
f con-
chains
piece.

ng the
, the
esign
screw
of the
s are
hesis
can

ation
Alba Perez
e-mail: maperez@uci.edu

J. M. McCarthy
Robotics and Automation Laboratory,

Dept. of Mechanical and Aerospace Engineering,
University of California,
Irvine, California 92697

e-mail: jmmccart@uci.edu

Dual Quaternion Synthesis of
Constrained Robotic Systems
This paper presents a dual quaternion methodology for the kinematic synthesis o
strained robotic systems. These systems are constructed from one or more serial
such that each chain imposes at least one constraint on the movement of the work
Serial chains that have constrained workspaces can be synthesized by evaluati
kinematics equations of the chain on a finite set of task positions. In this case
end-effector positions are known and the Denavit-Hartenberg parameters become d
variables. Here we reformulate the kinematics equations in terms of successive
displacements so the design variables are the coordinates defining the joint axes
chain in a reference position. Then, dual quaternions defining these transformation
introduced to simplify the structure of the design equations. The result is a synt
formulation that can be applied to a broad range of constrained serial chains, which
in turn be assembled into constrained parallel robots. We demonstrate the formul
and solution of the dual quaternion design equations for the spatial RPRP chain.
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1 Introduction
This paper presents a dual quaternion synthesis methodo

for the design of robotic systems constructed from one or m
serial chains, each of which imposes a constraint on the e
effector. These so-called ‘‘constrained robotic systems’’ prov
structural support in certain directions while allowing freedom
movement in others.

Our design methodology parallels the well-known linkage s
thesis techniques of planar and spherical kinematics. The kine
ics equations of the chain are evaluated on a finite set of
positions, in order to define a set of design equations. These e
tions have both structural parameters and joint parameters a
knowns and can be solved for both. We find that an effici
procedure exists for eliminating the joint variables in the class
serial chains with constrained orientation. For the remainder of
chains, we outline a strategy for this elimination that becom
increasingly more complicated for chains with increasing numb
of structural parameters. Further work is needed to determine
maximum number of solutions to the design equations for a gi
chain, and to provide an efficient process for finding all of the
solutions. The technique is demonstrated for the RPRP s
chain using both the complete equations with structural and j
parameters, and the equations obtained after the eliminatio
joint variables.

In what follows, we provide a literature review of robot synth
sis theory, and then formulate the general dual quaternion de
equations. It is possible to count the number of structural and j
parameters in order to determine the number of positions nee
to completely define the serial chain. We then explore the a
braic structure of the dual quaternion design equations and
clude by solving the equations for the RPRP serial chain.

2 Literature Review
The finite-position synthesis theory seeks to dimension a se

kinematic chain that reaches a specified set of positions. T
problem was first stated and solved by Schoenflies@1# and Burm-
ester @2#, and generalized to spatial chains by Roth@3#. See
Hartenberg and Denavit@4# and Sandor and Erdman@5#, for ap-
plications of this theory to planar chains, and Suh and Radc
@6#, and McCarthy@7# for application to spherical and spatia
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chains. Several approaches have been developed to extend
design theory to spatial kinematic chains, that may be describe
based on geometric constraints, the screw triangle, loop clo
equations, and robot kinematics equations.

Thegeometric constraintmethod uses the geometric properti
of two-jointed serial chains to formulate equations that must
satisfied at each of a discrete set of positions in the worksp
~Suh and Radcliffe@6#, Hunt @8#!. This yields algebraic equation
that are solved to determine the dimensions of the chain.
amples of this are the synthesis of spatial RR chains~Suh@9#!, CC
chains ~McCarthy @10#, Huang and Chang@11#, Kihonge et al.
@12#!, and SS chains~Innocenti @13#, Liao and McCarthy@14#!.
This approach is limited to dyads and three-jointed chains end
in S joints, such as the RPS and PPS chains as well as the
chain, see Chen and Roth@15#, Nielsen and Roth@16#, and also
Kim and Tsai@17#.

A generalization was introduced by Tsai and Roth@18# who
used the geometry of the screw triangle associated with a
quence of transformations to formulate design equations for se
chains. Tsai’s dissertation@19# provides a list of chains consistin
of two and three joints and their associated design equations.
approach introduced intermediate joint parameters as necessa
describe the chains. In Tsai and Roth@20# they obtained an alge
braic solution to the 10 design equations for the spatial RR ch
~also see Perez and McCarthy@21#!.

Sandor@22# uses loop closure equations to create design eq
tions for spatial linkages with any number of joints. This approa
has been applied to spatial synthesis expressing the links as
tors and the rotations as matrices in Sandor and Bisshopp@23#,
Sandor, Weng, and Xu@24#, and in Sandor, Xu, and Weng@25#
they were used to state the design equations for spatial 3R an
spatial linkages. The loop equations characterize the translatio
the mechanism, while they are parameterized by the joint v
ables; additional equations need to be added to account for o
tations and extra parameters defining the links.

