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Abstract: This article presents a formulation of the design equations for a spatial serial chain
that uses the Clifford algebra exponential form of its kinematics equations. This is the even
Clifford algebra C þ(P 3), known as dual quaternions. These equations define the position and
orientation of the end effector in terms of rotations or translations about or along the joint
axes of the chain. Because the coordinates of these axes appear explicitly, specifying a set of
task positions these equations can be solved to determine the location of the joints. At the
same time, joint parameters or certain dimensions are specified to ensure that the resulting
robotic system has specific features.
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1 INTRODUCTION

This article presents the formulation of design
equations for a spatial serial chain robot using the
Clifford exponential form of its kinematics
equations. This approach can be viewed as a general-
ization of the inverse kinematics problem, in which
the locations of the joint axes, not just the joint
angles, are computed to ensure that the chain can
reach a specified set of task positions.

In what follows, the authors review the robot syn-
thesis theory and then formulate the exponential
form of the kinematics equations of a serial chain,
which can be modified to form the Clifford algebra
design equations. It is possible to count the
number of structural and joint parameters to deter-
mine the number of positions needed to completely
define the serial chain. The Clifford algebra form of
these design equations provides a convenient alge-
braic structure, which is exploited in a numerical
solver.

2 LITERATURE REVIEW

The geometric design of a robot manipulator defines
the topology and dimensions of the articulated
system that provides the end-effector position and
velocity performance needed for a specified set of
applications. Herve [1] shows how to use the sub-
groups of the Lie group of rigid body displacements
to formulate robotic systems with desired workspace
properties. Wenger [2] describes the benefits of new
serial chain topologies that allow reconfiguration
within the workspace. Chablat et al. [3] and Li et al.
[4] demonstrate different approaches to the design
of specialized parallel platforms that optimize
position and velocity performance, which seek a
manipulator that has particular performance charac-
teristics throughout its workspace.

A related approach to design seeks the robot
manipulator that has specified position and velocity
performance at precise locations within its work-
space. Lee and Mavroidis [5, 6] formulate and solve
the design equations for a 3R spatial chain that
reaches four arbitrarily specified positions – R
denotes a revolute or hinged joint. This involves
equating the kinematics equations of the chain to
four selected positions and solving for the Denavit–
Hartenberg parameters that satisfy these matrix
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equations. Perez and McCarthy [7, 8] formulate
and solve the design equations for the RPC and
RRP and related chains. This work builds on a tra-
dition of spatial mechanism synthesis dating back
to Suh [9] and Tsai and Roth [10] (see also references
[11–13]).

The complexity of the geometric design problem
increases with the number of structural parameters.
Four independent parameters define the axis of a
revolute joint and two define a prismatic joint; there-
fore, the spatial 5R chain has 20 structural par-
ameters. Table 1 lists the five-degree-of-freedom
(dof) chains and their associated permutations. It
also lists the chains that are formed by combining
the revolute and prismatic joints into spherical (S),
cylindrical (C), and universal (T) joints – an RRR
chain with concurrent axes forms an S joint, an
RP chain with parallel axes forms a C joint, and an
RR chain with perpendicular intersecting axes
forms a T joint. A total of 126 topologies for five-dof
serial chains are obtained. The design equations for
the PPS, TS, CS, RPS, and RRS chains were originally
formulated by Chen and Roth [14] and were recently
solved by Su et al. [15] using polynomial homotopy.
The most challenging is the RRS chain, which has 12
structural parameters and design equations of total
degree 4 194 304 that yielded 42 615 solutions.

The goal of this article is a systematic formulation
of the design equations for all serial chains. A benefit
of the approach is that it can also be applied to the
design of serial chains with six or more degrees of
freedom.

3 KINEMATIC EQUATIONS OF A SERIAL CHAIN

The position and orientation of the end effector of a
serial chain are defined in terms of its joint para-
meters and physical dimensions by the kinematics
equations. The Denavit–Hartenberg formulation is
used to assign the local joint coordinate frames
(Fig. 1) necessary to define these equations [16, 17].

Let Si, i ¼ 1, . . . , n, denote the n joint axes in the
chain, which may define the axis of either a revolute
or a prismatic joint. Introduce the line Ai,iþ1 which is
the common normal to the axes Si and Siþ1. The

origin of the joint frame Ti is set at the intersection
of Si and Ai,iþ1, such that the z-axis is Si and the
x-axis is Ai,iþ1 [18].

This allows to write the kinematics equations of
the chain in the form

D ¼ GZðu1, d1ÞXða12, a12ÞZðu2, d2Þ . . .
Xðan&1,n, an&1,nÞZðun, dnÞH ð1Þ

where Zðui, diÞ and Xðai,iþ1, ai,iþ1Þ are the 4 ' 4
homogeneous transforms

Zðui, diÞ ¼

cosui & sinui 0 0

sinui cosui 0 0

0 0 1 di

0 0 0 1

2

6664

3

7775 and

Xðai,iþ1, ai,iþ1Þ( ¼

1 0 0 ai,iþ1

0 cosai,iþ1 & sinai,iþ1 0

0 sinai,iþ1 cosai,iþ1 0

0 0 0 1

2

6664

3

7775

The parameters ui and di define the rotation of a
revolute joint and the slide of a prismatic joint and
ai,iþ1 and ai,iþ1 define the dimensions of each link.
Collectively, these are known as the Denavit–
Hartenberg parameters. The transformation G locates
the base of the robot in the world frame andH locates
the tool frame relative to the last joint frame.

3.1 Product of exponentials

Rather than to use the Denavit–Hartenberg para-
meters for design, the 4 ' 4 homogeneous trans-
forms are written as matrix exponentials [19] so
that the coordinates of the joint axes appear expli-
citly in the kinematics equations. The joint axes are
expressed as lines using the Plücker coordinates.
The Plücker coordinates of an axis S are given by

S ¼ ðS, S0Þ ¼ ðS, C ' SÞ ð3Þ

Fig. 1 Local frames for a serial chain

Table 1 The five-dof serial chains and the number of

permutations

Chain Permutations Special cases Permutations

PRPRP 10 CCP, CRPP, TPPP 19
RPRPR 10 CCR, PPS, TCP, TRPP,

CRRP
36

RRRRP 5 CS, RPS, TCR, TRRP,
CRRR, TTP

33

RRRRR 1 TS, RRS, TRRR, TTR 12
Total 26 100
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where the first three-dimensional vector, S, is a unit
vector defining the direction of the axis and the
second one, S0, is called the moment and is obtained
as the cross product of a point on the axis, C, and the
direction S. This is a particular case of a dual vector
V ¼ (V, W ), in which the direction is a unit vector
and the pitch is zero. This is captured by the Plücker
conditions below,

jSj ¼ 1 and S ) ðC ' SÞ ¼ 0 ð4Þ

so that only four of the six coordinates defining an
axis are independent.

