The π^{0} Lifetime: Experimental Probe of the QCD Chiral Anomaly *Dustin McNulty*

Dustin McNulty UMass/MIT/Jlab for the PrimEx Collaboration

Motivation

• The $\pi^{o} \rightarrow \gamma \gamma$ decay rate is a fundamental prediction of QCD which gives insight into one of its most profound symmetry issues—namely, the Axial or Chiral Anomaly. It is this anomalous symmetry–breaking mechanism by which the $\pi^{o} \rightarrow \gamma \gamma$ decay channel primarily proceeds, and thus a measure of its rate or partial width, $\Gamma_{\gamma\gamma}$, represents a direct probe of the anomaly plus Chiral corrections.

* J.L.Goity et al, Phys. Rev. D66, 076014 (2002);

B.Moussallam, Phys. Rev. D51, 4939 (1995)

• The transition amplitude is exact in the Chiral Limit and gives the leading order prediction:

$\Gamma_{\gamma\gamma}(L.O.) = \frac{\alpha^2 m_{\pi}^3}{64 \pi^3 F_{\pi}^2}$ = 7.725 +/- 0.56 eV

- However, for m_q ≁ 0 there are corrections:
 --Due to isospin sym-breaking π⁰, η and η' mixing induced
- NLO prediction* for decay width is 8.10 eV +/- 1%
 --Calc using χ_{PT} and 1/N_c expansion

Experiment and Theory Overview

- The PrimEx Collaboration at Jefferson Lab has extracted $\Gamma_{\gamma\gamma}$ from precision measurements of π^{0} photo–production cross sections using their Primakoff components.
- Measurements made using $5\% X_0$ nuclear targets of ^{12}C and ^{208}Pb with incident photons between 4.9 and 5.5 GeV tagged by the hall B tagger facility.

Analysis

-4 theory shapes smeared according to exp. resolutions

---- and the parameter $b_p = \Gamma_{p}$

Photon Flux and Calibration Reactions

Preliminary Results

- $\Gamma_{\pi^{0} \to \gamma \gamma} = 7.93 \text{eV} \pm 1.8\% \text{(stat)} \pm 2.3\% \text{(syst)}$
- The mean lifetime is $(8.20 \pm 0.24) * 10^{-17}$ s
- Results from both targets in excellent agreement
- Three ~independent analysis groups achieved very consistent results

PrimEx conducted at Jefferson Lab Hall B, supported in part by NSF MRI PHY 0079840 grant. Send inquiries to mcnulty@jlab.org