Mavroidis, Lee, and Alam@26# formulated and solved the de
sign equations for the spatial RR chain using the homogene
matrix form of the kinematics equations. They soon followed t
with a solution for the RRR serial chain, and the PRR chain~Lee
and Mavroidis 2002@27,28,29#!. Their approach introduces th
Denavit-Hartenberg parameters, as well as the joint variable
each of the task positions, as the variables in the design equat
It can be systematically applied to a broad range of serial cha

In this paper, we use Mavroidis’ systematic approach; howe
we use successive screw displacements, described by Gupta@30#
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and Tsai@31#, formulated using dual quaternion algebra. Yang a
Freudenstein@32# introduced dual quaternions to kinematics
order to define for three dimensional space a geometric alge
that parallels the convenience of complex numbers in the pla
These hypercomplex numbers form an eight dimensional Cliff
algebra that can be used to define spatial displacements~McCar-
thy @33#, Shoham and Jen@34#, and Angeles@35#!. Clifford alge-
bras have been used in robot analysis, see for instance Ravan
Ge @36#, and for the synthesis of planar linkages using plan
quaternions, see Larochelle@37#.

In our approach, the design equations contain the axes of
robot in a reference configuration, as in@22#, parameterized by the
joint variables. We use the Plu¨cker coordinates of the joint axes a
design parameters and obtain eight design equations for each
position, see@38#. Like in the previous work of Sandor@22#, Tsai
and Roth@18# and Lee and Mavroidis@28,29#, the joint variables
appear in our design equations, and we devise a procedur
eliminate them.

3 Kinematics Equations of a Serial Robot
The kinematics equations of the robot equate the 434 homo-

geneous transformation@D# between the end-effector and the ba
frame to the sequence of local coordinate transformations al
the m joint axes of the chain~Craig @39#!,

@D#5@G#@Z~u1 ,d1!#@X~a12,a12!#

3@Z~u2 ,d2!# . . . @X~am21,m ,am21,m!#@Z~um ,dm!#@H#.

(1)

The parameters (u,d) define the movement at each joint an
(a,a) are the twist and length of each link, collectively known
the Denavit-Hartenberg parameters. The transformation@G# de-
fines the position of the base of the chain relative to the fix
frame, and@H# locates the tool relative to the last link frame, se
Fig. 1. Notice that for constrained serial chainsm<5.

3.1 Successive Screw Displacements.These kinematics
equations can be transformed into successive screw displacem
by choosing a reference position@D0#. Let @Di # be the homoge-
neous matrix describing the transformation from the fixed fra
to a moving frameMi . We can compute the relative transform

Fig. 1 A constrained serial robot and three specified task
positions
426 Õ Vol. 126, MAY 2004
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tion @D0i #5@Di #@D0#21, which expresses the displacement of t
moving frame from the reference position,M0 , to thei th position,
Mi , measured in the fixed frame,

@D0i #5@Di #@D0#21,

5~@G#@Z~u1
i ,d1

i !# . . . @Z~um
i ,dm

i !#@H# !~@G#

3@Z~u1
0,d1

0!# . . . @Z~um
0 ,dm

0 !#@H# !21. (2)

In order to simplify this equation we introduce the partial tran
formations@M j # up to but not including thej th joint transforma-
tion for the reference configuration, so we have

@M1#5@G#,

@M2#5@G#@Z~u1
0,d1

0!#@X~a12,a12!#,

¯

@M j #5@G#@Z~u1
0,d1

0!#@X~a12,a12!#

3@Z~u2
0,d2

0!# . . . @X~a j 21,jaj 21,j !#. (3)

Equation~2! can now be rewritten in the form

@D0i #5@T~Du1
i ,S1!#@T~Du2

i ,S2!# . . . @T~Dum
i ,Sm!#, (4)

where

@T~Du1
i ,S1!#5@M1#@Z~u1

i ,d1
i !#@Z~u1

0,d1
0!#21@M1#21,

@T~Du2
i ,S2!#5@M2#@Z~u2

i ,d2
i !#@Z~u2

0,d2
0!#21@M2#21,

¯

@T~Du j
i ,Sj !#5@M j #@Z~u j

i ,dj
i !#@Z~u j

0,dj
0!#21@M j #

21, (5)

where Du j
i 5u j

i 2u j
0 or Du j

i 5dj
i 2dj

0 depending on whether the
joint is revolute or prismatic, respectively.

The displacements@T(Du i ,Si)# define the rotations about an
translations along the joint axesSi measured in the fixed frame
relative to the reference configuration@D0#. Notice that by ex-
pressing kinematics equations in this way, the base transforma
@G# is absorbed into the coordinates of the first joint axis and
tool transformation@H# cancels.

