Glimpsing one of Nature's Secrets: The π^0 Lifetime

Dustin E. McNulty Idaho State University *mcnudust@isu.edu*

September 27, 2010

Glimpsing one of Nature's Secrets: The π^0 Lifetime

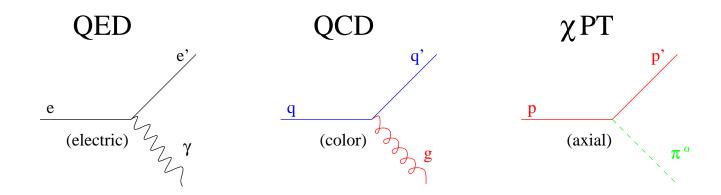
Outline

- Introduction and Physics Motivation
- Experimental Overview
- Calibration Reactions

Pair Production

Compton Scattering

- π^0 Analysis Details
- Final $\Gamma_{\pi^0 \to \gamma \gamma}$ Result
- Summary and Outlook



Intro: Examples of Charges and their Theories

- QED: Relativistic quantum field theory describing the interactions between electrically charged particles by photon exchange.
 - → Very successful fundamental theory—can calculate all EM phenomenon to extremely high precision.
- QCD: Fundamental theory describing the interactions between color charged particles (quarks and gluons) which make up hadrons.
 - →Difficult to prove—can only make quantitative, testable predictions using perturbative approach for high momentum transfer processes...Here the quark masses are neglected....

Intro: Examples of Charges and their Theories

- χPT: Effective (not fundamental) field theory describing the physics of QCD with light quark masses. It does this by replacing the quark/gluon interactions by a set of nucleon/pion interactions with strengths governed by the axial charge.
- →Strengths and limitations under investigation: Uses perturbative expansion of exchange currents associated with the near massless three lightest quarks to make testable predictions about the structure of hadrons at low energies.

Intro: Properties of the Neutral Pion (π^0)

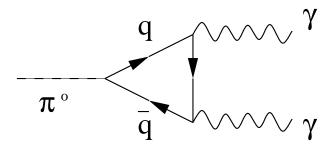
- Lightest of all hadrons: mass = 264m_e (134.98MeV)
- Spin = 0 (boson)
- Decay channels: $\pi^0 \rightarrow \gamma \gamma$ (98.8%), $\pi^0 \rightarrow e^+e^-\gamma$ (1.1%)
- Composition: $(u\bar{u} d\bar{d})/\sqrt{2}$
- Quantum numbers: $J^{PC} \equiv 0^{-+}$
- \rightarrow Total angular momentum J = S + L = 0 implies π^0 is a scalar (not changed by Lorentz transformations)
- \rightarrow Natural Parity P = (-), implies x \rightarrow -x, mirror reversed ψ needs to be multiplied by -1 (means π^0 is a pseudoscalar).
- \rightarrow Charge Parity C = (+), implies meson unchanged under interchange of quark and antiquark ($q \rightarrow \bar{q}$); it is its own anti-particle.

Intro: Connection Between Decay Width and Lifetime

- In addition to other parameters, unstable particles are characterized. by their mass and mass uncertainty
- The mass uncertainty is called the "width" of the unstable particle
 and can be theoretically related to its lifetime (τ) via the Weisskopf Wigner relation

Hand-Waving Explanation

- Decay width $\Gamma = \hbar/\tau$ follows from the energy-time uncertainty principle $\Delta E \Delta t \ge \hbar/2$
- The idea is this: If you observe a narrow mass peak (small energy uncertainty, ΔE), then its lifetime (Δt) can be relatively long, and vice versa
- So very short lifetimes can be determined by width measurements


Intro: History of π^0 Lifetime Experiments

- 1947: Pions (π^{\pm}) discovered in cosmic rays
- 1950: π^0 discovered in cosmic rays, $\pi^0 \to \gamma \gamma$ decay mode observed at Berkeley Cyclotron (lifetime to short to measure)
- Mean lifetime $\tau_{\pi^0} < 10^{-15}$ seconds established by 1957 from $K^+ \to \pi^0 \pi^0$ emulsion experiment $(d_{\pi^0} < 0.5 \mu m)$
- 1951: Primakoff effect $(\gamma \gamma^* \to \pi^0)$ invented
- 1970-5: First experiments to use Primakoff effect to measure τ_{π^0}
- Particle Data Group (PDG) Book database established by 1988

Intro: History of π^0 Lifetime Theory

- The amplitude $(A_{\pi\gamma\gamma})$ for $\pi^0 \to \gamma\gamma = 0$ in the Chiral limit $(m_q \to 0)$ according to theory of Partially Conserved Axial Current (PCAC)
- 1968: Adler,Bell, and Jaciw discover the axial anomaly (non-conservation of axial current)

$$\rightarrow A_{\pi\gamma\gamma} = \alpha_{em}/\pi F_{\pi}$$

$$\rightarrow \Gamma_{\pi^0 \rightarrow \gamma \gamma} = (m_{\pi}^3/64\pi) A_{\pi \gamma \gamma}^2 = 7.725 \text{eV} \pm 0.5\%$$

$$\to \tau_{\pi^0} = 8.07 \times 10^{-17} \text{ s}$$

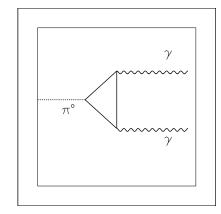
$$\rightarrow c\tau_{\pi^0} \sim 25 \text{ nm}$$

