The π^0 Lifetime: Experimental Probe of the QCD Axial Anomaly

Dustin E. McNulty
MIT/UMass
for the PrimEx Collaboration
mcnulty@jlab.org

December 18, 2007

The π^0 Lifetime: Experimental Probe of the QCD Axial Anomaly

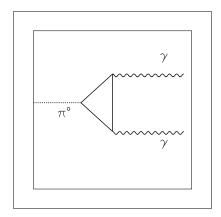
Outline

- Physics Motivation
- Experimental Overview
- Calibration Reactions
 Pair Production
 Compton Scattering
- π^0 Analysis Details
- Preliminary $\Gamma_{\pi^0 \to \gamma\gamma}$ Result
- Summary and Outlook

PrimEx Collaboration

```
D. Abrahamyan<sup>(s)</sup>, A. Afanasev<sup>(d)</sup>, A. Ahmidouch<sup>(l)</sup>, P. Ambrozewicz<sup>(l)</sup>, K. Baker<sup>(d)</sup>,
L. Benton<sup>(l)</sup>, A. Bernstein<sup>(j)</sup>, E. Clinton<sup>(i)</sup>, P. Cole<sup>(e)</sup>, P. Collins<sup>(b)</sup>, D. Dale<sup>(g)</sup>,
S. Danagoulian<sup>(l)</sup>, R. Demirchyan<sup>(l)</sup>, A. Deur<sup>(f)</sup>, J. Feng<sup>(m)</sup>, M. Gabrielyan<sup>(g)</sup>, L. Gan<sup>(m)</sup>,
A. Gasparian<sup>(l)</sup>, O. Glamazdin<sup>(h)</sup>, J. Goity<sup>(d)</sup>, V. Gyurjyan<sup>(f)</sup>, R. Hakobyan<sup>(c)</sup>, K. Hardy<sup>(l)</sup>,
M. Ito<sup>(f)</sup>, M. Khandaker<sup>(k)</sup>, P. Kingsberry<sup>(k)</sup>, M. Konchatnyi<sup>(h)</sup>, O. Korchin<sup>(h)</sup>, S. Kowalski<sup>(j)</sup>,
M. Kubantsev<sup>(n)</sup>, V. Kubarovsky<sup>(o)</sup>, I. Larin<sup>(a)</sup>, D. Lawrence<sup>(i)</sup>, D. McNulty<sup>(j)</sup>, R. Minehart<sup>(q)</sup>,
R. Miskimen<sup>(i)</sup>, V. Mochalov<sup>(o)</sup>, S. Mtingwa<sup>(l)</sup>, I. Nakagawa<sup>(g)</sup>, S. Overby<sup>(l)</sup>, E. Pasyuk<sup>(b)</sup>,
M. Payen<sup>(l)</sup>, R. Pedroni<sup>(l)</sup>, Y. Prok<sup>(j)</sup>, B. Ritchie<sup>(b)</sup>, T. Rodrigues<sup>(p)</sup>, C. Salgado<sup>(k)</sup>,
J. Santoro<sup>(r)</sup>, A. Sitnikov<sup>(a)</sup>, D. Sober<sup>(c)</sup>, A. Teymurazyan<sup>(g)</sup>, J. Underwood<sup>(l)</sup>, A. Vasiliev<sup>(o)</sup>,
V. Vishnyakov<sup>(a)</sup>, M. Wood<sup>(i)</sup>
```

- (a) Alikhanov Institute for Theoretical and Experimental Physics, (b) Arizona State University,
- (c) Catholic University, (d) Hampton University, (e) Idaho State University, (f) Jefferson Lab,
 - (g) University of Kentucky, (h) Kharkov Institute of Physics and Technology,
 - (i) University of Massachusetts, (j) Massachusetts Institute of Technology, (k) Norfolk State University, (l) North Carolina A&T,
 - (m) University of North Carolina, Wilmington, (n) Northwestern University,
 - (o) Institute for High Energy Physics, Protvino, (p) University of Sao Paulo,
 - (q) University of Virginia, (r) Virginia Tech, (s) Yerevan Physics Institute



Physics Motivation

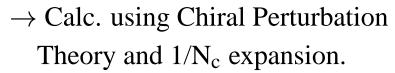
• π^0 decay rate is a fundamental prediction of QCD.

Chiral Anomaly

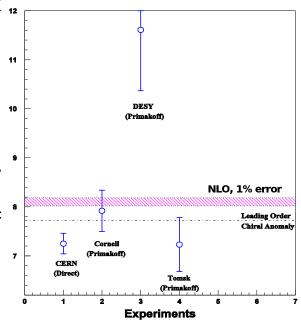
Presence of closed loop triangle diagram results in nonconserved axial vector current, even in the limit of vanishing quark masses.