3.2 Dual Quaternion Kinematics Equations. The kine-
matics equations of the serial chain can be defined using elem
of the Clifford algebra, known asdual quaternions, instead of 4
34 homogeneous transforms. The advantage is primarily a c
pact representation of the rotation matrix, and also a useful st
ture that assists the elimination of the joint variables. A spa
displacement consisting of a rotation byu and slide byd around
and along a screw axisS is written as the dual quaternion

Ŝ~ û !5sinS û

2
DS1cosS û

2
D , (6)

where û5u1ed and S5S1ep3S is the dual vector formed
from the Plücker coordinates of the screw axis. Recall thate is the
dual unit with the propertye250, ~Bottema and Roth@40#, Mc-
Carthy @33#!, and that the sine and cosine of a dual angle
defined by

cos
û

2
5cos

u

2
2e

d

2
sin

u

2
, and

sin
û

2
5sin

u

2
1e

d

2
cos

u

2
. (7)

Notice that the dual quaternion in Eq.~6! encodes the same
information as the 434 screw displacement matrix@T(Du,S)#.
Furthermore, the algebra of dual quaternions provides a mult
cation operation that parallels the matrix multiplication of scre
displacement matrices. Thus, we can define the dual quater
Transactions of the ASME
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kinematics equations for the serial chain by simply replacing
434 matrices in Eq.~4! by their dual quaternion equivalents t
obtain

D̂ i5Ŝ1~Dû1
i !Ŝ2~Dû2

i ! . . . Ŝm~Dûm
i !. (8)

The Plücker coordinates of the screw axesSi , i 51, . . . ,m,
are defined in the base frameF and form convenient design
parameters.

4 Design Equations
In kinematic synthesis the focus is on the design of a se

chain that can reach a prescribed set of task positions. These
sitions provide a discrete approximation to the workspace of
chain. Let then positions be defined by the 434 transforms@Pi #,
i 51, . . . ,n. Construct then21 relative transformation matrice
@P1i #5@Pi #@P1#21 and their associated dual quaternionsP̂1i , i
52, . . . ,n. Equating the task dual quaternionsP̂1i to the kinemat-
ics equations~8! yields the design equations

Qi : Ŝ1~Dû1
i !Ŝ2~Dû2

i ! . . . Ŝm~Dûm
i !2 P̂1i50, i 52, . . . ,n.

(9)

For the following calculations, we assume that each axisSi de-
fines either a revolute joint or a prismatic joint, but not both. T
means the dual angleDû i5Du i1eDdi has only one variable
either Du i or Ddi . Other types of joints are created by addin
constraints to the joint axes; for instance, a cylindrical joint~C!
can be created as a revolute and a prismatic joint plus two c
straints making the directions of both joint axes parallel.

Given a robot topology, the workspace of the robot admit
maximum number of arbitrary positions, which in turn define t
dimensions of the workspace. When we define a task with
maximum number of positions for the robot topology, we obtai
finite number of robots which are solutions of the design eq
tions. In what follows we explain how to calculate the maximu
number of task positions for a given robot topology, based
counting the parameters of the design equations.

We distinguish between axesSi that define revolute joints from
those that define prismatic joints. The axis of a revolute join
defined by four independent parameters in the associated Plu¨cker
coordinate vector. Coordinate-wise, the expression of a revo
joint consists on six elements, three for the direction and three
the moment, plus two constraints, which make the direction a
vector and the moment perpendicular to the direction. In contr
a prismatic joint depends only on two parameters that define
direction of the slide of the joint, that is, three coordinates de
ing a direction plus the unit vector constraint.

Let r andt be the number of revolute and prismatic joints in t
chain, wherem5r 1t, then the number of structural parameters
K54r 12t. Given n task positions, we also have (n21)r joint
angles and (n21)t joint slides that must be determined. Thus, t
total number of design parameters in ann-position task isN
54r 12t1(n21)r 1(n21)t.

Only six of the eight components of a dual quaternion are
dependent, therefore only 6(n21) of the design equations in~9!
are independent. To these, we can add any equationc defining a
constraint between the axes. We can equate the number of e
tions E56(n21)1c and the number of unknownsN to obtain

nmax5
3r 1t162c

62r 2t
, r 1t<5, (10)

which defines the maximum number of task positionsnmax needed
to solve for the design variables in a constrained serial ch
Notice thatnmax achieves a maximum of 21 task positions for t
5R chain. However, due to the semi-direct product structure of
group of rigid displacements, this formula is not always direc
applicable and some cases must be distinguished.
Journal of Mechanical Design
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4.1 Orientation Design Equations. The design equations
can be separated into three that define the orientation of the
effector and three that define its translation. The 3(n21) orienta-
tion design equations include the 2r unknowns that define the
directions of the revolute joints and (n21)r associated joint ro-
tation angles. These equations can be solved for a maximum n
ber of task orientations given by

nR5
31r 2c

32r
, r<2. (11)

This equation is meaningful only forr 51 andr 52, which have
the associated values ofnR52 andnR55. For constrained seria
chains in whichnR,nmax, we can solve the orientation equation
independent of the translation equations. We call serial chains
have this property ‘‘orientation limited chains.’’ Table 1 lists th
classes of serial chains that are orientation limited—the orde
of the R and P joints is not relevant, except for the cases spec
in the table, see@41# for more details.

