A Precision Measurement of the Neutron Radius in ²⁰⁸Pb

Dustin McNulty UMass for the PREx Collaboration mcnulty@jlab.org

October 15, 2009

A Precision Measurement of the Neutron Radius in ²⁰⁸Pb

Outline

• Introduction:

Parity Violating Electron Scattering Radial Densities of ²⁰⁸Pb

- Theory Overview: Parity Violation and Form Factors
- PREx Measurement and Challenges
- Summary and Outlook

Introduction to PVES

- Parity Violating Electron Scattering (PVES) allows access to the weak nuclear charge distribution via an electroweak-interference dominated asymmetry measurement (A_{PV})
- Z⁰ of weak interaction: Clean probe coupling primarily to neutrons
- Very challenging measurement requiring:
- \rightarrow Precise matching of elec. beam charact. for Left vs. Right helicity states
- \rightarrow Precision non-invasive, continuous beam polarimetry
- \rightarrow Precision knowledge of Luminosity, Q², and spect. acceptances and bkgds

Dustin McNulty, Oct 15, 2009, JPS/APS Division of Nuclear Physics, Waikaloa Village, Hawaii's Big Island

Parity Violation and Nucleon Form Factors

• Isolate the weak interacting part of PV by measuring asymmetry:

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \sim 10^{-6} \tag{1}$$

• The potential between electron and nucleus can be written as:

$$\hat{\mathbf{V}}(\mathbf{r}) = \mathbf{V}(\mathbf{r}) + \gamma_5 \mathbf{A}(\mathbf{r}) \tag{2}$$

where
$$V(\mathbf{r}) = \int d^3 \mathbf{r}' Z \rho(\mathbf{r}') / |\vec{\mathbf{r}} - \vec{\mathbf{r}}'|,$$
 (3)

and
$$A(r) = \frac{G_F}{2^{3/2}} \left[(1 - 4\sin^2 \theta_W) Z \rho_p(r) - N \rho_n(r) \right]$$
 (4)

• Since the weak charge of the proton is small $(\sin^2 \theta_W \approx 0.23)$, the axial potential depends mainly on the neutron density $\rho_n(r)$.

Parity Violation and Nucleon Form Factors (cont.)

• The electromagnetic cross section for electron scattering:

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega_{Mott}} |F_p(Q^2)|^2$$
(5)

where
$$F_p(Q^2) = \frac{1}{4} \int d^3 r' j_0(qr) \rho_p(r)$$
 (6)

is the form factor for protons from which one may determine R_p .

• One can also define a form factor for neutrons from which R_n may be determined:

$$F_{n}(Q^{2}) = \frac{1}{4} \int d^{3}r' j_{0}(qr)\rho_{n}(r)$$
(7)

• In the Born approx., the PV asymmetry involves the interference between V(r) and A(r):

$$A_{PV} = \frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \left[4\sin^2\theta_W - 1 + \frac{F_n(Q^2)}{F_p(Q^2)} \right]$$

(8)

(9)

The Neutron and Weak Charge Radius $R_n^2 = \int d^3r r^2 \rho_n(r)$

• But what we really measure is the weak charge density/radius:

$$R_{\rm W}^2 = \frac{1}{Q_{\rm W}} \int d^3 r \, r^2 \rho_{\rm W}(r) \tag{10}$$

with $\rho_{W}(\mathbf{r}) = 4 \int d^{3}\mathbf{r}' [G_{n}^{Z}(\mathbf{r}')N\rho_{n}(|\mathbf{r}-\mathbf{r'}|) + G_{p}^{Z}(\mathbf{r}')Z\rho_{p}(|\mathbf{r}-\mathbf{r'}|)]$ (11)

and
$$G_{n:p}^{Z} = \frac{1}{4}(G_{n:p}^{E} - G_{p:n}^{E}) - \sin^{2}\theta_{W}G_{n:p}^{E} - \frac{1}{4}G_{s}^{E}.$$
 (12)

• Under reasonable assumptions of strangeness and neutron form factors, one can show that R_n for a heavy nucleus directly follows R_W (within ~1%)

$$\mathbf{R}_{\mathbf{n}} \approx \mathbf{R}_{\mathbf{W}} - 0.06 \mathrm{fm} \tag{13}$$