→In the leading order (chiral limit), the anomaly leads to the decay width:

$$\Gamma_{\pi^0 \to \gamma \gamma} = \frac{\alpha^2 m_{\pi}^3}{64\pi^3 F_{\pi}^2} = 7.725 \pm 0.044 \text{ eV}$$
 (1)


where $F_{\pi} = 92.42 \pm 0.25$ MeV is the pion decay constant.

 \rightarrow Current Particle Data Book value is 7.84 ± 0.56 eV


Physics Motivation

- LO prediction exact in Chiral limit 12
- For $m_q \rightarrow 0$, there are corrections:
 - → Due to isospin sym-breaking $(m_u \neq m_d), \pi^0, \eta \text{ and } \eta$ mixing induced.
 - Decay width (eV) → Further corrections induced by terms in the Chiral Lagrangian. &
- NLO prediction for the decay width is $8.10 \text{ eV} \pm 1\%$

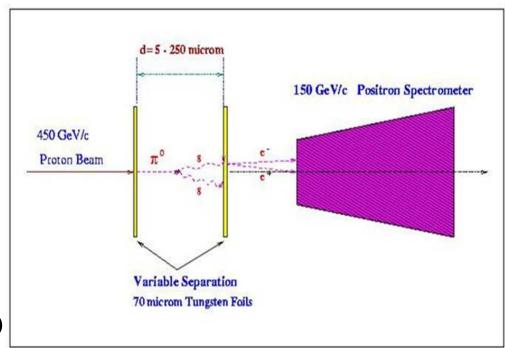
J.L.Goity et al, Phys. Rev. D66, 076014 (2002); B.Moussallam, Phys. Rev. D51, 4939 (1995)

- \rightarrow This is 4% higher than current experimental value!
- \circ A precision measurement of the π^0 decay width is needed.

CERN (Direct Method) Decay Length Measurement

- $\rightarrow \tau_{\pi^0} \sim 1 \times 10^{-16} \text{ s} \Rightarrow \text{too small to measure}$
- \rightarrow Solution–Measure decay length of highly energetic π^0 's:

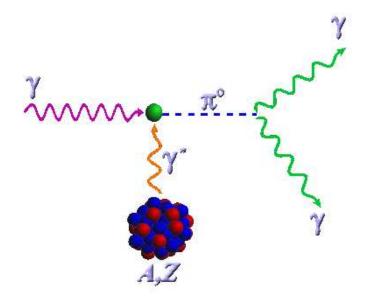
$$L = \nu \tau_{\pi^0} E/m \tag{2}$$


 \rightarrow for E = 1000GeV, L \sim 100 μ m (very challenging experiment)

→ Performed in 1984:
Used 450GeV protons

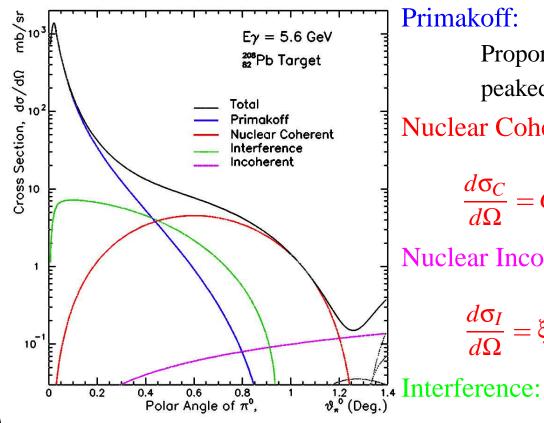
→ Result:

$$\Gamma_{(\pi^0 \to \gamma \gamma)} = 7.34 \text{eV} \pm 3.1\%$$


 \rightarrow Dominant syst. error: Uncertainty in E_{π^0} ($\pm 1.5\%$)

The Primakoff Effect

- π^0 photoproduction from Coulomb field of nucleus.
- Equivalent production $(\gamma \gamma^* \to \pi^0)$ and decay $(\pi^0 \to \gamma \gamma)$ mechanism implies Primakoff cross section proportional to π^0 lifetime.
- Primakoff π^0 produced at very forward angles.


$$\frac{d\sigma_P}{d\Omega} = \Gamma_{(\pi^0 \to \gamma\gamma)} \frac{8\alpha_{em} Z^2}{m^3} \frac{\beta^3 E^4}{Q^4} |\tilde{F}_{em}(Q)|^2 \sin^2\theta_{\pi}$$
 (3)

Full Cross Section Components

$$\frac{d\sigma_{\pi^0}}{d\Omega} = \frac{d\sigma_P}{d\Omega} + \frac{d\sigma_C}{d\Omega} + \frac{d\sigma_I}{d\Omega} + 2 \cdot \sqrt{\frac{d\sigma_P}{d\Omega} \cdot \frac{d\sigma_C}{d\Omega}} cos(\phi) \tag{4}$$