An orientation-limited chain can actually be designed to rea
more thannR task positions. The key is to select excess positio
that have orientations that lie in the workspace of the spher
chain obtained using the orientation design equations. This ca
done by selecting the direction of the screw axis and the rota
angle belonging to the workspace of orientations, while the lo
tion of the screw axis and the translation along it can be arbitra
chosen. Assuming that the orientations are given and that both
directions of the revolute joints and the angles to reach the
orientations are known, we can count, in a similar fashion,
number of translations that the chain can be defined for,

nT5
2r 1t132c

32t
, t<2. (12)

If nR,nmax, we can solve the chain fornR complete task po-
sitions pluse5nT2nR additional task positions with arbitrary
translational terms and rotational terms within the workspace
the chain. The number of additional task positionse is listed in
Table 1. See@41# for further discussion on the counting formula

Constrained serial chains that have three or more revolute jo
are clearly not orientation-limited, in which case the number
task positions is defined by the parameternmax given in ~10!. It is
interesting to note that the spatial RR and the various RRP ch
are also not orientation-limited. Table 2 lists the number of ta
positionsnmax available for the design of these chains.

4.2 Chains With Cylindric Joints. The combination of a
revolute joint and prismatic joint in series such that their axes
parallel is said to form a cylindric joint, denoted C. We view th
combination as imposing thec52 constraints on the six param
eters of the RP combination, in particular that the direction of
P-joint be the same as that of the R-joint. Tables 3 and 4 list
classes of constrained serial chains that have cylindric joints
the number of task positions that they can reach.

5 Parameterized Design Equations
To solve for a given robot structure, we compute the maxim

number of goal positions usingnR and nmax, define extra con-
straints for the axes if needed, and apply Eq.~9! for the n goal
dual quaternions. We obtain a set of 6(n21)1c equations, where
c is the number of structural constraints we add to the gen

Table 1 The orientation-limited constrained serial chains

Robot DOF r t K nR nmax e

RP 2 1 1 6 2 2
1
2 1

RPP 3 1 2 6 2 3 3
PRP 3 1 2 8 2 3

2
3 5

RRPP 4 2 2 10 5 6 2
RPRP 4 2 2 12 5 7 4
MAY 2004, Vol. 126 Õ 427
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structure. As the set of equations we use the six independent c
ponents of the dual quaternion equality plus the Plu¨cker con-
straints for each axis,

Qi5H qx1eqx0

qy1eqy0

qz1eqz0

J i

5H px1epx0

py1epy0

pz1epz0

J i

, i 52, . . .n,

sj•sj51, sj•sj
050, j 51, . . .r ,

sk•sk51, k51, . . .t, (13)

and any extra geometric constraint we want to add.
We call Eq.~13! theparameterized design equations. In this set

of equations, we solve for the structural parameters defining
joint axes at the reference position, but also for the values of e
of the joint variables to reach each of the task positions. No
that solving also for the joint variables increases the dimensio
the problem by (r 1t)(n21). For instance, for the PRRR robo
the number of total variables is 49, out of which 28 correspond
the values of the joint variables, and for the 5R robot the to
number of variables is 130, out of which 100 correspond
joint variables. The number of solutions we have to track te
also to increase because of the multiple solutions for the inv
kinematics.

6 Inverse Kinematics Elimination
The parameterized design equations can be solved directly

both joint axes and joint variables by using some numer
method. However, we may want to eliminate the joint variables
possible, to obtain a set of equations whose only variables are
coordinates of the joint axes. We call this processinverse kine-
matics elimination. This elimination reduces the dimension of th
system by (r 1t)(n21).

The elimination takes place at each goal dual quaternion
while eliminating the joint variables, it provides formulas for th
inverse kinematics of the robot. The procedure used here is
eral and can be constructed systematically; however, there
different ways of choosing the number and order of the joint va
ables that we want to eliminate. For a further discussion on
elimination procedure see Perez@41#.

Consider the design equations in~9!. We transform the set o
eight equations for a generic goal dual quaternionP̂ to a linear
system of quaternions,

Q̂~ û1 , . . . ,ûk!5@M̂ #V̂~ û1 , . . . ,û l !5 P̂. (14)

Table 2 Constrained serial chains that are not orientation-
limited

Robot DOF r t K nmax

RR 2 2 0 8 3
RRP 3 2 1 10 4

1
3

RRR 3 3 0 12 5
RRRP 4 3 1 14 8
RRRR 4 4 0 16 9
RRRPP 5 3 2 14 15
RRPRP 5 3 2 16 17
RRRRP 5 4 1 18 19
RRRRR 5 5 0 20 21

Table 3 The orientation-limited chains with cylindric joints

Robot DOF r t C K nR nmax e

PC 3 1 2 3 6 2 2
2
3 2

RPC 4 2 2 3 10 5 5
1
2 1

PRC 4 2 2 2 10 5 6 2
428 Õ Vol. 126, MAY 2004
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The vectorV̂ contains only joint variables and the matrix@M̂ #
contains the structural variables. Solving the linear system,
eliminate the joint variables contained in the vector,

V̂~ û1 , . . . ,û l !5@M̂ #21P̂. (15)

The solution of the system provides the inverse kinematics,
the relations among the variables inV̂ are used to define the
reduced design equations. This general procedure will be de
oped in detail for the example below.

