Sequential Circuits: Latches and Flip-Flops

Sequential circuits

- Output depends on current input and past sequence of input(s)
- How can we tell if the input is current or from the past?
- A clock pulse can cause state changes in sequential circuits.

- What about an active low clock, i.e. CLK_L?
- Sequential circuits can remember past inputs
- "Memory" is needed to remember the past

Practical discrete designs

- Feedback sequential circuits
- Use ordinary gates and feedback loops to obtain memory in a logic circuit
- Thus creating sequential-circuit building blocks, e.g. latches and flip-flops (many kinds)
- Clocked synchronous state machines
- Use the building blocks from above, esp. edge-triggered D flipflops, to create sequential circuits
- Whose inputs are examined and whose outputs change according to a controlling clock signal (the "triggering")

Bistable element

- Simplest sequential circuit - 2 inverters forming a feedback loop
- Has two states
-1 state variable, Q , represents 2 states, i.e. $\mathrm{Q}=0$ and $\mathrm{Q}=1$

Bistable element

- Simplest sequential circuit - 2 inverters forming a feedback loop
- Has two states
-1 state variable, Q , represents 2 states, i.e. $\mathrm{Q}=0$ and $\mathrm{Q}=\mathbf{1}$

Analog analysis

- Assume pure CMOS thresholds, 5 V rail
- Theoretical threshold center is 2.5 V

Analog analysis

- Assume pure CMOS thresholds, 5V rail
- Theoretical threshold center is 2.5 V

- Q and Q_L are not valid at 2.5 V .
- But in theory they can stay as such indefinitely - metastable!

Analog analysis

- Assume pure CMOS thresholds, 5 V rail
- Theoretical threshold center is 2.5 V

In metastable state

Metastability

- Metastability is inherent in a bistable element

- Two stable points, one metastable point

Control the inputs for the bistable element?

- How do we control its inputs?
- Add control inputs S and R
- Now we have an S-R latch
- When $\mathrm{S}=\mathrm{R}=0, \mathrm{Q}$ "stores" the last Q (S: set, R: reset)
- 2 NOR gates are used

S	R	Q	$Q N$
0	0	last Q	last QN
0	1	0	1
1	0	1	0
1	1	0	0

S-R latch operation

- When $\mathrm{S}=\mathrm{R}=0$, the latch behaves like a bistable element
- Because ($\mathrm{x}+0)^{\prime}=\mathrm{x}^{\prime} \cdot 0^{\prime}=\mathrm{x}^{\prime} \cdot 1=\mathrm{x}^{\prime}$
- When $\mathrm{S}=\mathrm{R}=1$, we have both Q and QN equal to 0
- Because $(x+1)^{\prime}=x^{\prime} \cdot 1^{\prime}=x^{\prime} \cdot 0=0$
- Abnormal state for $S-R$ latch is reached when $S=R=1$
- Because $\mathrm{Q}=\mathrm{QN}=0$, but Q should $\neq \mathrm{QN}$, logically
- Can you trace the remaining rows of the function table?
- That is, when $(S=0, R=1)$ and $(S=1, R=0)$, what are Q and QN ?

S-R latch operation (blue arrows indicate causality)

S-R latch timing parameters

- Propagation delay, e.g. LO-HI transition on S causes LO-HI on Q
- Minimum pulse width, $\mathrm{t}_{\mathrm{pw}(\min)}$: minimum duration for an S (or R) transition to cause a "stable" transition of Q
- Latch remains metastable for a random duration of time
- Wait for at least $\mathrm{t}_{\mathrm{pw}(\min)}$ after asserting S / R to avoid metastability

S-R latch symbols

Preferred symbol

S-R latch using NAND gates (a.k.a. S-bar-R-bar latch)

- S and R are active-low (not Q/QN)
- Can be built with NAND gates
- Much more popular than NOR logic
- Because NAND is faster than NOR
- Abnormal state: S_L = R_L = 0

S-R latch with enable (a.k.a. gated/clocked S-R latch)

S	R	C	Q	QN
0	0	1	last Q	last QN
0	1	1	0	1
1	0	1	1	0
1	1	1	1	1
x	x	0	last Q	last QN

Let C decide whether S and R can result in a bistable element.

C can be a clock signal!
Now S and R are active-high again.
Metastability occurs when $\mathrm{S}=\mathrm{R}=1$, and C transitions from 1 to 0 .

D latch (D for Data)

C	D	Q	$Q N$
1	0	0	1
1	1	1	0
0	x	last Q	last $Q N$

Think of this as a gated $S-R$ latch with $R=S^{\prime} \Rightarrow$ Only 3 rows of the $F T$ remain.

