Sequential Circuits: Latches and Flip-Flops

Sequential circuits

- Output depends on current input *and* past sequence of input(s)
- How can we tell if the input is current or from the past?
- A clock pulse can cause state changes in sequential circuits.

- What about an active low clock, i.e. CLK_L?
- Sequential circuits can remember past inputs
 - "Memory" is needed to remember the past

Practical discrete designs

- Feedback sequential circuits
 - Use ordinary gates and feedback loops to obtain memory in a logic circuit
 - Thus creating sequential-circuit building blocks, e.g. latches and flip-flops (many kinds)
- Clocked synchronous state machines
 - Use the building blocks from above, esp. edge-triggered D flipflops, to create sequential circuits
 - Whose inputs are examined and whose outputs change according to a controlling clock signal (the "triggering")

Bistable element

- Simplest sequential circuit 2 inverters forming a feedback loop
- Has two states
 - 1 state variable, Q, represents 2 states, i.e. $\mathbf{Q} = \mathbf{0}$ and $\mathbf{Q} = 1$

Bistable element

- Simplest sequential circuit 2 inverters forming a feedback loop
- Has two states
 - 1 state variable, Q, represents 2 states, i.e. Q = 0 and Q = 1

Analog analysis

- Assume pure CMOS thresholds, 5V rail
- Theoretical threshold center is 2.5 V

Analog analysis

- Assume pure CMOS thresholds, 5V rail
- Theoretical threshold center is 2.5 V

- Q and Q_L are not valid at 2.5 V.
- But in theory they can stay as such indefinitely metastable!

Analog analysis

- Assume pure CMOS thresholds, 5V rail
- Theoretical threshold center is 2.5 V

In metastable state

Metastability

• Metastability is inherent in a bistable element

Control the inputs for the bistable element?

- How do we control its inputs?
 Add control inputs S and R
- Now we have an S-R latch
- When S=R=0, Q "stores" the last Q (S: set, R: reset)
- 2 NOR gates are used

S-R latch operation

- When S=R=0, the latch behaves like a bistable element - Because $(x+0)' = x' \cdot 0' = x' \cdot 1 = x'$
- When S=R=1, we have both Q and QN equal to 0 - Because $(x+1)' = x' \cdot 1' = x' \cdot 0 = 0$
- Abnormal state for S-R latch is reached when S=R=1
 - Because Q=QN=0, but Q should \neq QN, logically
- Can you trace the remaining rows of the function table?
 - That is, when (S=0, R=1) and (S=1, R=0), what are Q and QN?

S-R latch operation (blue arrows indicate causality)

S-R latch timing parameters

- Propagation delay, e.g. LO-HI transition on S causes LO-HI on Q
- Minimum pulse width, $t_{pw(min)}$: minimum duration for an S (or R) transition to cause a "stable" transition of Q
- Latch remains metastable for a random duration of time
- Wait for at least $t_{pw(min)}$ after asserting S/R to avoid metastability

S-R latch symbols

S-R latch using NAND gates (a.k.a. S-bar-R-bar latch)

- S and R are active-low (not Q/QN)
- Can be built with NAND gates
- Much more popular than NOR logic
- Because NAND is faster than NOR
- Abnormal state: S_L = R_L = 0

S_L	R_L	Q	QN
0	0	1	1
0	1	1	0
1	0	0	1
1	1	last Q	last QN

S-R latch with enable (a.k.a. gated/clocked S-R latch)

s	R	С	Q	QN
0	0	1	last Q	last QN
0	1	1	0	1
1	0	1	1	0
1	1	1	1	1
х	х	0	last Q	last QN

Let C decide whether S and R can result in a bistable element. C can be a clock signal! Now S and R are active-high again. Metastability occurs when S=R=1, and C transitions from 1 to 0.

D latch (**D** for Data)

Think of this as a gated S-R latch with $R=S' \Rightarrow Only 3$ rows of the FT remain.

D latch operation

When C = 1, Q = D, i.e. Q "follows" D
When C = 0, Q does not change, i.e. Q "stores" the last D
D latch is (clock) level-triggered, not edge-triggered

D latch timing parameters

- When C = 1, Q follows D with delay
 - Propagation delays (in Q caused by C or D), i.e. $t_pLH(**)$ and $t_pHL(**)$
- When C = 0, Q remembers D during C's $1 \rightarrow 0$ transition
 - Setup time (D before C's falling edge), i.e. t_{setup}
 - Hold time (D after C's falling edge), i.e. t_{hold}
 - If D does not remain the same for $> (t_{setup} + t_{hold}) \Rightarrow$ metastability!

Positive edge-triggered D flip-flop (uses 2 D latches)

	D	CLK	Q	QN
1	0	_	0	1
2	1	_	1	0
3	х	0	last Q	last QN
4	х	1	last Q	last QN

- Row 1: M closed, S open, Q = QM = D = 0
- Row 2: M closed, S open, Q = QM = D = 1
- Row 3: M open and follows D, S closed
- Row 4: S open and follows QM, M closed
 - Row 1/2: M open \rightarrow close, S close \rightarrow open
 - Row 3 and Row 4 keep the last Q and QN
- S is open while CLK=1, but only changes at the <u>beginning of this interval</u>, because M is closed (unchanged) during <u>rest of interval</u>.

• Q only changes during <u>CLK transitions</u>

Positive edge-triggered D flip-flop functional behavior

CLK	CLK_L	Latch M	QM	Latch S	Q
(1/M)	(1/S)	status		status	
1	0	closed	D_{last}	open	QM =
\downarrow	\uparrow	closed \rightarrow open	D_{last}	open \rightarrow closed	B_{last}^{last}
0	1	open	D (QM	closed	D_{last}
1	\downarrow	open \rightarrow closed	D	closed \rightarrow open	D _{last} @↑
1	0	closed	D@ ↑	open	QM = Da

D flip-flop timing parameters

- Propagation delay (from CLK threshold to Q threshold, i.e. "CQ")
- Setup time (D before CLK)
- Hold time (D after CLK)
- D must <u>not</u> change within (Setup + Hold) window
- Window occurs around the triggering edge of <u>CLK</u>

Positive edge-triggered D flip-flop with Preset and Clear

Negative edge-trigged D flip-flop

• <u>Invert</u> the input CLK signal

+ve edge-triggered D FF

Positive-edge-triggered D flip-flop with enable

$$EN = 1: D = external D$$

 $EN = 0: D = last Q$
 $CLK = 0/1: keep last Q$

(b)

(C)

Edge-Triggered J-K flip-flop

 Not used much anymore

• Don't worry about them

Master/slave J-K flip-flop (pulse-triggered)

- last QN last Q

Timing diagram of master/slave J-K flip-flop

Master/slave S-R flip-flop

S	R	С	Q	QN
х	х	0	last Q	last QN
0	0	\Box	last Q	last QN
0	1	\Box	0	1
1	0	\Box	1	0
1	1	\Box	undef.	undef.

T flip-flops

T flip-flops with enable

Many types of latches and flip-flops

- S-R latch
- S_L-R_L latch
- S-R latch with enable
- D latch
- Edge-triggered D flip-flop
- Edge-triggered D flip-flop with enable
- Edge-triggered D flip-flop with preset and clear
- Scan flip-flop
- Edge-triggered J-K flip-flop
- Master/slave S-R flip-flop
- Master/slave J-K flip-flop
- T flip-flop
- T flip-flop with enable