7 The Spatial RPRP Robot
In this section we examine the spatial RPRP robot and form

late its dual quaternion kinematics equations. We obtain its des
equations and count how many positions we can specify. We so
the general RPRP using polynomial continuation, and then ex
ine the special case of the RPC, in which the axes of the final
joints are parallel, and obtain an algebraic solution.

7.1 The General RPRP Robot. The spatial RPRP robot is a
four-degree-of-freedom robot. The fixed axisG5g1eg0 allows
rotation of angleu about it. This is followed by a translationd
along an arbitrary directionh, a rotation of anglef about an
arbitrary axisW5w1ew0, and a translationb along an arbitrary
directionu, see Fig. 2.

7.1.1 The Design Equations for the RPRP Robot.The dual
quaternion kinematics equations are obtained by composing
dual quaternions that represent each joint axis,

Q̂RPRP~u,d,f,b!5Ĝ~u,0!Ĥ~0,d!Ŵ~f,0!Û~0,b! (16)

We use the formulas in Eq.~10! and Eq.~11! with r 52, t52 to
count the maximum number of goal dual transformations that
can specify. We obtainnmax57 andnR55, which means the RPRP

Fig. 2 The RPRP robot

Table 4 Chains with cylindric joints that are not orientation-
limited

Robot DOF r t C K nmax

C 2 1 1 2 4 2
RC 3 2 1 2 8 3

2
3

CC 4 2 2 4 8 5
RRC 4 3 1 2 12 7
RCC 5 3 2 4 12 13
RRPC 5 3 2 3 14 14
RPRC 5 3 2 2 14 15
RRRC 5 4 1 2 16 17
Transactions of the ASME
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is orientation limited, Table 1. The maximum number of comple
positions we can specify is five. In addition, we can specify fo
more positions with arbitrary translations, but with orientatio
that lie in the orientation workspace of the RPRP robot.

The design equations for the complete positions are obtaine
equating the expressions in Eq.~16! to the goal dual quaternions

Q̂RPRP~u1i ,d1i ,f1i ,b1i !5 P̂1i , i 52,3,4,5, (17)

and the design equations for the partially specified positions
equating the dual components of Eq.~16!, QRPRP

0 , to the dual
components of the four extra dual quaternions,

Q̂RPRP
0 ~u1i ,d1i ,f1i ,b1i !5 P̂0

1i , i 56,7,8,9. (18)

7.1.2 Solving the Design Equations for the RPRP Robot.We
define five complete task dual quaternions randomly. They
labeled 1 to 5 in Table 6 and Fig. 3.

We can solve separately for the directions of the revolute jo
axesg andw using the real part of each dual quaternion equa
in Eq. ~17!. The quaternion for the spherical RR robot,q̂RR5q0
1q, is expanded to

q05cos
u

2
cos

f

2
2g"w sin

u

2
sin

f

2

q5g sin
u

2
cos

f

2
1w cos

u

2
sin

f

2
1g3w sin

u

2
sin

f

2
. (19)

We can either solve the parameterized equations for the
part only shown in Eq.~19!, or use the inverse kinematics elim
nation. The elimination process, which is the same for every ro
with two revolute joints, is the one presented below for the R
robot, and yields six complex solutions@10#. For our task posi-
tions only two solutions are real, see Table 5.

We can now define the workspace of orientations of the ro
for each of the real solutions. For this example we used solutio
of Table 5. We can pick any orientation belonging to the wor
space to construct the four additional dual quaternions with a
trary translations. These are shown in Table 6 as the Plu¨cker co-
ordinates of the screw axis, the rotation about and the transla
along the axis. The complete set of task positions appears in
3.

The design equations contain the dual parts only, that is,

Q05H qx0

qy0

qz0

J 1i

5H px0

py0

pz0

J 1i

, i 52, . . . 9,

h"h51, u"u51,

Fig. 3 The five complete plus four translational task positions
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g"g050, w"w050. (20)

We create the linear system for the prismatic joint variabled
andb,

@Mdb#H d
b
1
J 5H 0

0
0
J (21)

and solve linearly for them. The condition for a solution to exist
det@Mdb#50. This condition yields one design equation per po
tion, which is free of joint variables. Using the Plu¨cker conditions
to eliminate two of the variables, the final set of design equati
has the structure

Mi : hx~A11ux1A12uy1A13uz!1hy~A21ux1A22uy1A23uz!

1hz~A31ux1A32uy1A33uz!50, i 51, . . . ,8, (22)

where the Ai j are linear functions ofg0 and w0 , Ai j 5C1
1C2gx01C3gy01C4gz01C5wx01C6wy01C7wz0 . The equa-
tions are multi-linear in the components ofh, u and$g0 ,w0%. We
use the Plu¨cker conditions to eliminate four of the variables. Du
to the structure of the equations, a simple elimination of the co
ponents ofw0 allows us to transform this set of equations in t
final set of six cubic equations in six variables.