Nucl.Coherent Incoherent Interference

Primakoff:

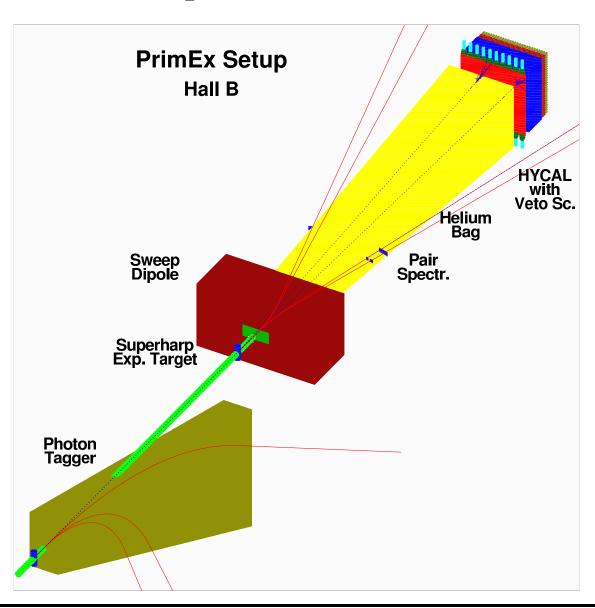
Proportional to \mathbb{Z}^2 , peaked at $\theta_{\pi^0} = m_{\pi^0}^2/2E_{\gamma}^2$

Nuclear Coherent:

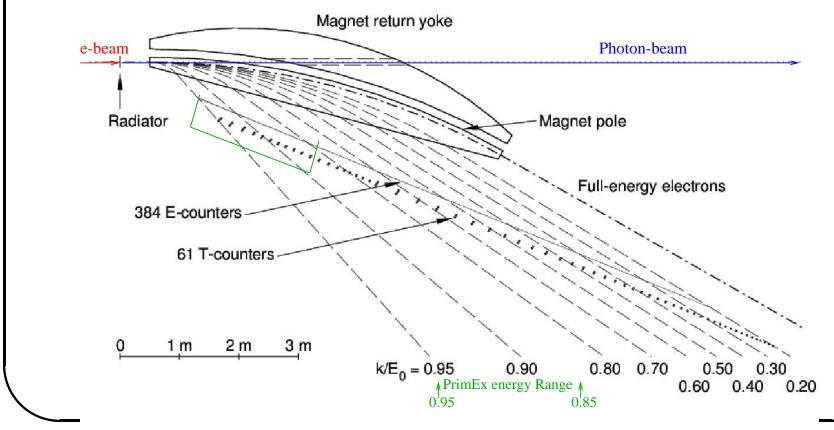
$$\frac{d\sigma_C}{d\Omega} = C \cdot A^2 |F_N(Q)|^2 \sin^2 \theta_{\pi} \tag{5}$$

Nuclear Incoherent:

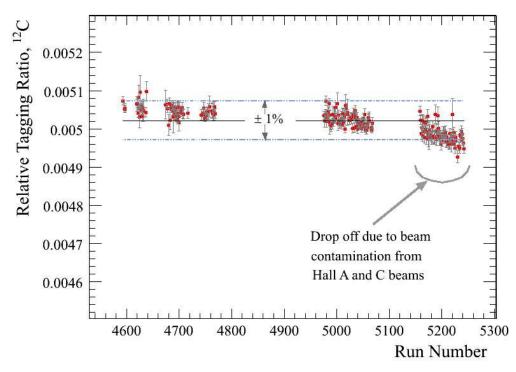
$$\frac{d\sigma_I}{d\Omega} = \xi A (1 - G(Q)) \frac{d\sigma_H}{d\Omega} \tag{6}$$

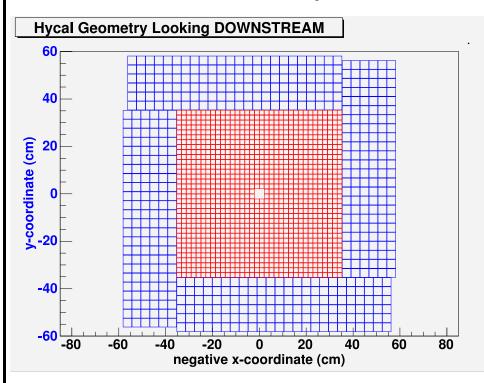

Experiment Overview

- Conducted at Jefferson Lab, Fall 2004
- Used 5.75 GeV continuous e⁻ beam and Hall B γ-tagging facility
- Tagged photons incident on 5%X₀ targets: ¹²C and ²⁰⁸Pb
- New PrimEx/Hall B calorimeter (HyCal), upstream of CLAS, designed to detect π^0 decay γ 's
- Measured 3 physical processes (absolute cross sections): Primary π^0 production, Secondary Compton and e^+e^- pair production
- Improvements over previous experiments: Precision tagged γ flux and incident γ energy info, enhanced π^0 angular and mass resolution, and identification and subtraction of background event contamination