Consider a displacement in which the moving
body rotates the angle f and slides the distance k
around and along the screw axis S ¼ ðS, C ' SÞ.
Let m ¼ k=f, then the screw J ¼ ðS, VÞ ¼
ðS, C ' Sþ mSÞ, where m is called the pitch of the
screw. The components of J define the 4 ' 4 twist
matrix

J ¼

0 &sz sy vx
sz 0 &sx vy
&sy sx 0 vz
0 0 0 0

2

664

3

775; ð5Þ

and the 4 ' 4 homogeneous transform representing
a rotation f and a translation k about and along
an axis S, Tðf, k, SÞ, is defined as the matrix
exponential

Tðf, k, SÞ ¼ efJ ð6Þ

The matrix exponential takes a simple form for
the matrices Zðui, diÞ and Xðai,iþ1, ai,iþ1Þ. The
screws defined for these two transformations are
K ¼ ðk, nkÞ and I ¼ ði, liÞ, where n ¼ di=ui and l ¼
ai,iþ1=ai,iþ1 are their respective pitches. Thus

Zðui, diÞ ¼ euiK and Xðai,iþ1, ai,iþ1Þ ¼ eai,iþ1I

ð7Þ

and the kinematics equations (1) become

DðqÞ ¼ Geu1Kea12Ieu2K . . . ean&1, nIeunKH; ð8Þ

where q ¼ ðu1; u2; . . . ; unÞ is the joint parameter
vector. This is one way to write the product of
exponentials form of the kinematics equations. In
the next section, this is modified slightly for use
as the design equations.

3.2 Relative displacements

If a reference position is chosen for the end effector,
denoted by D0, then the associated joint angle vector

q0 can be determined, as well as the world frame
coordinates of each of the joint axes. The transform-
ation D0 is often selected to be the configuration in
which the joint parameters are zero and is called
the zero reference position by Gupta [20].

The displacement of the serial chain relative to
this reference configuration is defined by DðDqÞ ¼
DðqÞDðq0Þ&1 and yields a convenient formulation for
the kinematics equations. Assume thatD0 is a general
position of the end effector defined by joint par-
ameters q0, so Dq ¼ q& q0. Then, using the kin-
ematics equations (1)

DðDqÞ ¼ ðGZðu1, d1Þ . . .Zðun, dnÞHÞ
' ðGZðu10, d10Þ . . .Zðun0, dn0ÞHÞ&1 ð9Þ

To expand this equation, the following partial
displacements are introduced:

Ai0 ¼ GZðu10, d10ÞXða12, a12Þ . . .Xðai&1,i, ai&1,iÞ
ð10Þ

where, for example

A10 ¼ G and A20 ¼ GZðu10, d10ÞXða12, a12Þ

Now, insert the identity Zðui,0Þ&1A&1
i0 Ai0Zðui0Þ ¼ I

after the first n2 1 joint transforms Zðui, diÞ in
equation (9) to obtain the sequence of terms

TðDui, SiÞ ¼ Ai0Zðui, diÞZðui,0;di;0Þ&1A&1
i0

¼ Ai0ZðDui, DdiÞA&1
i0 ð11Þ

The result is the relative transformation that takes
the form

DðDqÞ ¼ TðDu1, S1ÞTðDu2, S2Þ . . .TðDun, SnÞ ð12Þ

where Si are the Plucker coordinates of each joint
axis obtained by transforming the joint screw K to
the world frame by the coordinate transformations
defined in equation (11).

Using the exponential form of the transformations
TðDui, SiÞ, the relative kinematics equations (12) are
written as

DðDqÞ ¼ eDu1S1eDu2S2 . . . eDunSn ð13Þ

where the matrices Si are defined as

Si ¼ Ai0KA&1
i0 ð14Þ
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The product of exponential form of the kinematics
equations (8) is now obtained as

D ¼ DðDqÞD0 ¼ eDu1S1eDu2S2 . . . eDunSnD0 ð15Þ

The difference between this equation and equation
(8) is that the coordinates of the joint axes of the
serial chain are defined in the world frame.

4 THE EVEN CLIFFORD ALGEBRA C 1(P 3)

The Clifford algebra of the projective three space P 3

is a 16-dimensional vector space with a product
operation that is defined in terms of a scalar product
[18]. The elements of even rank form an eight-
dimensional subalgebra C þ(P 3) that can be ident-
ified with the set of 4 ' 4 homogeneous transforms.
Mullineux [21] describes the use of this Clifford
algebra for motion interpolation, and Daniilidis
[22], Bayro-Corrochano et al. [23], and Perez and
McCarthy [24], describe its use in robot design and
camera calibration.

The typical element of C þ(P 3) can be written as
the eight-dimensional vector given by

Â ¼ a0 þ a1i þ a2j þ a3k þ a4eþ a5ieþ a6je

þ a7ke; ð16Þ

where the basis elements i, j, and k are the well-
known quaternion units and e is called the dual
unit. The quaternion units satisfy the multiplication
relations

i2 ¼ j2 ¼ k2 ¼ &1, ij ¼ k, jk ¼ i,

ki ¼ j, and ijk ¼ &1

ð17Þ

The dual number e commutes with i, j, and k and
multiplies by the rule e2 ¼ 0.

In these calculations, it is convenient to consider
the linear combination of quaternion units to be
a vector in three dimensions, so the notation A ¼
a1i þ a2j þ a3k and A8 ¼ a5i þ a6j þ a7k is used (the
small circle in the superscript is often used to dis-
tinguish coefficients of the dual unit). This allows to
write the Clifford algebra element (16) as

Â ¼ a0 þ Aþ a4eþ A8e ð18Þ

Now, collecting the scalar and vector terms, this
element takes the form

Â ¼ ða0 þ a4eÞ þ ðAþ A8eÞ ¼ âþ A ð19Þ

The dual vector A ¼ Aþ A8e can be identified
with the pairs of vectors that define lines and
screws [13].

Using this notation, the Clifford algebra product of
elements Â ¼ âþ A and B̂ ¼ b̂þ B takes the form

Ĉ ¼ ðb̂þ BÞðâþ AÞ

¼ ðb̂â& B ) AÞ þ ðâBþ b̂A þ B' AÞ ð20Þ

where the usual vector dot and cross products are
extended linearly to dual vectors.

4.1 Exponential of a vector

The product operation in the Clifford algebra allows
to compute the exponential of a vector u S, where
jSj ¼ 1, as

euS ¼ 1þ uSþ u 2

2
S2 þ u 3

3!
S3 þ ) ) ) ð21Þ

From equation (20), S ¼ 0þ S and compute

S2 ¼ ð0þ SÞð0þ SÞ ¼ &1,

S3 ¼ &S, S4 ¼ 1, and S5 ¼ S; ð22Þ

which means

eu S ¼ 1& u 2

2
þ u 4

4!
þ ) ) )

! "
þ ðu& u 3

3!
þ u 5

5!
þ ) ) )ÞS

¼ cos uþ sin uS ð23Þ

This is the well-known unit quaternion that rep-
resents a rotation around the axis S by the angle
f ¼ 2u. The rotation angle f is double that given in
the quaternion, because the Clifford algebra form
of a rotation requires multiplication by both Q ¼
cos uþ sin uS and its conjugate Q! ¼ cos u& sin uS. In
particular, if x and X are the coordinates of a point
before and after the rotation, then the quaternion
coordinate transformation equation

X ¼ Q xQ! ð24Þ

For this reason, the quaternion is often written in
terms of one-half the rotation angle, i.e.
Q ¼ cosf=2þ sinf=2S.