This set of six multi-linear equations inh, u andg0 has a total
degree of 729. We obtain a sharper bound for the number of r
by computing the linear product decomposition~LPD! Bezout
number, which is 90~Verschelde@42#!. We solve these equation
using the polynomial homotopy continuation software PHC dev
oped by Verschelde@42#.

A random linear product start system with 240 start solutio
was used, and it took the program 7.5 minutes on a PowerPC
at 733 MHz to find all solutions associated with each of the t
real solutions of~19!. In the first case, PHC yields 68 solutions
which 21 are regular and, of those, 7 are real roots. For the sec
case, PHC yields 21 regular solutions with 5 real roots. An

Table 5 Solutions for the orientations of the revolute joints

Joint Axis Direction

g (21.0610.09i ,20.4010.31i ,0.3810.58i )
w (20.2920.08i ,0.7610.96i ,1.2720.59i )
g (21.0620.09i ,20.4020.31i ,0.3820.58i )
w (20.2910.08i ,0.7620.96i ,1.2710.59i )
g ~20.48,20.78, 0.39!
w ~0.33,20.23, 0.91!
g ~0.04, 0.05, 0.99!
w ~0.70, 0.48, 0.53!
g (0.4720.40i ,21.2720.18i ,0.0620.80i )
w (1.0620.05i ,0.1520.30i ,0.2710.36i )
g (0.4710.40i ,21.2710.18i ,0.0610.80i )
w (1.0610.049i ,0.1510.30i ,0.2720.36i )

Table 6 The five complete plus four translational goal
positions

Position Axis Rot.~rad! Trans.

1 ~1.0, 0.0, 0.0; 0.0, 0.0, 0.0! 0 0
2 ~0.98,20.14, 0.16;20.51,21.81, 1.51! 1.75 2.21
3 ~0.28,20.46,20.84; 20.01,22.18, 1.20! 2.34 21.20
4 ~0.44,20.31, 0.84;22.61,21.41, 0.86! 2.82 20.68
5 ~20.08,20.01,20.99; 1.09,20.43,20.09! 2.83 1.85
6 ~0.35, 0.69, 0.63; 0.44,20.44, 0.23! 2.92 5.72
7 ~20.61,20.64,20.46; 20.51,20.98, 2.04! 2.16 4.17
8 ~20.09, 0.08, 0.99;21.62,20.30,20.12! 4.71 22.48
9 ~0.82, 0.37, 0.44;20.92,20.75, 2.33! 1.74 22.75
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ample solution is listed in Table 7 and presented in Fig. 4 an
The RPRP robot was displayed using the software SYNTHETICA,
@43# and @44#.

7.2 Special Case: The RPC Robot. The design equations
of the RPRP robot are specialized to those of the RPC robo
imposing the following set of constraints:

g"h50, w"h50, w3u50W . (23)

This defines an RPC robot that has its P-joint perpendicular to
axes of the R and C joints.

The RPC robot is a four-degree-of-freedom robot. The fix
axis G5g1eg0 allows rotation of angleu about it. This is fol-
lowed in the chain by a translationd along a directionh and
finally a rotation of anglef and a translationb along an axisW
5w1ew0, see Fig. 6.

7.2.1 Kinematics Equations for the RPC Robot.The dual
quaternion kinematics equations are obtained by composing
dual quaternions that represent each joint axis,

Q̂RPC~u,d,f,b!5Ĝ~u,0!Ĥ~0,d!Ŵ~f,b!. (24)

We expand Eq.~24!, Q̂RPC5Q̂01Q, to obtain

Table 7 An RPRP robot that reaches 5 complete positions
plus 4 translations

Joint Axis Direction Moment

G ~0.04, 0.05, 0.99! ~22.12,23.55, 0.25!
H ~20.46, 0.63, 0.63! ~22.22,23.22, 1.62!
W ~0.70, 0.48, 0.53! ~20.35,22.42, 2.62!
U ~20.82,20.12,20.56! ~0.33, 3.06,21.17!
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wherec ands stand for cosine and sine respectively.

7.2.2 The Design Equations for the RPC Robot.Using Eq.
~10!, we compute the number of complete positions, withr 52,
t52, but considering the constraints in Eq.~23!. We obtainnmax
55 complete spatial goal positions, same value that we obtain
nR . In this case we can solve for five complete task positions

For the direct solution of the parameterized equations, whic
presented later, we just need to equate the expressions in Eq~25!
and Eq.~26! to the task dual quaternions,

Q̂RPC~u1i ,d1i ,f1i ,b1i !5 P̂1i , i 52,3,4,5. (27)

7.2.3 Inverse Kinematics Elimination for the RPC Rob
We can write the design equations in Eq.~27! as the linear trans-
Fig. 4 The RPRP robot reaching the task positions 1, 2, 3 and 4
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Fig. 5 The RPRP robot reaching the task positions 5, 6, 7, 8, and 9
the
Fig. 6 The RPC robot
anical Design
Q̂RPC~u,d,f,b!5@M̂ #V̂~u,f,d!5 P̂, (28)

whereV̂ is

V̂~u,f,d!5

¦

sin
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2
cos

f

2
1e

d

2
cos

u

2
sin

f

2

cos
u

2
sin

f

2
1e

d

2
sin

u

2
cos

f

2

sin
u

2
sin

f

2
1e

d

2
cos

u

2
cos

f

2

cos
u

2
cos

f

2
1e

d

2
sin

u

2
sin

f

2

§
. (29)