Intro: Anomalies in QCD

- Anomaly: When a symmetry of the classical theory is not present in the quantized version.
- In QCD, the anomaly is not anomalous, it is an essential part of the theory.
- For which processes does the anomaly occur?
- \rightarrow Define a multiplicative quantum number "natural parity" (P) = 1 for S, V, ... particles. P = -1 for PS, PV, ...
 - \rightarrow An anomalous reaction changes the natural parity:

$$\gamma\pi(P=-1)\longrightarrow \gamma\pi(P=-1)$$
 not anomalous $\pi^0(P=-1)\longrightarrow \gamma\gamma(P=1)$ anomalous $\gamma\pi(P=-1)\longrightarrow \pi\pi(P=1)$ anomalous

- All anomalous reactions are governed by the Wess-Zumino Lagrangian in χ PT which permits transitions that violate certain symmetries.
- In the Chiral limit, the absolute rate of these reactions are predicted by QCD



Physics Motivation

• π^0 decay rate is a fundamental prediction of QCD.

Chiral Anomaly

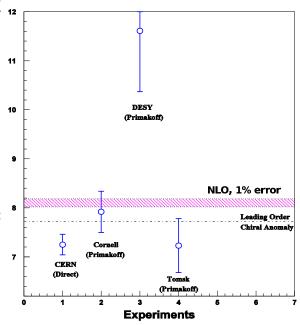
Presence of closed loop triangle diagram results in nonconserved axial vector current, even in the limit of vanishing quark masses.

→In the leading order (chiral limit), the anomaly leads to the decay width:

$$\Gamma_{\pi^0 \to \gamma \gamma} = \frac{\alpha^2 m_{\pi}^3}{64\pi^3 F_{\pi}^2} = 7.725 \pm 0.044 \text{ eV}$$
(1)

where $F_{\pi} = 92.42 \pm 0.25$ MeV is the pion decay constant.

 \rightarrow Current Particle Data Book value is 7.84 ± 0.56 eV



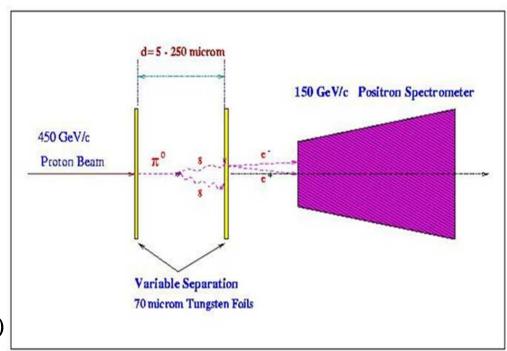
Physics Motivation

- LO prediction exact in Chiral limit 12
- For $m_q \rightarrow 0$, there are corrections:
 - → Due to isospin sym-breaking $(m_u \neq m_d), \pi^0, \eta \text{ and } \eta$ mixing induced.
 - Decay width (eV) → Further corrections induced by terms in the Chiral Lagrangian. &
- NLO prediction for the decay width is $8.10 \text{ eV} \pm 1\%$
 - → Calc. using Chiral Perturbation Theory and $1/N_c$ expansion.

J.L.Goity et al, Phys. Rev. D66, 076014 (2002); B.Moussallam, Phys. Rev. D51, 4939 (1995)

- → This is 4% higher than current experimental value!
- \circ A precision measurement of the π^0 decay width is needed.

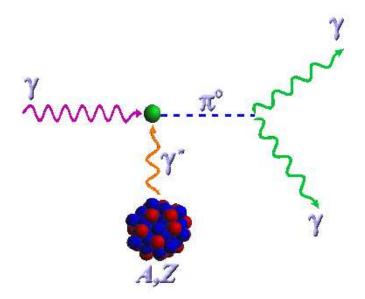
CERN (Direct Method) Decay Length Measurement


- $\rightarrow \tau_{\pi^0} \sim 1 \times 10^{-16} \text{ s} \Rightarrow \text{too small to measure}$
- \rightarrow Solution–Measure decay length of highly energetic π^0 's:

$$L = v \tau_{\pi^0} E / m \tag{2}$$

- \rightarrow for E = 1000GeV, L \sim 100 μ m (very challenging experiment)
- → Performed in 1984: Used 450GeV protons
 - → Result:

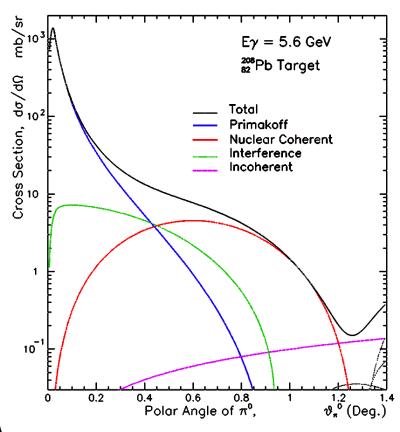
$$\Gamma_{(\pi^0 \to \gamma \gamma)} = 7.34 eV \pm 3.1\%$$


ightarrow Dominant syst. error: Uncertainty in E_{π^0} ($\pm 1.5\%$)

The Primakoff Effect

- π^0 photoproduction from Coulomb field of nucleus.
- Equivalent production $(\gamma \gamma^* \to \pi^0)$ and decay $(\pi^0 \to \gamma \gamma)$ mechanism implies Primakoff cross section proportional to π^0 lifetime.
- Primakoff π^0 produced at very forward angles.

$$\frac{d\sigma_P}{d\Omega} = \Gamma_{(\pi^0 \to \gamma\gamma)} \frac{8\alpha_{em}Z^2}{m^3} \frac{\beta^3 E^4}{Q^4} |\tilde{F}_{em}(Q)|^2 \sin^2\theta_{\pi} \tag{3}$$



Full Cross Section Components

$$\frac{d\sigma_{\pi^0}}{d\Omega} = \frac{d\sigma_P}{d\Omega} + \frac{d\sigma_C}{d\Omega} + \frac{d\sigma_I}{d\Omega} + 2 \cdot \sqrt{\frac{d\sigma_P}{d\Omega} \cdot \frac{d\sigma_C}{d\Omega}} cos(\phi) \tag{4}$$

Primakoff Nucl.Coherent Incoherent

Interference

Primakoff:

Proportional to Z^2 , peaked at $\theta_{\pi^0} = m_{\pi^0}^2/2E_{\gamma}^2$

Nuclear Coherent:

$$\frac{d\sigma_C}{d\Omega} = C \cdot A^2 |F_N(Q)|^2 \sin^2 \theta_{\pi} \tag{5}$$

Nuclear Incoherent:

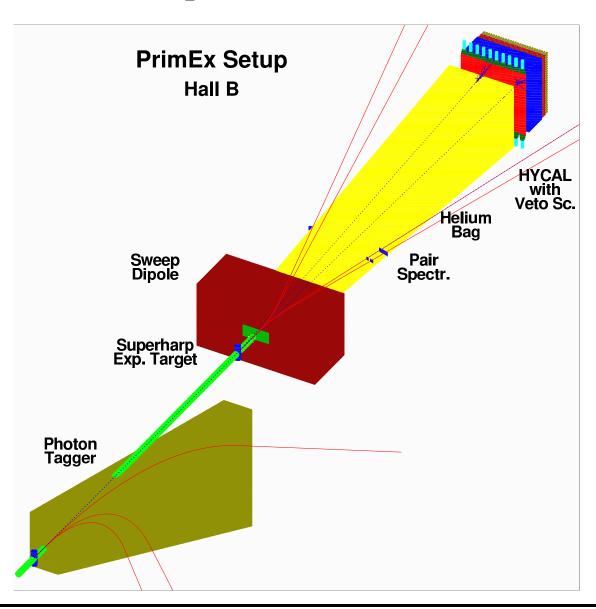
$$\frac{d\sigma_I}{d\Omega} = \xi A (1 - G(Q)) \frac{d\sigma_H}{d\Omega} \tag{6}$$

Interference:

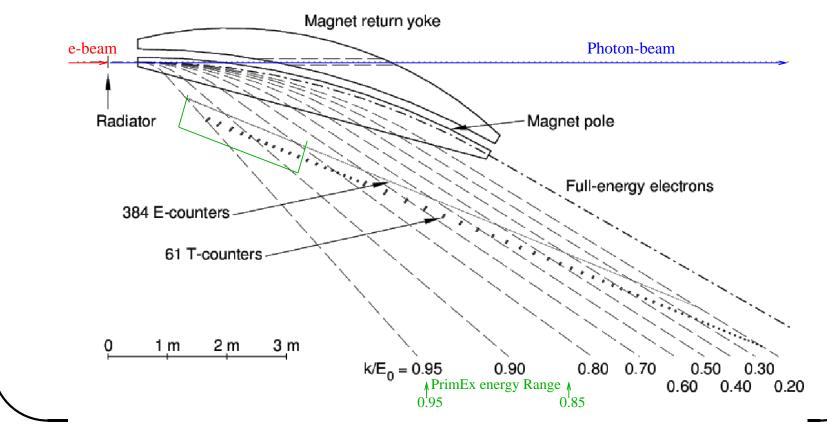
PrimEx Collaboration

```
D. Abrahamyan<sup>(s)</sup>, A. Afanasev<sup>(d)</sup>, A. Ahmidouch<sup>(l)</sup>, P. Ambrozewicz<sup>(l)</sup>, K. Baker<sup>(d)</sup>,
L. Benton<sup>(l)</sup>, A. Bernstein<sup>(j)</sup>, E. Clinton<sup>(i)</sup>, P. Cole<sup>(e)</sup>, P. Collins<sup>(b)</sup>, D. Dale<sup>(g)</sup>,
S. Danagoulian<sup>(l)</sup>, R. Demirchyan<sup>(l)</sup>, A. Deur<sup>(f)</sup>, J. Feng<sup>(m)</sup>, M. Gabrielyan<sup>(g)</sup>, L. Gan<sup>(m)</sup>,
A. Gasparian<sup>(l)</sup>, O. Glamazdin<sup>(h)</sup>, J. Goity<sup>(d)</sup>, V. Gyurjyan<sup>(f)</sup>, R. Hakobyan<sup>(c)</sup>, K. Hardy<sup>(l)</sup>,
M. Ito<sup>(f)</sup>, M. Khandaker<sup>(k)</sup>, P. Kingsberry<sup>(k)</sup>, M. Konchatnyi<sup>(h)</sup>, O. Korchin<sup>(h)</sup>, S. Kowalski<sup>(j)</sup>,
M. Kubantsev<sup>(n)</sup>, V. Kubarovsky<sup>(o)</sup>, I. Larin<sup>(a)</sup>, D. Lawrence<sup>(i)</sup>, D. McNulty<sup>(j)</sup>, R. Minehart<sup>(q)</sup>,
R. Miskimen<sup>(i)</sup>, V. Mochalov<sup>(o)</sup>, S. Mtingwa<sup>(l)</sup>, I. Nakagawa<sup>(g)</sup>, S. Overby<sup>(l)</sup>, E. Pasyuk<sup>(b)</sup>,
M. Payen<sup>(l)</sup>, R. Pedroni<sup>(l)</sup>, Y. Prok<sup>(j)</sup>, B. Ritchie<sup>(b)</sup>, T. Rodrigues<sup>(p)</sup>, C. Salgado<sup>(k)</sup>,
J. Santoro<sup>(r)</sup>, A. Sitnikov<sup>(a)</sup>, D. Sober<sup>(c)</sup>, A. Teymurazyan<sup>(g)</sup>, J. Underwood<sup>(l)</sup>, A. Vasiliev<sup>(o)</sup>,
V. Vishnyakov<sup>(a)</sup>, M. Wood<sup>(i)</sup>
```

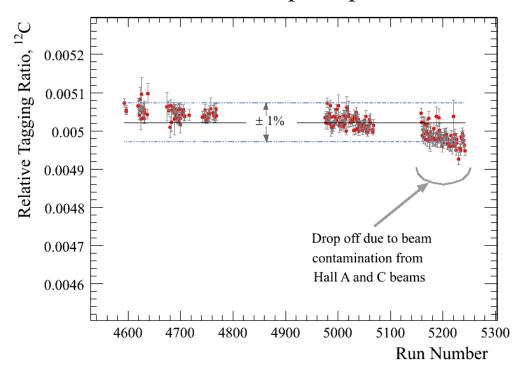
- (a) Alikhanov Institute for Theoretical and Experimental Physics, (b) Arizona State University,
- (c) Catholic University, (d) Hampton University, (e) Idaho State University, (f) Jefferson Lab,
 - (g) University of Kentucky, (h) Kharkov Institute of Physics and Technology,
 - (i) University of Massachusetts, (j) Massachusetts Institute of Technology, (k) Norfolk State University, (l) North Carolina A&T,
 - (m) University of North Carolina, Wilmington, (n) Northwestern University,
 - (o) Institute for High Energy Physics, Protvino, (p) University of Sao Paulo,
 - (q) University of Virginia, (r) Virginia Tech, (s) Yerevan Physics Institute


Experiment Overview

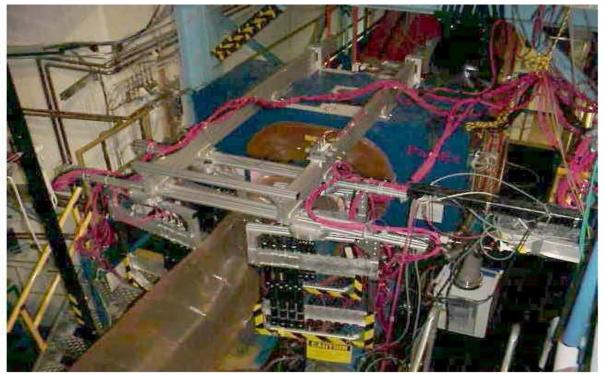
- Conducted at Jefferson Lab, Fall 2004
- Used 5.75 GeV continuous e⁻ beam and Hall B γ-tagging facility
- Tagged photons incident on 5% X₀ targets: ¹²C and ²⁰⁸Pb
- New PrimEx/Hall B calorimeter (HyCal), upstream of CLAS, designed to detect π^0 decay γ 's
- Measured 3 physical processes (absolute cross sections): Primary π^0 production, Secondary Compton and e^+e^- pair production
- Improvements over previous experiments: Precision tagged γ flux and incident γ energy info, enhanced π^0 angular and mass resolution, and identification and subtraction of background event contamination

