associated with Finite Motions of the Be

nett Mechanism,’’Proceedings of the ASME Design Engineering Techni
Conferences, Irvine, CA.

@5# Bennett, G. T., 1903, ‘‘A New Mechanism,’’ Engineering,76, pp. 777–778.
@6# Bottema, O., and Roth, B., 1979,Theoretical Kinematics, North-Holland~re-

printed by Dover Publications, 1990!.
@7# McCarthy, J. M., 1990,Introduction to Theoretical Kinematics, The MIT

Press.
@8# Huang, C., 1994, ‘‘On the Finite Screw System of the Third Order Associa

with a Revolute-Revolute Chain,’’ ASME J. Mech. Des.,116, pp. 875–883.
@9# Hunt, K. H., 1978,Kinematic Geometry of Mechanisms, Clarendon Press.

@10# Parkin, I. A., 1992, ‘‘A Third Conformation with the Screw Systems: Fini
Twist Displacements of a Directed Line and Point,’’ Mech. Mach. Theory,27,
177–188.

@11# Parkin, I. A., 1997, ‘‘Finding the Principal Axes of Screw Systems,’’Proceed-
ings of the ASME Design Engineering Technical Conferences, Sacramento,
CA.

@12# Suh, C. H., and Radcliffe, C. W., 1978,Kinematics and Mechanisms Design,
John Wiley & Sons.

@13# McCarthy, J. M., 2000,Geometric Design of Linkages, Springer-Verlag.
@14# Tsai, L. W., 1972, ‘‘Design of Open-Loop Chains for Rigid Body Guidance,’’

Stanford University Ph.D. dissertation.
@15# Yu, H. C., 1981, ‘‘The Bennett Linkage, its Associated Tetrahedron and

Hyperboloid of Its Axes,’’ Mech. Mach. Theory,16, pp. 105–114.
@16# Baker, J. E., 1998, ‘‘On the Motion Geometry of the Bennett Linkage,’’Proc.

8th Internat. Conf. on Engineering Computer Graphics and Descriptive G
ometry, Austin, Texas, Vol. 2, pp. 433–437.

@17# Huang, C., and Sun, C., 2000, ‘‘An Investigation of Screw Systems in
Finite Displacements of Bennett-Based 6R Linkages,’’ ASME J. Mech. D
122~4!, pp. 426–430.

@18# Perez, A., and McCarthy, J. M., 2002, ‘‘Bennett’s Linkage and the Cyl
droid,’’ Mech. Mach. Theory,37~11!, pp. 1245–1260.
Transactions of the ASME