If we write the dual quaternions as 8-dimensional vectors,
matrix @M̂ # of Eq. ~28! has the form:

@M̂ #5F A ] 0

¯ ¯

B ] C
G (30)

where the submatrices are
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0 0 2g"w 1G , (31)

@B#5F g01
b

2
g3w w0 g03w1g3w02

b

2
g

b

2
w

2
b

2
g"w 2

b

2
2~g0

•w1g"w0! 0
G

(32)

and

@C#5F h3w g3h h ~g"w!h

2h"w 2g"h 0 ~g3w!•hG . (33)

We solve for the components of the vectorV̂ by inverting the
matrix @M̂ #,

V̂~u,f,d!5F A21
] 0

¯ ¯

2C21BA21
] C21

G P̂ (34)

The matrices are invertible for nondegenerated cases. The
terminant of the matrix@A# is equal to (g3w)•(g3w); it is non-
zero when the joint axes are not parallel. Similarly, the deter
nant of matrix@C# is h•(g3w). The inverses of these submatric
are easily expressed as row vectors; their expressions as ma
of row vectors can be found in the Appendix.

We solve for the rotational components ofV̂,

¦

sin
u

2
cos

f

2

cos
u

2
sin

f

2

sin
u

2
sin

f

2

cos
u

2
cos

f

2

§
5@A#21P̂R , (35)

and for the translational components,

¦

d

2
cos

u

2
sin

f

2

d

2
sin
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cos

f

2

d

2
cos

u

2
cos

f

2

d

2
sin

u

2
sin

f

2

§
52~@C#21@B#@A#21!P̂R1@C#21P̂0 , (36)

whereP̂R5p1pw , P̂05p01pw0 .
Notice that the solution in Eq.~35!, presented in the Appendix

corresponds to any robot with two revolute joints, and toget
Eq. ~35! and Eq.~36! give the inverse kinematics for the join
variablesu, f, andd. The solutions of Eq.~36! contain the joint
variableb that we eliminate below.

To create the reduced design equations we use the rela
among the variables we solved for in Eq.~35! and Eq.~36!. For
the rotational components, the relationR is

R:

sin
u

2
sin

f

2

cos
u

2
sin

f

2

5

sin
u

2
cos

f

2

cos
u

2
cos

f

2

. (37)
432 Õ Vol. 126, MAY 2004
de-

i-
s
rices

,
er

t

ions

Substitute the values obtained solving Eq.~35! ~see Appendix!
and collect terms to obtain the first reduced design equationR,

~pwg"p3w1g•~p3~p3w!!!~g3w"g3w!2/~g3w"g3w!50
(38)

If we require thatg3wÞ0, which restricts the pair of revolute
joints from generating a pure planar movement, then we obta

R1 : pwg"p3w1g•~p3~p3w!!50. (39)

It is interesting to notice that this equation corresponds to b
the matrix equation and the equivalent screw triangle formulat
in the following way,

R15g•~@AEuler2I #w!5tan
c

2
2

g•~pu3w!

~pu3g!•~pu3w!
, (40)

where AEuler is the expression of the rotation matrix obtaine
using the Euler parameters, andpu5p/upu with sinc/25upu and
cosc/25pw .

Same procedure can be applied to the variables we solve fo
Eq. ~36!. Being careful to choose the relations that make the eq
tions well-conditioned, we can define the two independent re
tions

L1 :
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cos

f

2

cos
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2
cos

f

2

5

d

2
sin

u

2
sin
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sin
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2
sin
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2
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d

2
cos

u

2
sin

f

2

cos
u

2
sin

f

2

5

d

2
sin

u

2
cos

f

2

sin
u

2
cos

f

2

. (41)

With the solution of Eq.~36!, whose expression can be foun
in the Appendix, we obtain two linear equations inb. If we denote
themL1 :A1b/21B150, L2 :A2b/21B250, we create the secon
reduced design equation by equating both solutions forb,

R2 :
B1

A1
5

B2

A2
. (42)

These two reduced design equations, plus the set of Plu¨cker and
extra constraints, form the final set of 15 reduced equations in
parameters,

$R1 ,R2%
i , i 51, . . . 4,

g"g51, g"g050,

w"w51, w"w050,

h"h51, h"g50, h"w50. (43)

7.2.4 Solving the Design Equations for the RPC Robot.The
reduced equations~43! can be solved algebraically. Notice that w
can again solve for the revolute joint directionsg andw separately
in the revolute equationsR1 . Once we have those, the directionh
is completely specified by the two constraints in Eq.~23!. The
translation equationsR2 are linear in the moment components
the revolute joint axes,g0 andw0.