4.2 Exponential of a screw

The Plücker coordinates S ¼ ðS, C ' SÞ of a line can be
identified with the Clifford algebra element
S ¼ Sþ eC ' S. Similarly, the screw J ¼ ðS, VÞ ¼
ðS, C ' Sþ mSÞ becomes the element J ¼ Sþ eV ¼
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ð1þ meÞS. Using the Clifford product, the exponential
of the screw u J is computed,

eu J ¼ 1þ Jþ u2

2
J2 þ u3

3!
J3 þ ) ) ) ð25Þ

Note that S2 ¼ &1, therefore

J2 ¼ &ð1þ meÞ2 ¼ &ð1þ 2meÞ, J3 ¼ &ð1þ 3meÞS
J4 ¼ 1þ 4me and J5 ¼ ð1þ 5meÞS

ð26Þ

yielding

euJ ¼ 1& u2

2
þ u4

4!
þ ) ) )

! "
þ u& u3

3!
þ u5

5!
þ ) ) )

! "
S

& ume u& u3

3!
þ ) ) )

! "
þ ume 1& u2

2
þ ) ) )

! "
S

¼ ðcos u& d sin ueÞ þ ðsin uþ d cos ueÞS ð27Þ

where d ¼ um is the slide along the screw axis associ-
ated with the angle u. At this point, it is convenient to
introduce the dual angle û ¼ uþ de, so the identities

sin û ¼ sin uþ d cos ue and

cos û ¼ cos u& d sin ue ð28Þ

are derived using the series expansions of sine and
cosine.

Equation (27) introduces the unit dual quaterion,
which is identified with spatial displacements. To
see the relationship, the rotation term is factored
out to obtain

Q̂ ¼ cos ûþ sin ûS ¼ ð1þ teÞðcos uþ sin u SÞ ð29Þ

where

t ¼ dSþ sin u cos u C ' S& sin2 uðC ' SÞ ' S ð30Þ

This vector is one-half the translation d ¼ 2t of
the spatial displacement associated with this dual
quaternion, similar to the relation of the rotation
angle f ¼ 2u. This is because the Clifford algebra
form of the transformation of line coordinates x to
X by the rotation f around an axis S with the trans-
lation d involves multiplication by both the Clifford
algebra element Q̂ ¼ cos ûþ sin û S and its conjugate
Q̂! ¼ cos û& sin û S, given by

X ¼ Q̂ x Q̂! ð31Þ

For this reason, the unit dual quaternion is usually
written in terms of the half rotation angle and half
displacement vector

Q̂ ¼ cos
f̂

2
þ sin

f̂

2
S

¼ 1þ 1

2
de

! "
cos

f

2
þ sin

f

2
S

! "
ð32Þ

where

d ¼ 2
k

2
Sþ sin

f

2
cos

f

2
ðC ' SÞ & sin2

f

2
ðC ' S' SÞ

! "

ð33Þ

The dual angle f̂ ¼ fþ ke was obtained by
introducing the slide along S given by k ¼ fm.

4.3 Clifford algebra kinematics equations

The exponential of a screw defines a relative displace-
ment from an initial position to a final position in
terms of a rotation around and slide along an axis.
This means that the composition of Clifford algebra
elements defines the relative kinematics equations
for a serial chain that are equivalent to equation (13).

Consider the nC serial chain in which each joint
can rotate an angle ui around, and slide the distance
di along the axis Si for i ¼ 1, . . . , n. Let u0 and d0 be
the joint parameters of this chain in the reference
configuration, so

Dq̂ ¼ ðuþ deÞ & ðu0 þ d0eÞ

¼ ðDû1, Dû2, . . . , DûnÞ ð34Þ

Then, the movement from this reference configur-
ation is defined by the kinematics equations

D̂ðDq̂Þ ¼ e
Dû1
2 S1e

Dû2
2 S2 ) ) ) e

Dûn
2 Sn

¼ c
Dû1
2

þ s
Dû1
2

S1

 !

c
Dû2
2

þ s
Dû2
2

S2

 !

) ) )

' c
Dûn
2

þ s
Dûn
2

Sn

 !

ð35Þ

Note that s and c denote the sine and cosine
functions, respectively.

5 DESIGN EQUATIONS FOR A SERIAL CHAIN

The goal of the design problem is to determine the
dimensions of a spatial serial chain that can position
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a tool held by its end effector in a given set of task
positions. The location of the base of the robot, the
position of the tool frame, and the link dimensions
and joint angles are considered to be design
variables.

5.1 Specified task positions

Identify a set of task positions Pj, j ¼ 1, . . . , m. Then,
the physical dimensions of the chain are defined by
the requirement that for each position Pj, there is a
joint parameter vector qj such that the kinematics
equations of the chain satisfy the relations

Pj ¼ DðqjÞ, i ¼ 1, . . . , m ð36Þ

Now, choose P1 as the reference position and
compute the relative displacements PjP

&1
1 ¼

P1j, j ¼ 2, . . . , m.
For each of these relative displacements P1j,

the dual unit quaternion is P̂1j ¼ cosðDf̂1j=2Þþ
sinðDf̂1j=2ÞP1j, j ¼ 2, . . . , m. The dual angle Df̂1j

defines the rotation about and slide along the axis
P1j, which defines the displacement from the first
to the jth position. Now writing equation (35) for
the m& 1 relative displacements, the following
equation is obtained

P̂1j ¼ e
Dû1j
2 S1e

Dû2j
2 S2 ) ) ) e

Dûnj
2 Sn ,

j ¼ 2, . . . , m ð37Þ

The result is 8(m2 1) design equations. The
unknowns are the n joint axes Si, i ¼ 1, . . . , n,
and the n(m2 1) pairs of joint parameters
Dûij ¼ Duij þ Ddije.

5.2 Counting

The eight components of the unit Clifford algebra
kinematics equations (37) are not independent. In
particular, it is easy to see that a dual unit quaternion
satisfies the identity

Q̂Q̂! ¼ e
Df̂
2 Se

&Df̂
2 S ¼ 1 ð38Þ

which imposes a pair of constraints: one on the real
part and one on the dual part. Only six of the eight
design equations for each of the m2 1 relative posi-
tions are independent, which means there are
6(m2 1) design equations.

This is true only for a unit dual quaternion; it
can be shown that for a unit dual quaternion
defined as a composition of screw rotations, the
unit condition is implied by the axes being lines,
that is, by each axis satisfying the two Plücker

constraints presented in equation (4). This is first
shown for a quaternion defined by a single screw
displacement, Q̂ ¼ eðDf=2ÞS. If the unit condition is
tested, then

Q̂Q̂! ¼ c
Df̂

2
þ s

Df̂

2
S

 !

c
Df̂

2
& s

Df̂

2
S

 !