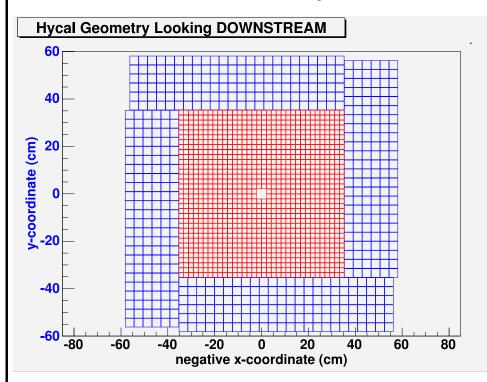

Experiment Overview

Hall B Photon Tagger


- Single dipole magnet combined with a hodoscope containing two planar arrays of plastic scintillators to detect energy-degraded electrons from a thin bremsstrahlung radiator.
- Tagger has 0.1% energy resolution and is capable of 50 MHz rates.

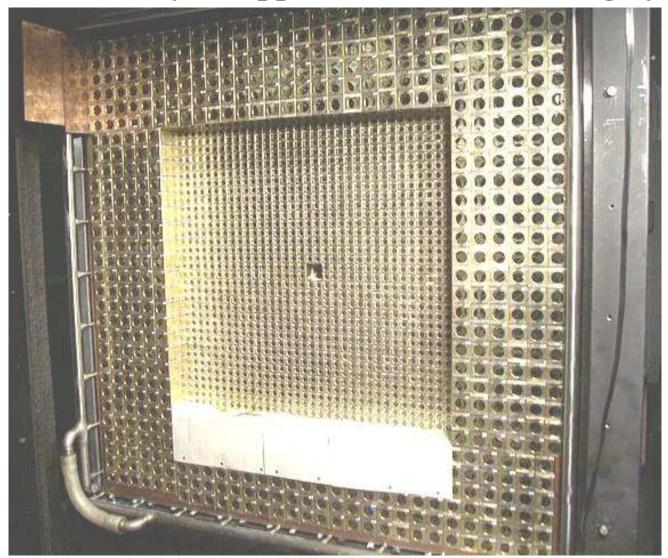
Photon Flux Control


- PrimEx achievement: Total uncertainty in photon flux = 0.98%.
- Number of tagged photons on target (N_{γ}) calibrated periodically using a Total Absorption Counter (TAC).
- Any drifts in the tagging ratio, occurring between calibration points, are monitored online with the e^+e^- pair spectrometer.



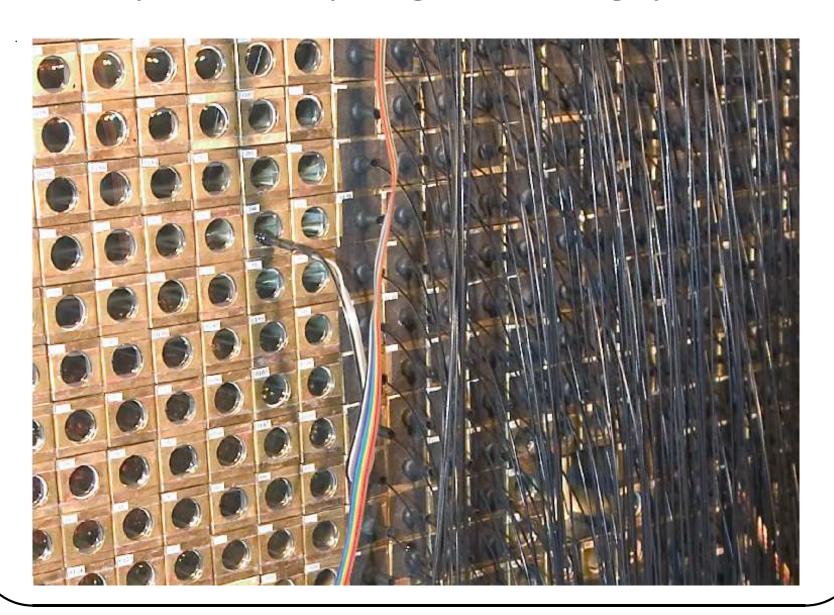
Pair Spectrometer

PrimEx Hybrid Calorimeter – "HyCal"