The algebraic solution for the directiong andw is obtained as
for RR spherical chains, see McCarthy@10#. It consists of a two-
step elimination procedure that yields a sixth degree polynom
This polynomial yields an even number of real roots. As the tra
lation equations are linear, the total number of solutions for
RPC robot is equal to the number of solutions for the orientatio
that is, six complex solutions.

For our design example, the goal displacements shown on T
8 and Fig. 7 have been randomly generated. The algebraic s
tion of the reduced design equations yields six solutions, ou
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which two are real, see Table 9. The synthesis procedure
implemented in the design software SYNTHETICA @43#, see Fig. 8.

8 Conclusions
This paper introduces a dual quaternion formulation for t

kinematic synthesis of constrained serial chains. The kinema
equations of the chain are transformed to successive screw
placements, and then written in dual quaternion form. These d
quaternion kinematics equations are evaluated at a finite se
task positions to yield design equations for the chain.

A count of the number of design parameters and design eq
tions yields the number of task positions needed to determine
dimensions of a given class of constrained serial chains. We
that chains with one or two revolute joints can be orientatio
limited, in which case a strategy exists that allows the synthesi
these chains such that they reach an excess positions usin
translation equations.

Fig. 7 The goal positions

Table 8 The goal positions

Axis Rot.~rad! Trans.

~1.0, 0.0, 0.0; 0.0, 0.0, 0.0! 0 0
~0.33,20.26, 0.91; 0.60,21.02,20.50! 2.28 0.32

~0.52,20.56, 0.64; 1.10, 1.47, 0.37! 1.43 20.27
~0.32,20.84, 0.43;20.70, 0.00, 0.52! 5.09 1.66

~20.55, 0.07,20.83; 21.31,20.03, 0.86! 4.55 1.09
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We demonstrate this theory by formulating the design equati
for the RPRP serial chain, which is orientation-limited, and so
these equations using polynomial continuation. We also formu
and solve the design equations for the RPC chain, which
special case of the RPRP robot. The design equations for
chain can be solved algebraically. The results show that the
quaternion design equations provide a convenient and useful
for the synthesis of constrained serial chains.
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Appendix
The inverses of the submatrices of Eq.~34! are

@A21#5
1

~g3w!•~g3w! F g2~g"w!w 0

w2~g"w!g 0

g3w 0

~g"w!g3w ~g3w!•~g3w!

G
(44)

and, using the conditions in Eq.~23!,

@C21#5
1

h•~g3w! F 2g 0

2w 0

~h•~g3w!!h 2g"w

0W 1

G . (45)

We obtain the solutions for the joint variables
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Table 9 The joint axes for the RPC robots

Joint Axis Direction Moment

G ~20.42,20.48, 0.77! ~3.52,20.36, 1.73!
h ~0.29,20.87,20.39!
W ~20.92,20.36, 0.12! ~0.25,20.05, 1.78!
G ~0.20,20.43, 0.88! ~0.07, 1.18, 0.55!
h ~0.44,20.76,20.47!
W ~20.37,20.63, 0.68! ~0.10, 0.32, 0.36!
G (20.6120.23i ,20.1420.01i ,0.8320.17i ) (0.1612.22i ,21.5422.93i ,20.9310.96i )
h (20.5520.21i ,0.9420.17i ,20.1120.35i )
W (20.1720.71i ,0.2410.021i ,1.1920.11i ) (0.6920.81i ,21.4525.57i ,0.6411.49i )
G (20.6110.23i ,20.1410.01i ,0.8310.17i ) (0.1622.22i ,21.5412.93i ,20.9320.96i )
h (20.5510.21i ,0.9410.17i ,20.1110.35i )
W (20.1710.71i ,0.2420.021i ,1.1910.11i ) (0.6910.81i ,21.4515.57i ,0.6421.49i )
G (1.5521.10i ,21.6221.57i ,0.8321.01i ) (25.09111.74i ,11.63223.31i ,7.6422.65i )
h (0.3520.82i ,20.8410.20i ,21.0420.44i )
W (20.1220.97i ,21.5110.02i ,0.1420.61i ) (6.4921.83i ,22.1625.07i ,2.0921.81i )
G (1.5511.10i ,21.6211.57i ,0.8311.01i ) (25.09211.74i ,11.63123.31i ,7.6412.65i )
h (0.3510.82i ,20.8420.20i ,21.0410.44i )
W (20.1210.97i ,21.5120.02i ,0.1410.61i ) (6.4911.83i ,22.1615.07i ,2.0911.81i )
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When using the relation between the variables of Eq.~46!, and
simplifying the extra factors, we obtain a design equation with
joint variables. This equation can be expanded to

R1 : gx~~2py
22pz

2!wx1~pxpy2pwpz!wy1~pwpy1pxpz!wz!

1gy~~pxpy1pwpz!wx1~2px
22pz

2!wy1~pypz2pwpx!wz!

1gz~~pxpz2pwpy!wx1~pwpx1pypz!wy1~2px
22py

2!wz!

50 (48)
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