¼ c
Df̂

2
c
Df̂

2
þ s

Df̂

2
s
Df̂

2
S ) S ð39Þ

If S ) S ¼ 1, then

Q̂Q̂! ¼ c
Df̂

2
c
Df̂

2
þ s

Df̂

2
s
Df̂

2

¼ c
Df

2

! "2

þ s
Df

2

! "2

¼ 1 ð40Þ

In general, for a dual quaternion obtained as the
composition of transformations about n joint axes,

Q̂Q̂! ¼ e
Df1
2 S1 ) ) ) e

Dfn
2 Sn

# $

e
Df1
2 S1 ) ) ) e

Dfn
2 Sn

# $!
ð41Þ

If this product is expanded, then

Q̂Q̂! ¼ e
Df1
2 S1 ) ) )e

Dfn
2 Sn

# $
e

&Dfn
2 Sn ) ) )e

&Df1
2 S1

# $

¼e
Df1
2 S1 ) ) ) e

Dfn
2 Sne

&Dfn
2 Sn

# $
) ) )

'e
&Df1

2 S1 ð42Þ

using the associative property of the Clifford
algebra product. Applying the previous result,
eðDfn=2ÞSneð&Dfn=2ÞSn ¼ 1 iff Sn ) Sn ¼ 1. Repeat the pro-
cess for every pair of individual transformations to
obtain

Q̂Q̂! ¼ 1 , Si ) Si ¼ 1, i ¼ 1, . . . , n ð43Þ

The set of six independent equations in the dual
quaternion equalities and the Plücker conditions
for each joint axis define the miminum set of inde-
pendent equations for the design problem.

The joint axis parameters in a chain that consists of
r revolute joints and p prismatic joints are counted.
For synthesis purposes, a purely prismatic joint is
defined by the unit vector S that defines the slide
direction, so it has two independent parameters.
Any location of the prismatic joint will give the
same relative motion at the end effector, the only
difference being in the physical structure with
respect to the adjacent joints. The revolute joint
axis is defined by the Plücker coordinate vectors,
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S ¼ Sþ C ' Se, that have four independent com-
ponents due to the conditions in equation (4).

Thus, the joint axes that define this chain have
K ¼ 6r þ 3p components minus 2r þ p Plücker
constraints, i.e. 4r þ 2p independent unknowns.

Revolute and prismatic joints each have a single
joint parameter, either a rotation angle or a slide dis-
tance, which means that the chain has ðr þ pÞðm& 1Þ
unknown joint parameters that define the m2 1
relative positions.

Subtracting the number of equations from the
number of unknowns yields

E ¼ 4r þ 2pþ ðr þ pÞðm& 1Þ & 6ðm& 1Þ
¼ ð3r þ pþ 6Þ þ ðr þ p& 6Þm ð44Þ

where E is the excess of unknowns over equations.
This excess can be made equal to zero for chains
with dofs ¼ r þ p * 5, in which case

m ¼ 3r þ pþ 6& c

6& ðr þ pÞ ð45Þ

task positions are specified. If fewer than this
number of task positions are defined, or if the
chain has six or more dofs, then the values for the
excess design parameters can be freely selected. In
equation (45), c has been added to denote any extra
constraint that may be imposed on the axes.
Table 2 presents the maximum number of positions
that can be defined for some chains with five degrees
of freedom.

It is interesting to note that because the composition
of displacements has the structure of a semi-direct
product, the rotations are obtained by operating
rotations only. A specific counting scheme can be
generated for the rotations by considering only the
first quaternion of the dual quaternion. The maximum
number of task rotations is obtained as

mR ¼ 3þ r

3& r
ð46Þ

In some cases with r ¼ 1 or 2, the rotation part of the
design equations can be used to determine the

directions of these axes independently. These chains
are called ‘orientation limited’. Refer to Perez and
McCarthy [24] for a discussion of this case.

5.3 Special cases: T, S, and PP joints

The counting formula in equation (45) is used for
revolute and prismatic joints assembled in serial
chains. The RR and RRR chains can be further
specialized by introducing geometric constraints
between their joint axes to define the universal and
spherical joints, respectively. In addition, two con-
secutive prismatic joints span the group of displace-
ments TP, planar translations on plane P, and they
form a special type of joint called PP. The following
subsections show how in some of these cases, the
number of design parameters is less than that
obtained by considering directly the geometric
constraints on the axes.

5.3.1 The T joint

Consider the RR chain formed by axes Si and Siþ1. If
these axes are required to intersect at a right angle,
then a Hooke’s joint is obtained, also called a univer-
sal joint, which is denoted by a T following Crane and
Duffy [25]. This geometric constraint is defined by
the dual vector equation

T: Si ) Siþ1 ¼ 0 ð47Þ

which expands to define the two constraints

T: Si ) Siþ1 ¼ 0 and Si ) S8iþ1 þ S8i ) Siþ1 ¼ 0

ð48Þ

The design equations for the RRR chain, for
instance, are easily transformed into design
equations for the TR chain by including these two
constraint equations with the appropriate indices.

5.3.2 The S joint

In the same way, a sequence of three revolute joints,
RRR chain, can be constrained such that they inter-
sect at a point, and the pairs in sequence are perpen-
dicular. This is a common construction for an active
spherical joint, denoted by S, which allows full
orientation freedom around the intersection point.
However, for synthesis applications, it can be
shown that any three axes create the same shperical
joint.

Denote three axes as Si, Siþ1, and Siþ2, then the
equations that define this joint consist of the dual

Table 2 The number of task positions that determine the

structural parameters for five-dof serial chains

Chain K Task positions Total equations

PRPRP 21 15 91
RPRPR 24 17 104
RRRRP 27 19 117
RRRRR 30 21 130

Kinematic synthesis of spatial serial chains 7
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vector constraints

S: Si ) Siþ1 ¼ 0, Si ) Siþ2 ¼ 0, and

Siþ1 ) Siþ2 ¼ 0

ð49Þ

If the spherical joint is written as the dual quater-
nion product of these individual axes

Ŝðu1, u2, u3Þ ¼ Ŝ1ðu1ÞŜ2ðu2ÞŜ3ðu3Þ ð50Þ

when expanded, it gives

Ŝðu1, u2, u3Þ ¼ a4 þ a1S1 þ a2S2 þ a3S3 ð51Þ

where each ai appears as combinations of the joint
variables

a1 ¼ sin
u1
2
cos

u2
2
cos

u3
2
þ cos

u1
2
sin

u2
2
sin

u3
2

a2 ¼ cos
u1
2
sin

u2
2
cos

u3
2
& sin

u1
2
cos

u2
2
sin

u3
2

a3 ¼ sin
u1
2
sin

u2
2
cos

u3
2
þ cos

u1
2
cos

u2
2
sin

u3
2

a4 ¼ cos
u1
2
cos

u2
2
cos

u3
2
& sin

u1
2
sin

u2
2
sin

u3
2

ð52Þ

Now we show how any directions S1, S2, S3 can be
used to define the spherical joint. Equate equation
(50) to a goal displacement P̂ ¼ ðpw þ ep0

wÞ þ ðPþ
eP0Þ

Ŝðu1, u2, u3Þ ¼ P̂ ð53Þ

and solve linearly for the combinations of joint vari-
ables in the ai factors using the real part of the dual
quaternion equation

S1 S2 S3 0
0 0 0 1

% & a1

a2

a3

a4

8
>><

>>:

9
>>=

>>;
¼ P

pw

' (
ð54Þ

where the scalar term is placed in the fourth row. The
values obtained for the joint angles,

a1 ¼ S1 ) P, a2 ¼ S2 ) P, a3 ¼ S3 ) P, a4 ¼ pw

ð55Þ

are related by the following expression

R: ðS1 ) PÞ2 þ ðS2 ) PÞ2 þ ðS3 ) PÞ2 þ p2
w ¼ 1 ð56Þ

Noticing that 1& p2
w ¼ P ) P, this expression can be

written as

R0: ðS1 ) PÞS1 þ ðS2 ) PÞS2 þ ðS3 ) PÞS3 ¼ P ð57Þ

which states that the vector sum of the projections of
P on the three joint directions is equal to P. This
equation holds for any three perpendicular
directions.