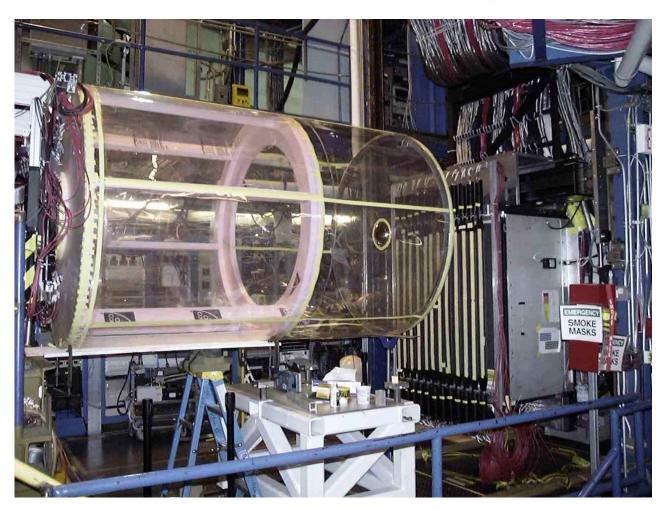


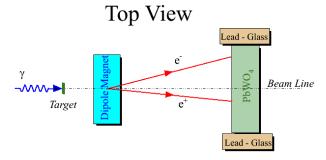
- Optimal performance/cost design
- 1.2 m \times 1.2 m, 1728 channels
- 576 Lead-glass (outer layers)
- 1152 Lead-Tungstenate crystal (inner layers)

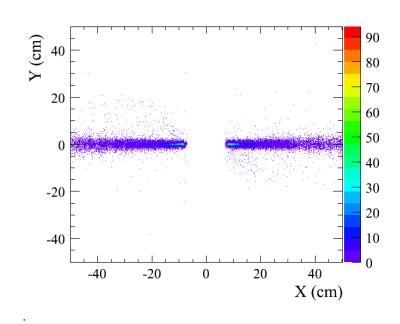
	Lead-glass	PbWO ₄
Energy Res. (ΔE/E)	3-5 %	1 – 2 %
Position Res. $(\Delta x, y)$	\sim 5 mm	$\sim 1.5 \text{ mm}$
Angular Res. $(\Delta \theta_{\pi^0})$	\sim 675 μ rad	\sim 300 μ rad

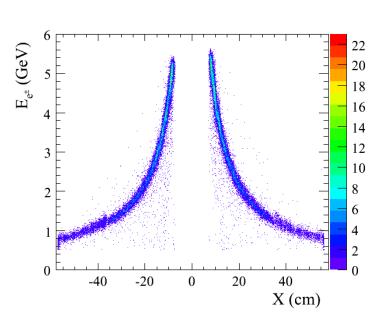


HyCal Assembly – Support Frame and Cooling System

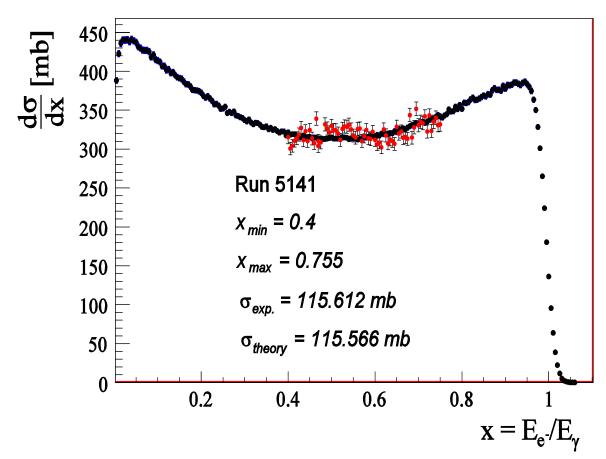

HyCal Assembly – Light Monitoring System


HyCal Calibration –"Snake Scans"


- Full x,y motion allowed each ch. to be scanned through tagged γ beam.
- Performed at both the beginning and end of the experiment.