Experiment Overview

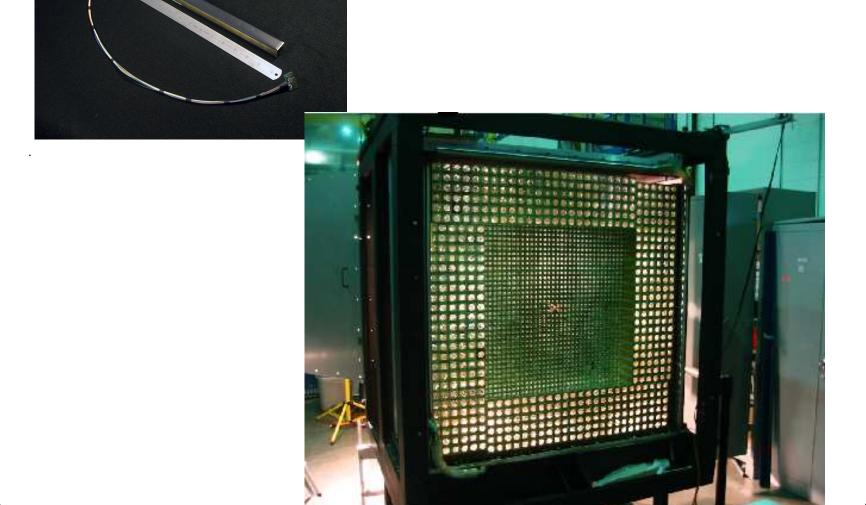
Hall B Photon Tagger


- Single dipole magnet combined with a hodoscope containing two planar arrays of plastic scintillators to detect energy-degraded electrons from a thin bremsstrahlung radiator.
- Tagger has 0.1% energy resolution and is capable of 50 MHz rates.


Photon Flux Control

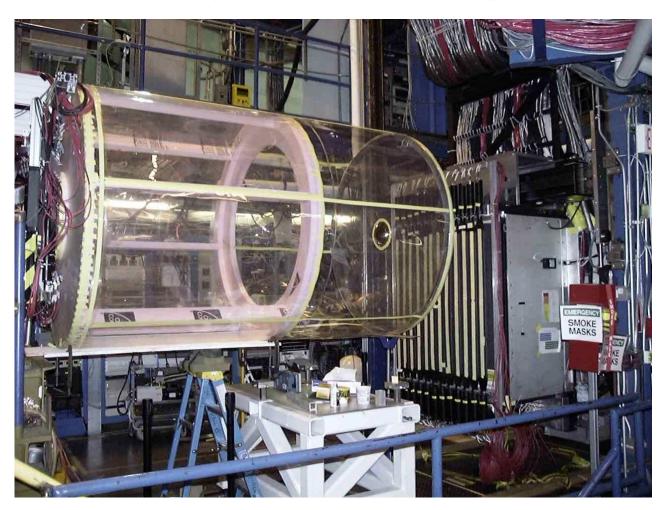
- PrimEx achievement: Total uncertainty in photon flux = 1.1%.
- Number of tagged photons on target (N_{γ}) calibrated periodically using a Total Absorption Counter (TAC).
- Any drifts in the tagging ratio, occurring between calibration points, are monitored online with the e^+e^- pair spectrometer.

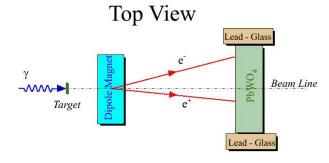
PrimEx Hybrid Calorimeter – "HyCal"

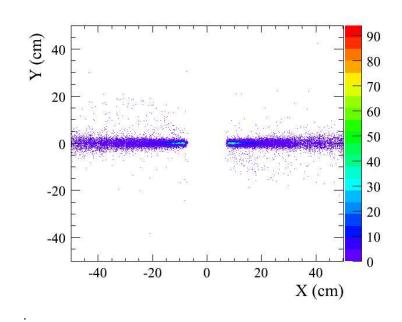


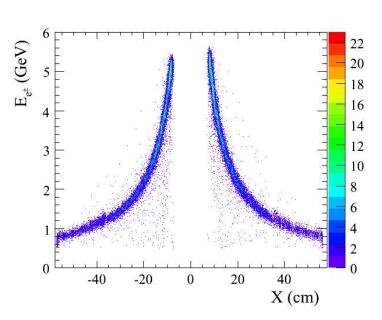
- Optimal performance/cost design
- 1.2 m \times 1.2 m, 1728 channels
- 576 Lead-glass (outer layers)
- 1152 Lead-Tungstenate crystal (inner layers)

