MOLLER/PREX Detector Development

Dustin McNulty Idaho State University mcnulty@jlab.org

October 31, 2015

Introduction: Integrating detectors for PVeS

- PVES expts measure tiny asymmetries and require large statistical samples—need high luminosity and deadtime-less signal integration
- Over time, high intensity physics frontier pushes to smaller asymmetries thus requiring higher intensities...
- PVeS integrating detectors must meet the challenge of increasing demands on radiation hardness and performance
- We are currently pursueing the use of high-purity thin quartz (Cherenkov medium) coupled to air-core light guide and pmt
- This talk gives current conceptual designs and prototype test results for MOLLER and PREX-II/CREX quartz detectors
- The new Jefferson Lab Hall A luminosity monitor will also be discussed briefly (time permitting)

Idaho State U.

MOLLER Integrating Detector Group Who is involved in detector work (likely incomplete): • U. Manitoba: M. Gericke, J. Mammei, Jie Pan, S. Rahman • SBU: K. Kumar, S. Riordan, Tyler Kunz (?), **Yuxiang Zhao** • **ISU**: D. McNulty • U. Mainz: F. Mass, S. Baunack, K. Gerz, D. Becker, T. Jennewein P. Souder • U. Syracuse: • JLab: R. Michaels (DAQ / electronics) P. King (DAQ / electronics) Ohio U.: • W&M: D. Armstrong, W. Deconinck

MOLLER Integrating Detector Layout and Rates

- Spectrometer separates signal from bkgd and radially focuses at detector plane
- Rates for 11 GeV/75 μ A (80% pol.) beam, $\underbrace{\overline{\mathfrak{b}}}_{\underline{\mathfrak{p}}}$ 1.5m liquid hydrogen target. See fig. \longrightarrow
- Six radial rings, 28 phi segments per ring^{*}
- Ring 5 intercepts Moller peak (~150 GHz), Ring 2 intercepts bkgd "ep" peaks
- 250 quartz tiles: allow full characterization $g_{6}^{\underline{E}}$ and deconvolution of bkgd and signal processes

MOLLER Prototype Detector Development

- Two quartz-lightguide configurations under consideration: Straight and Angled
- Spectrosil 2000 quartz (15mm thick), Miro Silver 4270 lightguide, 3 inch PMT
- Lightguide lengths range from 15 to 80 cm
- Prototypes for all six rings tested
- Benchmarked optical G4 Monte Carlo^{with~41 deg}

 $MOLLER/PREX \ Detector \ Development$

MOLLER Prototype Detector Beam Tests

- Several beam tests conducted since fall 2013 at MAMI with the P2 collaboration
- What's been studied: Pk # of PE's and Resolution

 Different quartz polishes and thicknesses
 Different quartz wrappings: Al. mylar, Tyvek,...
 Different LG materials: UVS, MIRO-silver, ...
 Beam quartz position and angle scans
 Scintillation/Cherenkov bkgds from air in LG
 - –Angled vs. Straight configurations

Straight R5 prototype

Recent Testbeam Results

Detector Ring	Moller	Moller	Super-elastic	Super-elastic
Config	Angled	Straight	Angled	Straight
LG length (cm)	35	25	80	56
Mean (PE's)	32.9	24.2	20.6	16.2
RMS (PE's)	8.45	8.04	8.94	8.3
Res. (%)	25.7	33.2	43.4	51.2
Excess Noise (%)	3.2	5.4	9.0	12.4

Excess noise
$$\equiv \sqrt{1 + (\frac{\sigma}{\langle n \rangle})^2} - 1$$

- "Angled" configuration gives better results (a bit surprising)
- Note: "Straight" config quartz not double bevelled and its LG funnel not optimized for these results. Will repeat test at MAMI next June.

PREX/CREX Experimental Setup in Hall A (Spectrometer & Detectors)

- PREX: $\langle A_{PV} \rangle = 0.6$ ppm, $\delta(A_{PV}) = 3\% \Longrightarrow R_n^{Pb} \sim 1\%$ $\rightarrow 1$ GeV beam, $\theta_e = 5^{\circ}$, $Q^2 \approx 0.009$ GeV, 10% X_o ²⁰⁸Pb tgt
- CREX: $\langle A_{PV} \rangle = 2$ ppm, $\delta(A_{PV}) = 2.4\% \Longrightarrow R_n^{Ca} \sim 0.6\%$ $\rightarrow 2.2 \text{ GeV beam}, \theta_e = 4^{\circ}, Q^2 \approx 0.022 \text{ GeV}, 6\% \text{ X}_{o} {}^{48}\text{Ca tgt}$
- Scattered electrons transported to detector plane quartz; HRS separates elastic and inelastic events — Only elastic events detected

D. McNulty

Detector designs: PREX I (ran in spring 2010)

- Conservative design with modest light output per electron
- Used Spectrosil 2000 quartz, UVS LGs, and 2 inch pmts
- 45° incident electrons \Rightarrow only get \sim half the Cherenkov light cone
- Focal plane elastic-env. footprint (at quartz) is small ~ 3 by 12 cm^2
- Quartz bar dimensions: 15cm long \times 3.5cm wide \times 6(10)mm thick
- Overall performance: $\sim 20 \text{ PEs/e}^-$ with 30% relative width

Detector design: PREX II & CREX

- More aggressive design maximizes light output per electron
- PREX II will run at same kinematics as PREX I \Rightarrow FP dists same
- CREX kinematics are different ... FP simulations underway
- Major design change: electrons enter quartz at normal incidence
- Quartz PMT separation is 0cm (instead of 7.7cm for PREX I)
- $\rightarrow \mbox{Quartz}$ bars are longer...so can use quartz TIR as the light guide
- 45° angle between scattered flux and pmt reduces Landau tail
- Overall performance: $\sim 60 \text{ PEs/e}^-$ with 15% relative width

New (re-designed) Hall A Luminosity Monitor

- 8 quartz Cherenkov detectors with air-core light guides placed symmetrically around beam line 7.5m downstream of target
- Uses 3.3cm long \times 2.0cm wide \times 1.3cm thick quartz placed 5.5 cm from beamline center $\Rightarrow 0.5^{\circ}$ polar angle acceptance
- 40cm Miro-silver 4270 LG, 2 inch PMT with unity gain base

Summary

- MOLLER integrating detector baseline design and performance specs nearly complete
- Plans for MAMI test beam run in June 2016 should decide on angled or straight config
- General findings:

 Miro-silver 4270 LG gives best performance
 Minimum quartz thickness for Moller ring is 15mm
 Standard optical polish from vendor is good enough
 Wrapping quartz in Al. mylar ~doubled light output
- New PREX II and CREX detector designs give 3x better performance as compared to PREX I
- New Hall A Lumi detectors built this fall; installing next week and plans for beam tests in December

Work supported in part by NSF grants PHY-1206082 and PHY-1307340