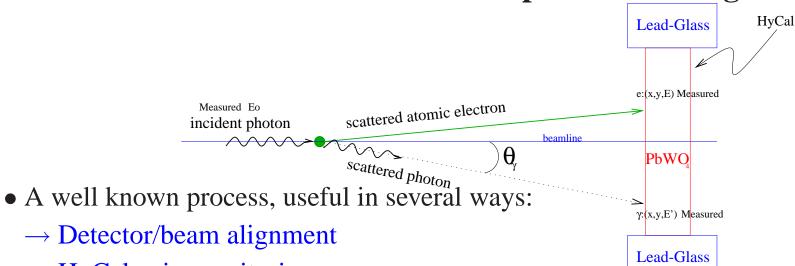


Calibration Reactions: e⁺ e⁻ Pair Production

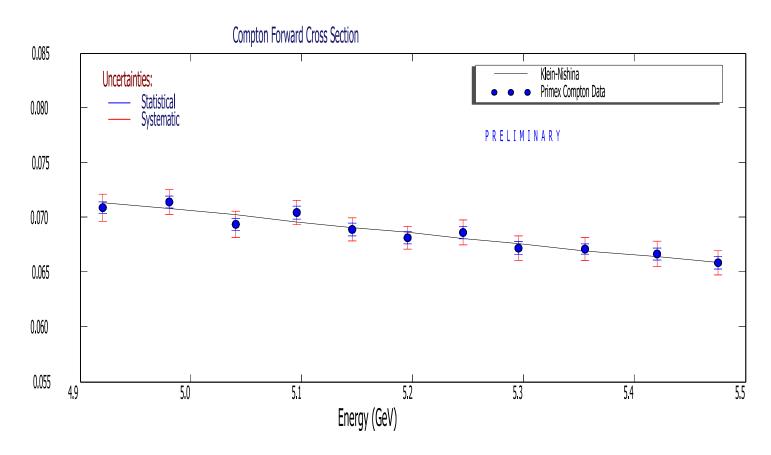


Calculation of Pair Production Cross Section at PrimEx Kinematics

- Bethe-Heitler mechanism of pair production on the nucleus with screening effects due to atomic electrons and Coulomb distortion
- Pair production off atomic electrons, considering excitation of all atomic states and correlation effects due to the presence of other electrons and the nucleus
- Radiative corrections (of order α/π) (i) virtual photon loops and (ii) real photon process like $\gamma + A \rightarrow e^+ + e^- + A + \gamma$
- Nuclear incoherent contribution, $\gamma + p \rightarrow e^+ + e^- + p$
- Nuclear coherent contribution (VCS), $\gamma + A \rightarrow \gamma^* + A \rightarrow e^+ + e^- + A$


Pair Production Preliminary Result

 \bullet Agreement with theory at $\sim 1.0\%$ level


Calibration Reactions: Compton Scattering

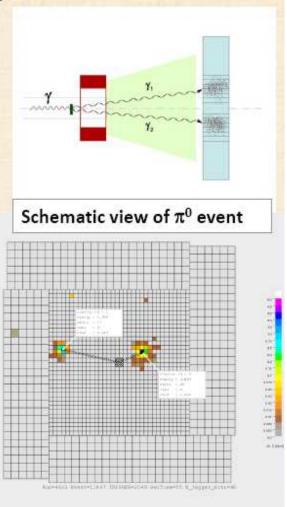
- → HyCal gain monitoring
- → Overall check of PrimEx setup to measure absolute cross sections
 - Dedicated "Double-Arm" Compton Runs:
 - \rightarrow Performed on a weekly basis, B_{PS} = 0, I_{beam} $\sim 5 10$ nA
 - → Both e⁻ and scattered photon detected in HyCal
 - \rightarrow Compton Cross Section Measured: ^{12}C and $0.5\%\text{X}_0$ ^{4}Be
 - o "Single-Arm" Compton Data:
 - ightarrow Dominant Source of Events in π^0 production data-runs
 - \rightarrow B_{PS} \sim 2 T, I_{beam} \sim 100 nA, only scattered photon detected

Compton Cross Section Preliminary Result

- Average statistical error: 0.6%
- Total error: 1.3% (dominated by photon flux: 1.0%)

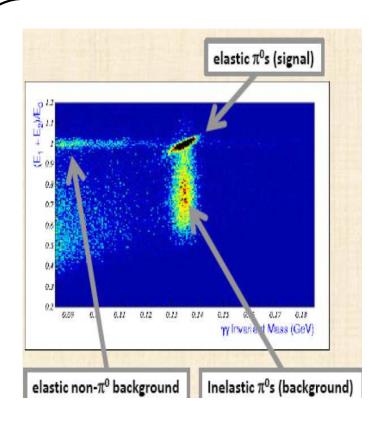
Analysis Details: π^0 Event Selection

π^0 analysis

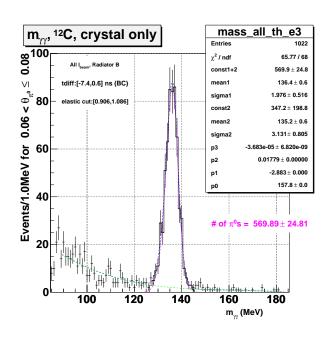

We measure:

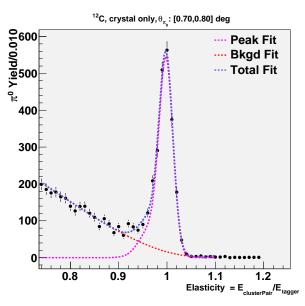
incident photon: energy and time π^0 decay photons: energies, coordinates and time

Kinematical constraints:

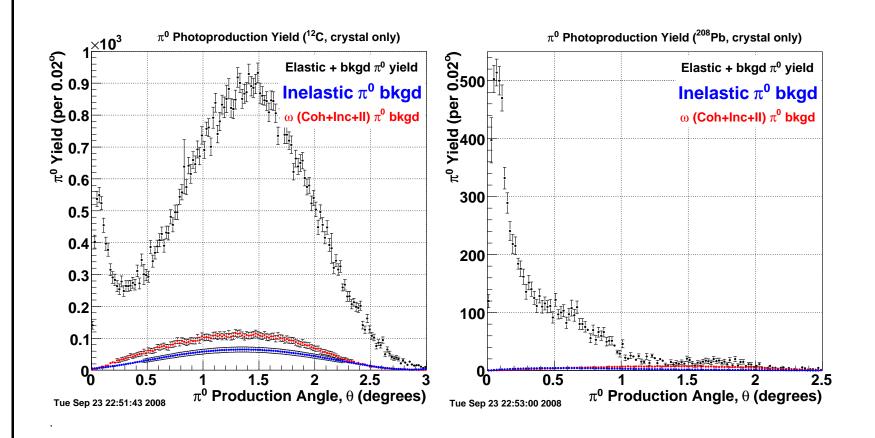

Conservation of energy; m_{γγ} invariant mass

Three groups analyzed the data independently





Jefferson Lab Hall B


- For each θ_{π^0} bin, apply elastic cut and form $m_{\gamma\gamma}$ distributions; perform fit and extract peak counts = uncorrected yield.
- Correct for inelastic bkgd by eval π^0 elast. dist. explicitly for each θ_{π^0} ; eval. inel. bkgd under the elastic pk using fit and sub. from yield.