	Lead-glass	PbWO ₄
Energy Res. (ΔE/E)	3-5%	1-2%
Position Res. $(\Delta x, y)$	$\sim 5 \text{ mm}$	~ 1.5 mm
Angular Res. $(\Delta \theta_{\pi^0})$	\sim 675 μ rad	\sim 300 μ rad

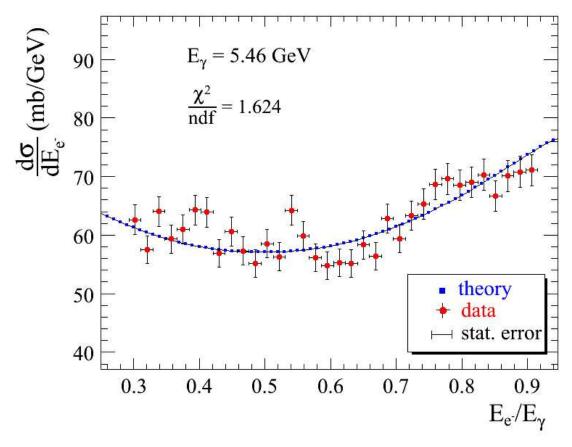

PrimEx Hybrid Calorimeter – "HyCal"


HyCal Calibration


- Full x,y motion allowed each ch. to be scanned through tagged γ beam.
- Performed at both the beginning and end of the experiment.



Calibration Reactions: e⁺ e⁻ Pair Production

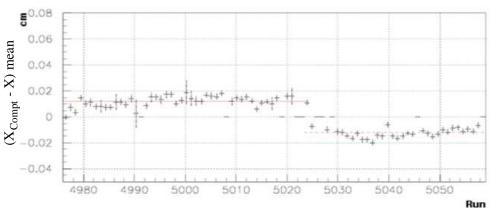


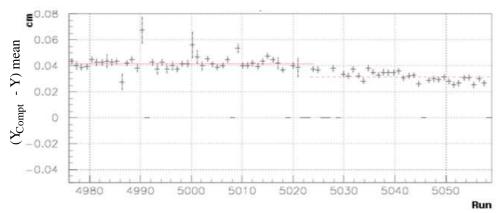
Calculation of Pair Production Cross Section at PrimEx Kinematics

- Bethe-Heitler mechanism of pair production on the nucleus with screening effects due to atomic elactrons and Coulomb distortion
- Pair production off atomic electrons, considering excitation of all atomic states and correlation effects due to the presence of other electrons and the nucleus
- Radiative corrections (of order α/π) (i) virtual photon loops and (ii) real photon process like $\gamma + A \rightarrow e^+ + e^- + A + \gamma$
- Nuclear incoherent contribution, $\gamma + p \rightarrow e^+ + e^- + p$
- Nuclear coherent contribution (VCS), $\gamma + A \rightarrow \gamma^* + A \rightarrow e^+ + e^- + A$


Pair Production Preliminary Result

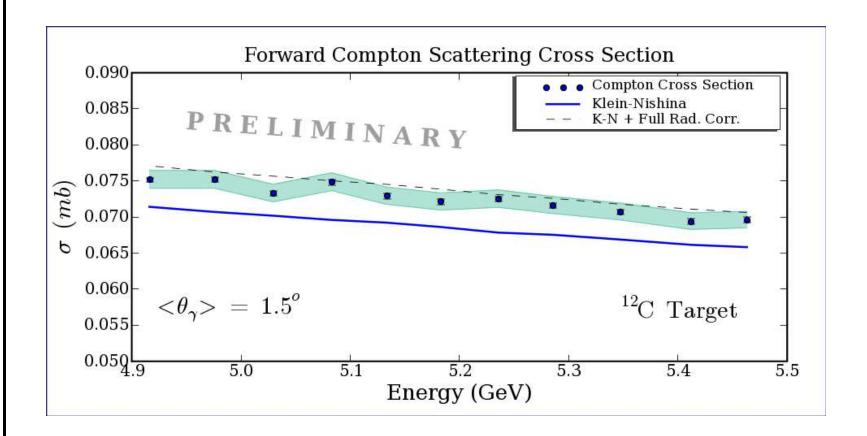
- Agreement with theory at $\sim 2.5\%$ level
- \bullet Work in progress to reduce systematic errors to 1 2% level


