A Precision Measurement of the NeutronRadius in ²⁰⁸**Pb**

Dustin McNulty**UMass** for the PREx Collaboration*mcnulty@jlab.org*

October 15, 2009

 \bigcup

1

✬✩**A Precision Measurement of the Neutron Radius in** ²⁰⁸**Pb**

Outline

 \setminus

• Introduction:

Parity Violating Electron ScatteringRadial Densities of ²⁰⁸Pb

- Theory Overview: Parity Violation and Form Factors
- PREx Measurement and Challenges
- Summary and Outlook

 \bigwedge

Introduction to PVES

- • Parity Violating Electron Scattering (PVES) allows access to the weak nuclear charge distribution via an electroweak-interference dominatedasymmetry measurement (A_{PV})
- Z^0 of weak interaction: Clean probe coupling primarily to neutrons
- Very challenging measurement requiring: •
- \rightarrow Precise matching of elec. beam charact. for Left vs. Right helicity states \rightarrow
- \rightarrow Precision non-invasive, continuous beam polarimetry
- \rightarrow Precision knowledge of Luminosity, Q², and spect. acceptances and bkgds

Dustin McNulty, Oct 15, 2009, JPS/APS Division of Nuclear Physics, Waikaloa Village, Hawaii's Big Island

 \setminus

 \bigwedge

Parity Violation and Nucleon Form Factors

• Isolate the weak interacting par^t of PV by measuring asymmetry:

$$
A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \sim 10^{-6}
$$
 (1)

• The potential between electron and nucleus can be written as:

$$
\hat{V}(r) = V(r) + \gamma_5 A(r) \tag{2}
$$

where
$$
V(r) = \int d^3r' Z\rho(r')/|\vec{r} - \vec{r}'|,
$$
 (3)

and
$$
A(r) = \frac{G_F}{2^{3/2}} \left[(1 - 4\sin^2 \theta_W) Z \rho_p(r) - N \rho_n(r) \right]
$$
 (4)

• Since the weak charge of the proton is small $(\sin^2 \theta)$ $e^2\theta_\mathrm{W}\approx 0.23$), the axial potential depends mainly on the neutron density $\rho_{\rm n}({\rm r}).$

 \bigcup

 \setminus

 \bigwedge

Parity Violation and Nucleon Form Factors (cont.)

• The electromagnetic cross section for electron scattering:

$$
\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega_{Mott}} |F_p(Q^2)|^2
$$
 (5)

where
$$
F_p(Q^2) = \frac{1}{4} \int d^3 r' j_0(qr) \rho_p(r)
$$
 (6)

is the form factor for protons from which one may determine R_p .

• One can also define a form factor for neutrons from which R_n may be determined:

$$
F_n(Q^2) = \frac{1}{4} \int d^3 r' j_0(qr) \rho_n(r)
$$
 (7)

• In the Born approx., the PV asymmetry involves the interference between $V(r)$ and $A(r)$:

$$
A_{PV} = \frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \left[4\sin^2\theta_W - 1 + \frac{F_n(Q^2)}{F_p(Q^2)}\right]
$$
(8)

 \setminus

 \bigwedge

The Neutron and Weak Charge Radius $R_{\scriptscriptstyle \rm n}^2$ $n =$ \int $d^3r r^2$ 2 $\frac{2}{2}$ ρ_n(r) $\left(9\right)$

• But what we really measure is the weak charge density/radius:

$$
R_W^2 = \frac{1}{Q_W} \int d^3 r \, r^2 \rho_W(r) \tag{10}
$$

withh $\rho_{\rm W}(\mathbf{r}) = 4$ $4\int$ d3 r ′ $[\mathrm{G}_\mathrm{n}^\mathrm{Z}$ $\frac{\mathcal{L}}{\mathsf{n}}\bigg($ r ′) $N\rho_n(|\mathbf{r}-\mathbf{r'}|)+G_p^Z$ $\frac{\mathcal{L}}{\rm p}\big($ r ′) $Z\rho_p(|\mathbf{r}-\mathbf{r'}|)]$ (11)

and
$$
G_{n:p}^Z = \frac{1}{4}(G_{n:p}^E - G_{p:n}^E) - \sin^2\theta_W G_{n:p}^E - \frac{1}{4}G_s^E.
$$
 (12)

• Under reasonable assumptions of strangeness and neutron formfactors, one can show that R_n for a heavy nucleus directly follows R_W (within \sim 1%)

$$
R_n \approx R_W - 0.06 \text{fm} \tag{13}
$$

PREx/HAPPEx Collaboration

Dustin McNulty, Oct 15, 2009, JPS/APS Division of Nuclear Physics, Waikaloa Village, Hawaii's Big Island