The expressions of the joint variables are subs-
tituted in the dual part of equation (53). Owing
to the fact that the last component of the dual
quaternion in equation (51) is equal to zero, a
spherical joint cannot perform the most general
relative displacement.

If the dual part of each joint axis is expressed as
S0i ¼ C ' Si, where C is the common intersection
point, the dual part of the equations becomes

M: ðS1 ) PÞC ' S1 þ ðS2 ) PÞC ' S2

þ ðS3 ) PÞC ' S3 ¼ P0 ð58Þ

and this is equal to

M0: C ' ððS1 ) PÞS1 þ ðS2 ) PÞS2
þ ðS3 ) PÞS3Þ ¼ P0 ð59Þ

Observe that the expression in parenthesis is the
left-hand side of equation (57). Use this to obtain

M00: C ' P ¼ P0 ð60Þ

This set of three equations specifies two out of
the three coordinates of the point. At least two rela-
tive positions need to be defined to fully specify
this point. However, as noted previously, they
cannot be general positions, if an exact solution is
required.

Thus for a spherical joint, only the coordinates of
the intersection point C and the three joint angles
are design variables. This gives a different counting
than the one obtained by solving for three perpen-
dicular and intersecting revolute joints.

5.3.3 The PP joint

When a serial robot is to be designed with two con-
secutive prismatic joints, these can be made to be
coplanar, as the location of a prismatic joint is not
a design parameter. The set of displacements pro-
duced by the two prismatic joints forms the sub-
group TP of planar translations on a plane P. The
subgroup has dimension 2, and two more par-
ameters are needed to define the direction normal
to the plane; for synthesis purposes, the location of
the plane is again arbitrary.

8 A Perez-Gracia and J M McCarthy
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The PP joint is created by using two prismatic
joints, which is a total of four joint parameters plus
two joint slides; however, both directions do not
appear independently in the equations. Let S1 and
S2 be the directions of the two prismatic joints. The
displacements of the PP joint are obtained as the
dual quaternion product

Ŝðd1, d2Þ ¼ Ŝ1ðd1ÞŜ2ðd2Þ ð61Þ

When expanded, it yields

Ŝ0ðd1, d2Þ ¼ 1þ e
d1

2
S1 þ

d2

2
S2

! "
ð62Þ

The joint variables d1 and d2 are solved in the dual
part of the design equations

1
2 S1

1
2 S2

) * d1

d2

' (
¼ P0 ð63Þ

For the system to have a solution, the determinant
of the augmented matrix must be zero, this yields the
simplified design equation

M: ðS1 ' S2Þ ) P0 ¼ 0 ð64Þ

The parameters of the prismatic joints always
appear as a cross product, and it can be substituted
by the common normal, S1 ' S2 ¼ N. Within the
plane defined by N, any two independent directions
can be used to define the joint axes.

Thus, for synthesis purposes, the design para-
meters for two consecutive prismatic joints are the
two slides and the vector N defining the normal
direction to S1 and S2. It coincides with the para-
meters needed to define the subgroup TP.

Other cases in which the number of design para-
meters is less than that obtained by imposing extra
constraints on the joint axes can be found in a
similar way.

6 ASSEMBLING THE DESIGN EQUATIONS

The structure of the Clifford algebra design
equations provides a systematic approach to
assemble the design equations for a broad range
of serial chains. The basic approach is to formulate
the design equations for the nC serial chain, and
then restrict the joint variables to form prismatic
or sliding joints and impose geometric conditions
on the axes to form universal or spherical joints
or to account for specific geometry. The result is a
systematic way of defining the design equations

for a broad range of chains. The procedure for the
3C serial chain is presented, and it has been
implemented in a numerical solver, as well as for
the 2C, 4C, and 5C cases.

6.1 The 3C chain

The Clifford algebra form of the relative kinematics
equations for the 3C chain can be written as

D̂ðDûÞ ¼ c
Dû1
2

þ s
Dû1
2

S1

 !

c
Dû2
2

þ s
Dû2
2

S2

 !

' c
Dû3
2

þ s
Dû3
2

S3

 !

ð65Þ

where Si ¼ Si þ Si8e defines the ith joint axis in the
reference position and Dûi ¼ Dui þ Ddi defines
the rotation and slide of the cylindric joint around
the ith axis.

Expand the right-hand side of equation (65) using
the Clifford product to obtain

D̂ðDûÞ ¼ ðĉ1ĉ2 & ŝ1ŝ2S1 ) S2 þ ŝ1ĉ2S1

þ ĉ1ŝ2S2 þ ŝ1ŝ2S1 ' S2Þðĉ3 þ ŝ3S3Þ,

¼ ĉ1ĉ2ĉ3 & ŝ1ŝ2ĉ3S1 ) S2 & ŝ1ĉ2ŝ3S1 ) S3

& ĉ1ŝ2ŝ3S2 ) S3 & ŝ1ŝ2ŝ3S1 ' S2 ) S3

þ ŝ1ĉ2ĉ3S1 þ ĉ1ŝ2ĉ3S2 þ ĉ1ĉ2ŝ3S3

þ ŝ1ŝ2ĉ3S1 ' S2 þ ŝ1ĉ2ŝ3S1 ' S3

þ ĉ1ŝ2ŝ3S2 ' S3 þ ŝ1ŝ2ŝ3

' ððS1 ' S2Þ ' S3 & ðS1 ) S2ÞS3Þ ð66Þ

For convenience, notations ĉi ¼ cosDûi=2 and
ŝi ¼ sinDûi=2 are introduced.

Equation (66) can be written in matrix form to
emphasize that it is the linear combination of
the eight monomials formed as products of the
joint angles, which is assembled into an array in
reversed lexicographic order,

V̂ ¼ ĉ1ĉ2ĉ3, ŝ1ĉ2ĉ3, ĉ1ŝ2ĉ3, ĉ1ĉ2ŝ3,
+

ŝ1ŝ2ĉ3, ŝ1ĉ2ŝ3, ĉ1ŝ2ŝ3, ŝ1ŝ2ŝ3
,T ð67Þ

To do this, the vector form of the dual unit
quaternion Q̂ ¼ cosDû=2þ sinðDû=2ÞS, is introduced,
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given by

Q̂ ¼

sin
Dû

2
ðSx þ Sx8eÞ

sin
Dû

2
ðSy þ Sy8eÞ

sin
Dû

2
ðSz þ Sz8eÞ

cos
Dû

2

8
>>>>>>>>>>><

>>>>>>>>>>>:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

¼
sin

Dû

2
S

cos
Dû

2

8
>><

>>:

9
>>=

>>;
ð68Þ

Collecting terms in equation (66), the following
matrix is obtained

D̂ðDûÞ ¼
0 S1 S2 S3 S1'S1 S1'S3 S2'S3

1 0 0 0 &S1 )S2 &S1 )S3 &S2 )S3

%

&ðS1 )S2ÞS3þðS1'S2Þ'S3

&S1'S2 )S3

&
V̂ ð69Þ

The Clifford algebra notation is compact in that
each column of this matrix actually forms a column
of four dual coefficients, or eight real coefficients
if the dual components of the dual quaternion are
written after the real components, forming an
eight-dimensional vector. Similarly, each of the
monomials in V̂ expands into four real terms,
which are listed as

M¼ V,
Dd1

2
V,

Dd2

2
V,

Dd3

2
V

! "
ð70Þ

where V is the array of real parts of V̂. Thus, equation
(69) expands to an 8 ' 32 matrix equation. The
number k of joint variable monomials in an nC
serial chain is given by

k¼ ðnþ1Þ2n ð71Þ

Thus, these equations become 8 ' 12 for 2C,
8 ' 80 for 4C, and 8 ' 192 for 5C chains.