Calibration Reactions: Compton Scattering

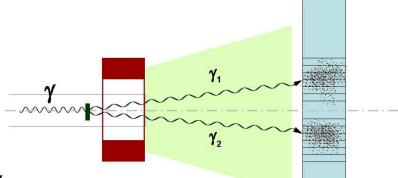


- → HyCal gain monitoring
- → Overall check of PrimEx setup to measure absolute cross sections
 - Dedicated "Double-Arm" Compton Runs:
 - \rightarrow Performed on a weekly basis, B_{PS} = 0, I_{beam} $\sim 5 10$ nA
 - → Both e⁻ and scattered photon detected in HyCal
 - \rightarrow Compton Cross Section Measured: ¹²C and 0.5%X₀ ⁴Be
 - o "Single-Arm" Compton Data:
 - \rightarrow Dominant Source of Events in π^0 production dataruns
 - \rightarrow B_{PS} \sim 2 T, I_{beam} \sim 100 nA, only scattered photon detected

Beam Alignment Monitoring using Single-Arm Compton



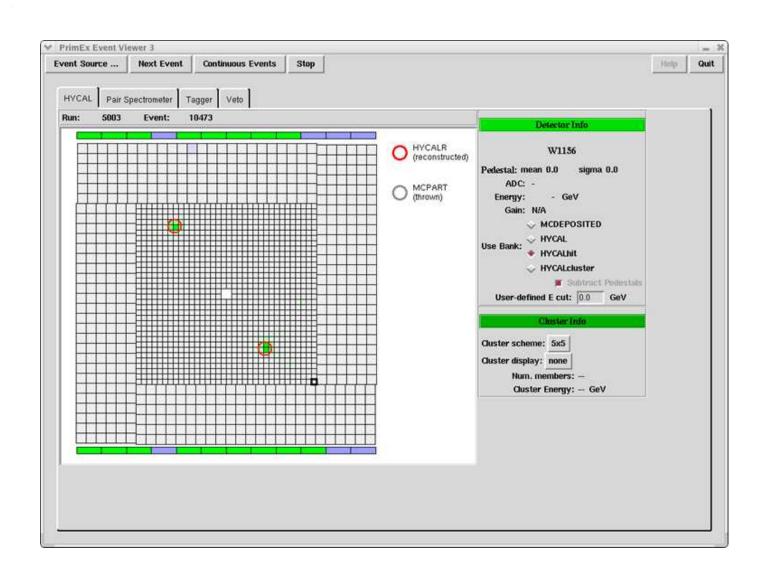
- Only scattered γ measured
- $X \equiv$ reported HyCal coord
- $X_{Compt} \equiv calc.$ (x,y) from Hycal E and Compton kin.
- If beam alignment perfect: $(X_{Compt}-X) = 0$
- Technique tracks alignment at 0.1 mm level
- Jump in X correlated with beamline BPM


Compton Cross Section Preliminary Result

- Total estimated error: 2.5% (dominated by photon flux 1.5%)
- Work in progress to reduce systematic errors to 2% level

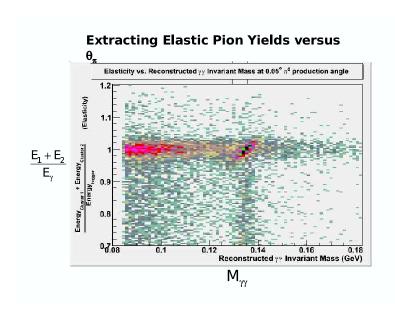
Analysis Details: π^0 Event Selection

We measure:

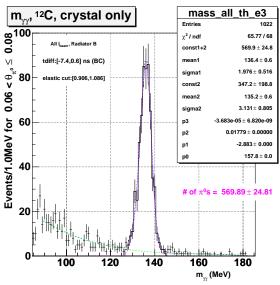

- \rightarrow initial photon energy: E_{γ}
- \rightarrow energies of decayed photons: $E_{\gamma}1$, $E_{\gamma}2$
- → X,Y positions of decayed photons

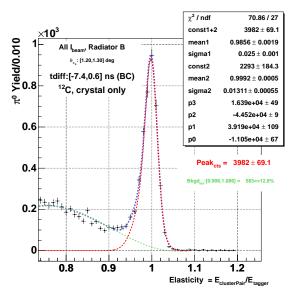
Kinematical constrains:

- → Conservation of energy
- → Conservation of momentum
- \rightarrow m_{$\gamma\gamma$} invariant mass