 $\sqrt{2}$

 \setminus

 \bigwedge

Jefferson Lab's CEBAF and Hall A

Dustin McNulty, Oct 15, 2009, JPS/APS Division of Nuclear Physics, Waikaloa Village, Hawaii's Big Island

 \mathcal{S}

 \setminus

 \bigwedge

PREx Measurement (Spring 2010)

- A_{PV} \sim 0.6 ppm, Q^2 2 \sim 0.01 GeV
- $E_{\text{beam}}=1.05$ GeV, 5.0° scattering, \sim 2 GHz Rate
- Statistical error goal \sim 20 ppb (δ A/A \sim 3%)
- Systematic Error \lesssim 2 %

Physics Extracted

- Weak charge density
- Neutron density
- Neutron radius (\sim 1 % level) and skin (R $_{\rm n}$ - R_p)

 \rightarrow With broad-based fundamental nuclear physics applications: Neutron stars, atomic PNC, heavy ion beams.

 \bigcup

Dustin McNulty, Oct 15, 2009, JPS/APS Division of Nuclear Physics, Waikaloa Village, Hawaii's Big Island

 \sqrt{a}

 \bigwedge

High Resolution Spectrometers

Dustin McNulty, Oct 15, 2009, JPS/APS Division of Nuclear Physics, Waikaloa Village, Hawaii's Big Island

 \bigwedge

 $\bigg($

 \setminus

Experiment Challenges

- Precision Measurement of Q^2
	- [→]Requires beam monitoring at 0.05*^µ*A using new BCMs
	- $\rightarrow \pm 0.02^{\,\circ}$ accuracy in spectrometer angles
- Precision beam polarimetry at 1GeV beam energy
	- [→]Upgrade Compton polarimeter: new cavity, *e*− andγ detectors
- Unprecedented control over helicity correlated beam asymmetries

 \rightarrow Q $_{\rm asym}\lesssim100$ \pm 10 ppb

- \rightarrow Maintain beam position differences $\lesssim1\pm0.1$ nm
- \rightarrow High precision beam trajectory corrections: cavity BPMs and new dithering system
- Require sub-100 ppm pulse-to-pulse electronics noise
	- \rightarrow Employ new 18-bit ADCs (currently being commissioned)
	- \rightarrow Improve Luminosity Monitor performance
- Keep all sources of systematics in check...for example

 \rightarrow Septum collimator alignments/acceptances

 \rightarrow Spect. optics tuning and prex detector size and positioning

 \setminus

 \bigwedge

Summary and Outlook

- •• PREx will measure directly the weak charge density of $208Pb$
- The data can be interpreted with as much confidence as that from electromagnetic scattering
- Interpretation is clean since theoretical corrections are either small or well understood
- The extracted neutron density and radius will provide unprecedented results with broad-based fundamental physics impact
- Changes in septum design (6°) $\degree \rightarrow$ 5 \degree) give optimized FOM at $E_{\text{beam}}=1.05$ GeV with increased R_n precision
- Steady progress is ongoing to meet the experimental challenges

Extra Slide – Figure of Merit for New Design

 $\text{FOM} \times \text{\ensuremath{\varepsilon}}$ 2 $^{2} = R \times A^{2}$ ×ε

2

 \bigwedge

 \bigcup

 \setminus

 \bigwedge

Extra Slide – Integrate Elastic Peak

 \bigcup

 \setminus

 \bigwedge

Extra Slide – Compton Beam Polarimetry

• Upgrade to green laser cavity and high resolution γ-detector

 \bigwedge

Extra Slide – Test Period Target Design

• 0.5mm, 10% X_0 isotopically pure (99.1%) ²⁰⁸Pb foil sandwiched between 0.2mm thick diamond sheets

Dustin McNulty, Oct 15, 2009, JPS/APS Division of Nuclear Physics, Waikaloa Village, Hawaii's Big Island

PREx/HAPPEx Collaboration

Dustin McNulty, Oct 15, 2009, JPS/APS Division of Nuclear Physics, Waikaloa Village, Hawaii's Big Island

 \bigwedge

Dustin McNulty, Oct 15, 2009, JPS/APS Division of Nuclear Physics, Waikaloa Village, Hawaii's Big Island

 \bigwedge

Dustin McNulty, Oct 15, 2009, JPS/APS Division of Nuclear Physics, Waikaloa Village, Hawaii's Big Island

 $\sqrt{2}$

 \setminus

 \bigwedge

Dustin McNulty, Oct 15, 2009, JPS/APS Division of Nuclear Physics, Waikaloa Village, Hawaii's Big Island

 $\sqrt{2}$

 \setminus

PREx/HAPPEx Collaboration

 \bigwedge

FIG. 2. The neutron EOS for 18 Skyrme parameter sets. The filled circles are the Friedman-Pandharipande (FP) variational calculations and the crosses are SkX. The neutron density is in units of neutron/ fm^3 .