PREx/HAPPEx Collaboration

Jefferson Lab's CEBAF and Hall A

Dustin McNulty, Oct 15, 2009, JPS/APS Division of Nuclear Physics, Waikaloa Village, Hawaii's Big Island

PREx Measurement (Spring 2010)

- $A_{PV}\sim 0.6$ ppm, $Q^2\sim 0.01~GeV$
- $E_{beam} = 1.05 \text{ GeV}, 5.0^{\circ} \text{ scattering}, \sim 2 \text{ GHz Rate}$
- Statistical error goal $\sim 20 \text{ ppb} (\delta A/A \sim 3\%)$
- Systematic Error $\lesssim 2$ %

Physics Extracted

- Weak charge density
- Neutron density
- Neutron radius (~ 1 % level) and skin (R_n R_p)

 \rightarrow With broad-based fundamental nuclear physics applications: Neutron stars, atomic PNC, heavy ion beams.

Dustin McNulty, Oct 15, 2009, JPS/APS Division of Nuclear Physics, Waikaloa Village, Hawaii's Big Island

High Resolution Spectrometers

Experiment Challenges

- Precision Measurement of Q^2
 - \rightarrow Requires beam monitoring at 0.05 μ A using new BCMs
 - $\rightarrow \pm 0.02^{\circ}$ accuracy in spectrometer angles
- Precision beam polarimetry at 1GeV beam energy
 - \rightarrow Upgrade Compton polarimeter: new cavity, e^- and γ detectors
- Unprecedented control over helicity correlated beam asymmetries

 ${\rightarrow}Q_{asym} \lesssim 100 \pm 10 \text{ ppb}$

- \rightarrow Maintain beam position differences $\lesssim 1 \pm 0.1$ nm
- →High precision beam trajectory corrections: cavity BPMs and new dithering system
- Require sub-100 ppm pulse-to-pulse electronics noise
 - →Employ new 18-bit ADCs (currently being commissioned)
 - →Improve Luminosity Monitor performance
- Keep all sources of systematics in check...for example

 \rightarrow Septum collimator alignments/acceptances

 \rightarrow Spect. optics tuning and prex detector size and positioning

Summary and Outlook

- PREx will measure directly the weak charge density of ²⁰⁸Pb
- The data can be interpreted with as much confidence as that from electromagnetic scattering
- Interpretation is clean since theoretical corrections are either small or well understood
- The extracted neutron density and radius will provide unprecedented results with broad-based fundamental physics impact
- Changes in septum design $(6^{\circ} \rightarrow 5^{\circ})$ give optimized FOM at $E_{beam} = 1.05$ GeV with increased R_n precision
- Steady progress is ongoing to meet the experimental challenges

Extra Slide – Figure of Merit for New Design

 $FOM \times \epsilon^2 = R \times A^2 \times \epsilon^2$

Extra Slide – Integrate Elastic Peak

Extra Slide – Compton Beam Polarimetry

• Upgrade to green laser cavity and high resolution γ-detector Compton Polarimetry

Extra Slide – Test Period Target Design

• 0.5mm, 10% X_0 isotopically pure (99.1%) ²⁰⁸Pb foil sandwiched between 0.2mm thick diamond sheets

Dustin McNulty, Oct 15, 2009, JPS/APS Division of Nuclear Physics, Waikaloa Village, Hawaii's Big Island

Dustin McNulty, Oct 15, 2009, JPS/APS Division of Nuclear Physics, Waikaloa Village, Hawaii's Big Island

PREx/HAPPEx Collaboration

Dustin McNulty, Oct 15, 2009, JPS/APS Division of Nuclear Physics, Waikaloa Village, Hawaii's Big Island

Symmetry Energy and the ²⁰⁸Pb Neutron Skin

Dustin McNulty, Oct 15, 2009, JPS/APS Division of Nuclear Physics, Waikaloa Village, Hawaii's Big Island

FIG. 2. The neutron EOS for 18 Skyrme parameter sets. The filled circles are the Friedman-Pandharipande (FP) variational calculations and the crosses are SkX. The neutron density is in units of neutron/fm³.