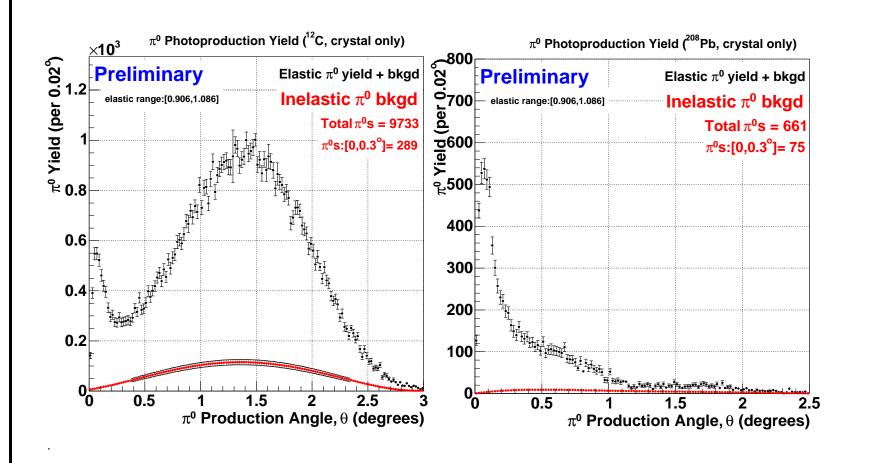


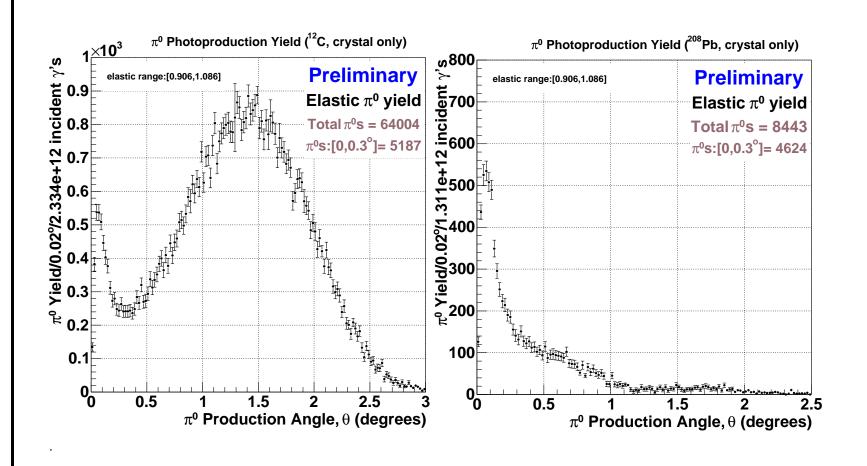
Analysis Details: π^0 Event Selection





Analysis Details: π^0 Yield Extraction


- For each θ_{π^0} bin, apply elastic cut and form $m_{\gamma\gamma}$ distributions; perform fit and extract peak counts = uncorrected yield.
- Correct for inelastic bkgd by evaluating π^0 elasticity distribution explicitly for each θ_{π^0} ; evaluate inelastic bkgd under the elastic peak using fit and subtract from yield.



Analysis Details: Yield Result for ¹²C and ²⁰⁸Pb

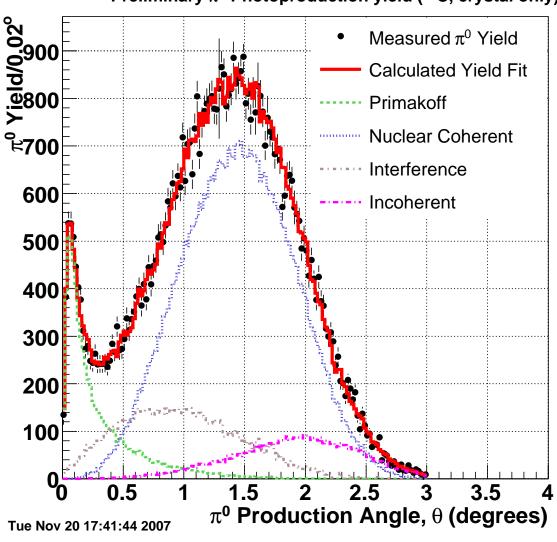
Yield Results for ¹²C and ²⁰⁸Pb

Analysis Details: $\Gamma_{\pi^0 \to \gamma\gamma}$ Determination

• Convert Yield to Cross Section.