The kinematics equations (69) can be used directly
for the design of a 3C chain. In what follows, these
equations are specialized to obtain the design
equations for a variety of special serial chains.

6.2 RCC, RRC, and RRR chains

The ith cylindric joint in the 3C chain is converted to
a revolute joint simply by setting Ddi ¼ 0. This can be
done in seven different ways to define three permu-
tations of the RRC chain, three permutations of the
RCC chain, and the RRR chain.

For example, the monomials in equation (69) that
define the RCC, CRC, or CCR chains are given by

RCC: M ¼ V,
Dd2

2
V,

Dd3

2
V

! "

CRC: M ¼ V,
Dd1

2
V,

Dd3

2
V

! "

CCR: M ¼ V,
Dd1

2
V,

Dd2

2
V

! "

ð72Þ

Similarly, the RRC, RCR, and CRR chains have the
monomials

RRC: M ¼ V,
Dd3

2
V

! "

RCR: M ¼ V,
Dd2

2
V

! "

CRR: M ¼ V,
Dd1

2
V

! "

ð73Þ

Finally, the RRR chain is defined by the monomial
list

RRR: M ¼ V ð74Þ

Note that if an nC chain is specialized to have r
revolute joints, then the number of monomials is
given by

k ¼ ðn& r þ 1Þ2n ð75Þ

6.3 PCC, PPC, and PPP chains

A two-step process is required to convert the ith
cylindric joint to a prismatic joint. The first step is
to set Dui ¼ 0. The second step consists of specializ-
ing the joint axis Si ¼ Si, so that its dual part is zero.
This latter constraint arises because the pure trans-
lation defined by a prismatic joint depends only on
the direction, not on the location in space of its axis.

To define themonomials for the three permutations
of the PCC chain, W1 ¼ ðc1c2c3, c1s2c3, c1c2s3, c1s2s3Þ
is introduced, and W2 and W3, where the subscript i
indicates that si is made equal to zero, are similarly
defined. This allows to define the arrays of monomials

PCC: M ¼ W1,
Dd1

2
W1,

Dd2

2
W1,

Dd3

2
W1

! "

CPC: M ¼ W2,
Dd1

2
W2,

Dd2

2
W2,

Dd3

2
W2

! "

CCP: M ¼ W3,
Dd1

2
W3,

Dd2

2
W3,

Dd3

2
W3

! "
ð76Þ
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The monomials for the three permuations of the
PPC chain are easily determined by introducing the
set of monomials W12 ¼ ðc1c2c3, c1c2s3Þ and similarly
W13 and W23

PPC: M ¼ W12,
Dd1

2
W12,

Dd2

2
W12,

Dd3

2
W12

! "

PCP: M ¼ W13,
Dd1

2
W13,

Dd2

2
W13,

Dd3

2
W13

! "

CPP: M ¼ W23,
Dd1

2
W23,

Dd2

2
W23,

Dd3

2
W23

! "

ð77Þ

Finally, the PPP chain is defined by the monomial
list

PPP: M ¼ ðc1c2c3Þ,
Dd1

2
ðc1c2c3Þ,

!

Dd2

2
ðc1c2c3Þ,

Dd3

2
ðc1c2c3Þ

"
ð78Þ

The number of monomials in an nC chain with p of
the joints restricted to be prismatic is seen to be

k ¼ ðnþ 1Þ2n&p ð79Þ

Table 3 summarizes the constraints needed to
transform the C joint into the most common types
of joints. Notice that, for the spherical joint and
other special cases, the approach of adding con-
straints between consecutive joint axes is used. This
will not yield the minimum set of joint parameters,
but it gives satisfactory results with the numerical
solver.

This approach to the formulation of the design
equations for special cases of the CCC chain can be
extended to any nC chain.

7 SYNTHESIS OF 5C AND RELATED CHAINS

In this section, a numerical synthesis algorithm is
presented which uses the Clifford algebra exponen-
tial design equations for the 5C serial chain (Fig. 2).

The special cases of this chain include robots with
up to five joints and up to ten degrees of freedom.

The design equations for a specific serial robot are
to be obtained from the 5C robot equations by
imposing conditions on some of the axes or joint
variables. The kinematics equations for the 5C
robot are given by

Q̂5C ¼ e
Dû1
2 S1e

Dû2
2 S2e

Dû3
2 S3e

Dû4
2 S4e

Dû5
2 S5

¼ cos
Dû1
2

þ sin
Dû1
2

S1

 !

cos
Dû2
2

þ sin
Dû2
2

S2

 !

) ) ) cos
Dû5
2

þ sin
Dû5
2

S5

 !

ð80Þ

The kinematics equations for a serial chain con-
sisting of revolute (R), prismatic (P), universal (T),
cylindrical (C), or spherical (S) joints can be obtained
from the 5C robot using the approach presented in
the previous section. For example, the kinematics
equation of the TPR robot is obtained by requiring
the axes S1 and S2 to be perpendicular and coinci-
dent, setting the joint variables d1, d2, u3, and d4 to
zero. The extra joint is eliminated by setting u5 and
d5 to zero. Other joints, such as the helical (H) or
planar (E) joints, can also be modelled by imposing
constraints on the axes and joint parameters.

To facilitate the specialization of the general 5C
robot to a specific serial chain topology, its
kinematics equations are organized as a linear com-
bination of the products of joint angles and slides,
which are considered to be monomials with coeffi-
cients defined by the structural parameters of the
joints. Structured in this way, the kinematics
equations of the 5C robot are a linear combination
of 192 monomials. These monomials can be orga-
nized into six sets of 32 products of sines and
cosines of the Dui joint angles, which can be

Table 3 Constraints that specialize C joints to R, P, T, and

S joints

Joint Axes Constraints

R Si Ddi ¼ 0
P Si Dui ¼ 0
C Si None
T Si, Siþ1 Ddi ¼ 0, Ddiþ1 ¼ 0, Si ) Siþ1 ¼ 0
S Si, Siþ1, Siþ2 Ddi ¼ 0, Ddiþ1 ¼ 0, Ddiþ2 ¼ 0

Si ) Siþ1 ¼ 0, Siþ1 ) Siþ2 ¼ 0, Si ) Siþ2 ¼ 0

Fig. 2 The 5C serial robot

Kinematic synthesis of spatial serial chains 11

JMES166 # IMechE 2006 Proc. IMechE Vol. 220 Part C: J. Mechanical Engineering Science



assembled into the vector

V ¼ ðs1s2s3s4s5, ðs1s2s3s4c5Þ5, ðs1s2s3c4c5Þ10,
ðs1s2c3c4c5Þ10, ðs1c2c3c4c5Þ5, c1c2c3c4c5Þ ð81Þ

where ci ¼ cosðDui=2Þ, si ¼ sinðDui=2Þ. The parenth-
eses ðÞj denote the j possible permutations of each
set of sines and cosines. The remaining five sets of
monomials are obtained by multiplying V by the
joint slides Ddi=2, hence a total set of monomials
M is expressed as

M ¼ V,
Dd1

2
V,

Dd2

2
V,

Dd3

2
V,

Dd4

2
V,

Dd5

2
V

! "

ð82Þ

The kinematics equations of the 5C robot can now
be written as the linear combination

Q̂5C ¼
X192

i¼1

Kimi, mi [ M ð83Þ

The coefficients Ki are eight-dimensional vectors
containing the structural variables defining the
joint axes.