D latch operation

When $C=1, Q=D$, i.e. Q "follows" D
When $\mathbf{C}=\mathbf{0}, \mathbf{Q}$ does not change, i.e. \mathbf{Q} "stores" the last \mathbf{D}
D latch is (clock) level-triggered, not edge-triggered

D latch timing parameters

- When $\mathrm{C}=1, \mathrm{Q}$ follows D with delay
- Propagation delays (in Q caused by C or D), i.e. $\mathrm{t}_{\mathrm{p}} \mathrm{LH}\left({ }^{* *}\right)$ and $\mathrm{t}_{\mathrm{p}} \mathrm{HL}\left({ }^{* *}\right)$
- When $\mathrm{C}=0$, Q remembers D during C's $1 \rightarrow 0$ transition
- Setup time (D before C's falling edge), i.e. $\mathrm{t}_{\text {setup }}$
- Hold time (D after C's falling edge), i.e. $\mathrm{t}_{\text {hold }}$
- If D does not remain the same for $>\left(\mathrm{t}_{\text {setup }}+\mathrm{t}_{\text {hold }}\right) \Rightarrow$ metastability!

Positive edge-triggered D flip-flop (uses 2 D latches)

D	CLK	Q	QN	
	0	-	0	1
1	1	-	1	0
2	1	-	1	last Q
3	x	0	last QN	
4	x	1	last Q	last QN

- Row 1: M closed, S open, $\mathrm{Q}=\mathrm{QM}=\mathrm{D}=0$
- Row 2: M closed, S open, $\mathrm{Q}=\mathrm{QM}=\mathrm{D}=1$
- Row 3: M open and follows D, S closed
- Row 4: S open and follows QM, M closed
- Row 1/2: M open \rightarrow close, S close \rightarrow open
- Row 3 and Row 4 keep the last \mathbf{Q} and $\mathbf{Q N}$
- S is open while $\mathrm{CLK}=1$, but only changes at the beginning of this interval, because M is closed (unchanged) during rest of interval.

Positive edge-triggered D flip-flop functional behavior

CLK $(\mathrm{f} / \mathrm{M})$	CLK_L $(\mathrm{f} / \mathrm{S})$	Latch M status	QM	Latch S status	Q
1	0	closed	$\mathrm{D}_{\text {last }}(\mathrm{a}) \uparrow$	open	$\mathrm{QM}=$
\downarrow	\uparrow	closed \rightarrow open	$\mathrm{D}_{\text {last }} @ \uparrow$	open \rightarrow closed	$\mathrm{D}_{\text {last }}^{\text {last }(\oplus)} \uparrow$
0	1	open	$\mathrm{D}(\mathrm{QM}$	closed	$\mathrm{D}_{\text {last }} @ \uparrow$
\uparrow	\downarrow	open \rightarrow closed	D	closed \rightarrow open	$\mathrm{D}_{\text {last }} @ \uparrow$
1	0	closed	$\mathrm{D} @ \uparrow$	open	$\mathrm{QM}=\mathrm{D} @ \uparrow$

D flip-flop timing parameters

- Propagation delay (from CLK threshold to Q threshold, i.e. "CQ")
- Setup time (D before CLK)
- Hold time (D after CLK)
- D must not change within (Setup + Hold) window
- Window occurs around the triggering edge of CLK

Positive edge-triggered D flip-flop with Preset and Clear

- Preset and clear inputs
- Works like S-R latch

Negative edge-trigged D flip-flop

- Invert the input CLK signal

D	CLK	Q	QN
0	-	0	1
1	-	1	0
x	0	last Q	last QN
x	1	last Q	last QN

+ve edge-triggered D FF

Positive-edge-triggered D flip-flop with enable

(b)

D	EN	CLK	Q	QN
0	1	Γ	0	1
1	1	Γ	1	0
x	0	Γ	last Q	last QN
x	x	0	last Q	last QN
x	x	1	last Q	last QN

(c)

Edge-Triggered J-K flip-flop

- Not used much anymore
- Don't worry about them

Master/slave J-K flip-flop (pulse-triggered)

Timing diagram of master/slave J-K flip-flop

Master/slave S-R flip-flop

S	R	C	Q	$Q N$
x	x	0	last Q	last QN
0	0	\square	last Q	last $Q N$
0	1	\square	0	1
1	0	\square	1	0
1	1	\square	undef.	undef.

T flip-flops

T flip-flops with enable

- Important for counters

Many types of latches and flip-flops

- S-R latch
- S_L-R_L latch
- S-R latch with enable
- D latch
- Edge-triggered D flip-flop
- Edge-triggered D flip-flop with enable
- Edge-triggered D flip-flop with preset and clear
- Scan flip-flop
- Edge-triggered J-K flip-flop
- Master/slave S-R flip-flop
- Master/slave J-K flip-flop
- T flip-flop
- T flip-flop with enable