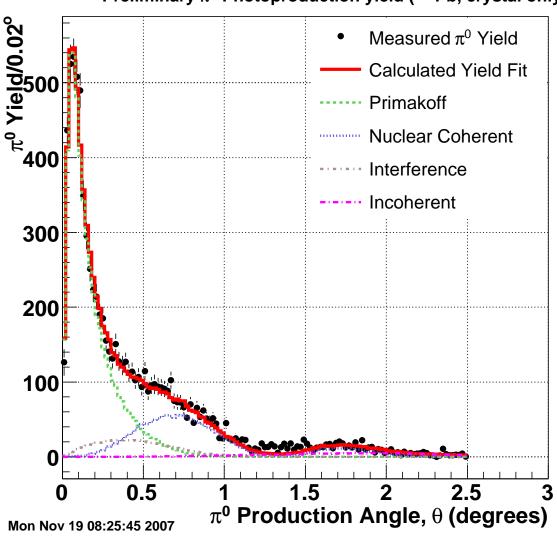
$$\frac{d\sigma_{exp}}{d\theta_{\pi^0}} = \frac{N_{\pi^0}^{yield}(\theta_{\pi^0})}{N_{\gamma} \times N_t \times \varepsilon_{\pi^0}(\theta_{\pi^0}) \times \Delta\theta_{\pi^0}}$$
(7)

- \rightarrow where $N_{\gamma} \equiv \#$ of γ 's on target (uncertainty $\sim 1.1\%$).
- \rightarrow where $N_t \equiv \text{target atoms/cm}^2$ (thickness mapped to $\sim 0.05\%$).
- \rightarrow where $\varepsilon_{\pi^0} \equiv$ experimental acceptance (uncertainty $\sim 0.6\%$).
- Fit experimental data with parameterization:


$$\frac{d\sigma_{exp}}{d\theta_{\pi^0}} = b_p \frac{d\sigma_P}{d\Omega} + b_c \frac{d\sigma_N}{d\Omega} + b_i \frac{d\sigma_I}{d\Omega} + 2\cos\phi\sqrt{b_p b_c \frac{d\sigma_P}{d\Omega} \frac{d\sigma_C}{d\Omega}}$$
(8)

- \rightarrow where the parameter $b_p = \Gamma_{\gamma\gamma}$
- \circ Vary the four parameters $(b_p, b_c, b_i, \text{ and } \phi)$ and minimize χ^2 .

¹²C Target Yield Fit


Preliminary π^0 Photoproduction yield (¹²C, crystal only)

Preliminary π^0 Photoproduction yield (²⁰⁸Pb, crystal only)

Systematic Error Table and Yield Fit Result

 $m_{\gamma\gamma}$ fi ts + inelast bkgd corr. ± 1.0

Inelastic bkgd shape uncert. ± 0.75

Photon flux ± 1.1

Incoherent XS shape uncert. ± 1.3

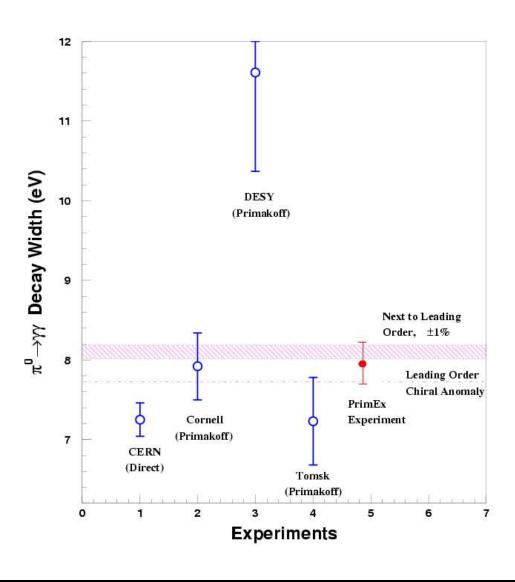
Nuclear coh. XS energy dep. ± 0.04

Detection/Recon efficiency ± 0.5

Fiducial Acceptance ± 0.3

Event Selection ± 1.0

Target thick. + branch ratio ± 0.06


Tagged Photon Energy ± 0.1

Total Systematic $\pm 2.4\%$

Prelim. Result: $\Gamma_{\pi^0 \to \gamma \gamma} = 7.93 \text{eV} \pm 1.6\% (\text{stat}) \pm 2.4\% (\text{syst})$

$\Gamma_{\pi^0 \to \gamma \gamma}$ Preliminary Result

Summary and Outlook

- High Quality precision π^0 photoproduction data on 12 C and 208 Pb targets using $4.9 \le E_{\gamma}^{\text{tagged}} \le 5.5$ GeV has been collected and analyzed by the PrimEx Collaboration.
- Preliminary cross section results from studied calibration reactions e^+e^- production and Compton scattering are both in excellent agreement with theory (at the 2-3% level).
- All three \sim independent π^0 analysis groups have achieved very consistent results.
- The preliminary π^0 partial width result from this analysis: $\Gamma_{\pi^0 \to \gamma \gamma} = 7.93 \text{eV} \pm 1.6\% (\text{stat}) \pm 2.4\% (\text{syst}).$
- The mean lifetime: $(8.20 \pm 0.24) \times 10^{-17}$ s
- Preliminary $\Gamma_{\pi^0 \to \gamma\gamma}$ results from both targets in excellent agreement.
- Continued work on reducing systematic error and finalizing results.