This equation is adjusted to accommodate a revo-
lute or prismatic joint inserted as the jth joint axis by
selecting the non-zero components of the vector M.
Note that, if the jth C joint is replaced by a revolute
joint, then the slide Ddj is zero, which eliminates 32
components in M. Similarly, if this joint is replaced
by a prismatic joint, then the angle Duj ¼ 0, which
eliminates 16 terms from the vector V.

These equations are constructed starting with the
array L5C ¼ {1, 2, . . . , 192} of indices that denote the
components of M for the general 5C chain, sorted
as indicated above. The arrays LRj , LPj , and LCj

denote the non-zero components of M for the cases
when joint j is a revolute, prismatic, or cylindrical
joint, respectively. These arrays are given by

LRj ¼ i : cos
Duj
2

^ sin
Duj
2

! "
[ mi _

Ddj

2
! mi

' (

LPj ¼ i :
Ddj

2
^ cos

Duj
2

! "
[ mi _ sin

Duj
2

! mi

' (

LCj
¼ i :

Ddj

2
^ cos

Duj
2

^ sin
Duj
2

! "
[ mi

' (

ð84Þ

where ^ and _ denote the logical OR, and AND oper-
ations, respectively. Finally, the array of indices L for
a specific serial chain topology is computed by

intersecting the arrays obtained for all of the joints,
that is

L ¼
\5

j¼1

ðLRj
< LPj

< LCj
Þ ð85Þ

where LPj ¼ ; and LCj ¼ ; if j is a revolute joint, for
example.

The kinematics equations for the specific serial
chain is now given by

Q̂ ¼
X

i[L

Kimi ð86Þ

The synthesis equations for the chain are obtained
by equating the kinematics equations in equation
(86) to the set of task positions P̂1i, that is

Q̂ ¼ P̂1i, i ¼ 2, . . . ;m ð87Þ

where the maximum number of task positions, m, is
obtained for the chosen topology using equations
(45) and (46). Additional constraint equations may
be added to account for the specialized geometry of
T and S joints or for any other geometric constraint
present in the robot.

These synthesis equations are solved to determine
the joint axes Si in the reference configuration, as
well as for values for the joint variables that ensure
that the serial chain reaches each of the task
positions.

7.1 Synthesis algorithm

An algorithm for the formulation and numerical
solution of the synthesis equations for serial chains
has been implemented in the java-based design
software Synthetica 2.0 [26]. This algorithm creates
specific topologies by specializing the general 5C
chain. For convenience, implementation separates
the general case into the four subclasses of 2C, 3C,
4C, and 5C related serial chains.

The synthesis equations are solved numerically
using a Java translation by Steve Verrill of the
Levenberg–Marquardt algorithm in the FORTRAN
MINPACK source produced by Garbow, Hillstrom,
and others. The input data consist of the set of task
positions and the topology of the serial chain. The
topology of the chains is used to construct its
kinematics equations Q̂. These equations are set
equal to the task positions P̂1i to yield the synthesis
equations as the difference, Q̂& P̂1i, i ¼ 2, . . . , m.
The numerical solver finds values for the com-
ponents of the joint axes and joint variables that
minimize this difference.
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The implementation of the numerical solver does
not attempt to solve the minimum set of design
equations. The minimum number of equations is
defined by equation (45). Instead, all 8ðm& 1Þ þ c
synthesis equations are used in the numerical
solver. For the cases of 3R, 4R, and 5R serial
chains, this approach introduces two, eight, and 30
redundant equations, respectively. Experience

shows that these additional equations enhance the
convergence of the numerical algorithm. Previous
experience using the minimum set of independent
design equations led to a much longer compu-
tational time, duplication of solutions due to the
ambiguity in the sign of the joint directions, and
many false solutions that were degenerate cases. It
seems that the extra equations add a redundancy

Table 4 Task of relative positions to synthesize serial chains

Position Dual quaternion

1 Identity
2 ((0.02535, 20.1474, 0.5806, 0.8003), (0.6600, 20.2973, 0.08989, 20.1409))
3 ((0.06318, 20.3675, 0.3791, 0.8469), (0.7705, 20.3797, 0.1974, 20.3106))
4 ((20.02824, 20.4374, 20.8982, 0.03244), (20.3837, 0.7690, 20.3383, 0.6676))
5 ((0.4115, 20.2907, 20.4150, 0.7576), (0.3204, 0.3672, 0.1397, 0.04343))
6 ((20.04529, 20.4268, 20.9020, 0.04803), (20.3938, 0.7421, 20.2971, 0.6427))
7 ((0.2846, 20.01418, 20.3655, 0.8861), (20.06626, 20.06411, 0.1066, 0.06422))
8 ((0.3629, 0.3513, 0.4772, 0.7191), (20.4320, 20.5377, 20.1164, 0.5579))
9 ((20.1819, 0.7938, 0.02589, 0.5798), (20.7315, 20.9360, 20.5138, 1.075))
10 ((20.04342, 0.9348, 20.2038, 0.2875), (21.015, 20.6633, 20.9378, 1.339))
11 ((0.07687, 0.9269, 20.3672, 0.007037), (21.111, 20.3781, 21.161, 1.365))
12 ((20.1883, 20.8085, 0.4857, 0.2737), (1.076, 0.07761, 1.235, 21.223))
13 ((20.2919, 20.5372, 0.5513, 0.5677), (0.8691, 20.2563, 1.106, 20.8693))
14 ((20.4481, 20.5161, 0.5141, 0.5183), (0.7849, 20.2161, 1.019, 20.5474))
15 ((20.6824, 20.4463, 0.4176, 0.4009), (0.5950, 20.1318, 0.8025, 0.03009))
16 ((20.8586, 20.3212, 0.3032, 0.2603), (0.3796, 20.05823, 0.4581, 0.6466))
17 ((20.9260, 20.1912, 0.2636, 0.1908), (0.2702, 20.07531, 0.1021, 1.095))
18 ((20.8879, 20.08849, 0.3694, 0.2595), (0.3217, 20.2424, 20.2018, 1.305))
19 ((20.7381, 20.002776, 0.5437,0.3994), (0.3954, 20.4890, 20.4246, 1.305))
20 ((20.5203, 0.05977, 0.6776, 0.5163), (0.4024, 20.6879, 20.5098, 1.154))
21 ((20.3710, 0.09429, 0.7306, 0.5655), (0.3714, 20.7775, 20.5147, 1.038))

Table 5 The positions used to design serial chain robots and the computation time

Chain dof Position Positions selected Time

TC 4 6 (5, 9, 13, 17, 21) 1.8 s
RRC 4 7 (2, 5, 9, 13, 17, 21) 1.7 s
TRP 4 7 (2, 5, 9, 13, 17, 21) 46.5 s
RRRP 4 8 (2, 3, 5, 9, 13, 17, 21) 7.4 s
TT 4 7 (2, 5, 9, 13, 17, 21) 1.8 min
TRR 4 8 (2, 3, 5, 9, 13, 17, 21) 54.0 s
RRRR 4 9 (2, 3, 4, 5, 9, 13, 17, 21) 17.7 s
SF 5 6 (5, 9, 13, 17, 21) 19.9 s
PSP 5 8 (2, 3, 5, 9, 13, 17, 21) 37.6 s
RCC 5 13 (2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 17, 21) 25.2 s
RRPC 5 14 (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 17, 21) 17.4 s
RPRC 5 15 (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 21) 22.3 s
TPC 5 12 (2, 3, 4, 5, 6, 7, 8, 9, 13, 17, 21) 69.7 s
PTC 5 13 (2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 17, 21) 1.7 min
TRF 5 13 (2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 17, 21) 1.6 min
TPRP 5 15 (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 21) 2.7 min
RRRF 5 15 (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 21) 3.3 min
RRPRP 5 17 (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21) 7.2 min
SC 5 8 (2, 3, 5, 9, 13, 17, 21) 16.9 s
SRP 5 10 (2, 3, 4, 5, 6, 9, 13, 17, 21) 3.0 min
TRC 5 15 (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 21) 2.6 min
RRRC 5 17 (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21) 2.3 min
TTP 5 15 (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 21) 5.3 min
TRRP 5 17 (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21) 3.6 min
RRRRP 5 19 (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21) 1.3 min
ST 5 10 (2, 3, 4, 5, 6, 9, 13, 17, 21) 27.6 s
SRR 5 12 (2, 3, 4, 5, 6, 7, 8, 9, 13, 17, 21) 5.2 min
TTR 5 17 (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21) 1.7 min
TRRR 5 19 (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21) 2.8 min
RRRRR 5 21 (2–21) 12.6 min
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that is useful to eliminate these degenerate cases
and to enhance the speed of convergence.

A random start value is generated to initialize the
numerical solver. The solver restarts with a new
random value if convergence is not achieved within
the specified limit. Although this approach cannot
guarantee convergence to a solution, so far the
solver has been able to always find a solution
within a reasonable time; experiments show that
the solver regularly returns solutions using from
zero to four restarts.

Examples of the computation time for a variety of
chains are presented in Table 5. These chains are
synthesized with a task of 21 randomly generated
positions. From these, the 20 relative dual quater-
nions indicated in Table 4 are computed. The
positions used for each serial chain are indicated in
Table 5.

8 APPLICATION EXAMPLE

To demonstrate the kinematic synthesis of spatial
serial chains, a goal trajectory was determined
using the Bezier interpolation of a set of spatial key
frames. From this trajectory, 12 positions shown in
Fig. 3 are selected to define the task. The topology
of the chain is specified to be the seven-dof CCS
serial robot. Note that this is a special case of a 5C
serial chain, obtained by requiring the last three C
joints to be restricted to revolute joints with axes
that intersect in a single point.

The CCS robot consists of a shoulder and an elbow
that allow both rotation and translation about and
along the axes, combined with a spherical wrist
(Fig. 4). In addition, the joint angles of the shoulder
C joint are constrained to have specific values for
the rotation and translation in each of the task pos-
itions (see Table 6 for the task positions and the
angle specification).

For this example, the Java software was run twice
to obtain two different solutions. The first solution
took two iterations of the solver with a total time of
91 s. The second solution took 61 s and one iteration.
Refer to Table 7 for the coordinates of the joint axes.
Figure 5 shows one of the resulting robots moving
along the desired task.

Fig. 3 The 12 positions defining the task

Table 6 Task positions and values for the first joint angles

Task Dual quaternion coordinates

1 (0.02, 20.15, 0.58, 0.80, 0.66, 20.30, 0.09, 20.14)
2 (0.06, 20.37, 0.38, 0.85, 0.77, 20.38, 0.20, 20.31)
3 (20.03, 20.44, 20.90, 0.03, 20.38, 0.77, 20.34, 0.67)
4 (0.41, 20.29, 20.41, 0.76, 0.32, 0.37, 0.14, 0.04)
5 (20.04, 20.43, 20.90, 0.05, 20.39, 0.74, 20.30, 0.64)
6 (0.28, 20.01, 20.36, 0.89, 20.07, 20.06, 0.11, 0.06)
7 (0.36, 0.35, 0.48, 0.72, 20.43, 20.54, 20.12, 0.56)
8 (20.18, 0.79, 0.03, 0.58, 20.73, 20.94, 20.51, 1.07)
9 (20.29, 20.54, 0.55, 0.57, 0.87, 20.26, 1.106, 20.87)
10 (20.93, 20.19, 0.26, 0.19, 0.27, 20.07, 0.10, 1.09)
11 (20.37, 0.09, 0.73, 0.56, 0.37, 20.78, 20.51, 1.04)

Joint
variables

Values

u1 ip=11, i ¼ 1, . . . , 11
d1 0:2i, i ¼ 1, . . . , 11

Table 7 CCS robots designed to perform the specified

task

Solution Joint axis Value

1 1 (0.14, 0.49, 0.86, 23.59, 20.45, 0.85)
2 (20.24, 0.92, 0.29, 22.44, 20.73, 0.26)
Wrist (0.23, 1.21, 20.12)

2 1 (0.72,2 0.50, 0.48, 0.40, 0.03, 20.57)
2 (20.10, 0.52, 20.85, 22.53, 0.17, 0.41)
Wrist (0.05, 0.72, 20.94)

Fig. 4 The CCS serial robot
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9 SUMMARY

This article uses the kinematics equations of a spatial
nC chain to formulate the generalized inverse kine-
matic problem. Rather than simply compute the
joint angles of a robot for a given task trajectory,
the structural parameters are also sought for. This
is a design problem with applications to modular
and reconfigurable robotic systems. This approach
may also be useful in the calibration of robots.

The exponential form of the kinematics equations
of the chain is reformulated using Clifford algebra to
obtain an efficient and systematic set of equations.
The derivation of the design equations for robots
derived from 2C to 5C chains is automated and veri-
fied using a numerical solver.

These generalized inverse kinematic problems
become complicated rapidly. In particular, fitting a
5R chain to a 21 task trajectory requires the solution

of 130 equations in 130 unknowns. Although individ-
ual solutions can be obtained numerically, a bound
on the total number of chains that can fit a given
task is unknown at this time.

The solution of this problem is demonstrated by
determining the structural parameters of a CCS
serial chain so that it reaches an arbitrarily specified
12 position task trajectory. In this problem, the
values for the first two joint parameters may be
freely specified and the remaining parameters are
solved for numerically.
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