Analysis Details: Yield with backgrounds (12C and 208Pb)

Analysis Details: $\Gamma_{\pi^0 \to \gamma\gamma}$ Determination

• Convert Yield to Cross Section.

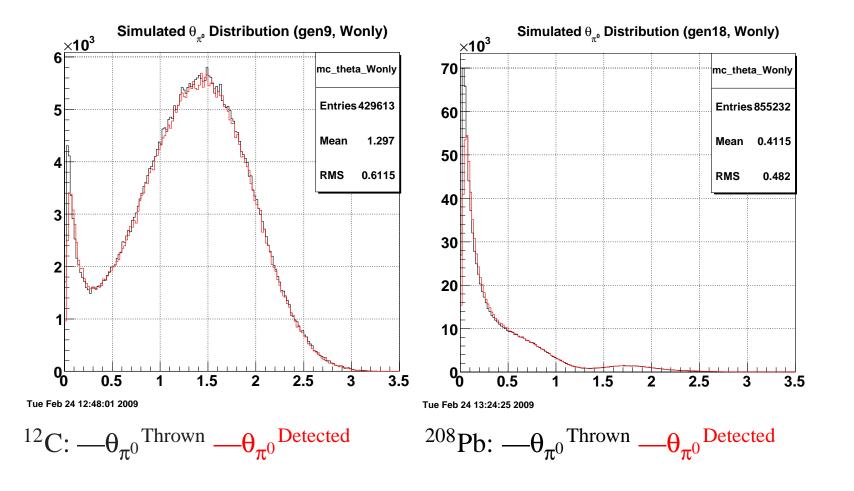
$$\frac{d\sigma_{exp}}{d\theta_{\pi^0}} = \frac{N_{\pi^0}^{yield}(\theta_{\pi^0})}{N_{\gamma} \times N_t \times \varepsilon_{\pi^0}(\theta_{\pi^0}) \times \Delta\theta_{\pi^0}}$$
(7)

- \rightarrow where $N_{\gamma} \equiv \#$ of γ 's on target (uncertainty $\sim 1.0\%$).
- \rightarrow where $N_t \equiv \text{target atoms/cm}^2$ (thickness mapped to $\sim 0.05\%$).
- \rightarrow where $\varepsilon_{\pi^0} \equiv$ experimental acceptance (uncertainty $\sim 0.6\%$).
- Fit experimental data with parametrization:

$$\frac{d\sigma_{exp}}{d\theta_{\pi^0}} = b_p \frac{d\sigma_P}{d\theta} + b_{nc} \frac{d\sigma_N}{d\theta} + b_b \frac{d\sigma_I}{d\theta} + 2\cos\phi \sqrt{b_p b_{nc} \frac{d\sigma_P}{d\theta} \frac{d\sigma_C}{d\theta}}$$
(8)

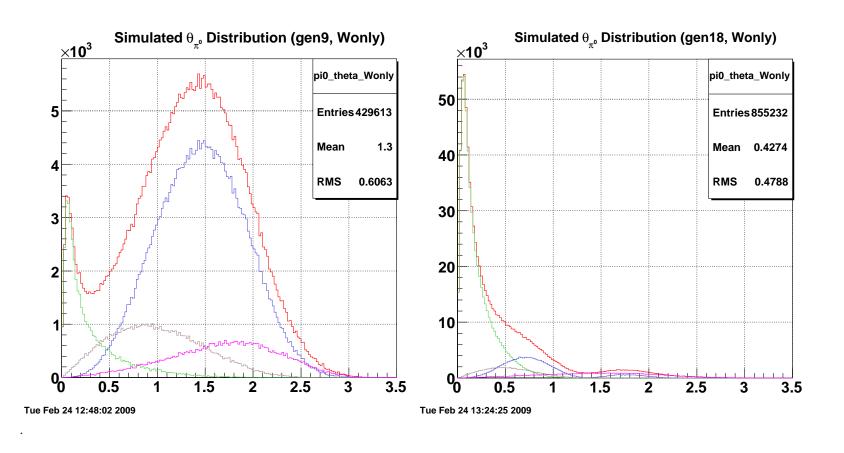
- \rightarrow where the parameter $b_p = \Gamma_{\gamma\gamma}$
- \circ Vary the four parameters (b_p , b_{nc} , b_b , and ϕ) and minimize χ^2 .

Yield Fit, $\Gamma_{\gamma\gamma}$ Extraction: Procedure

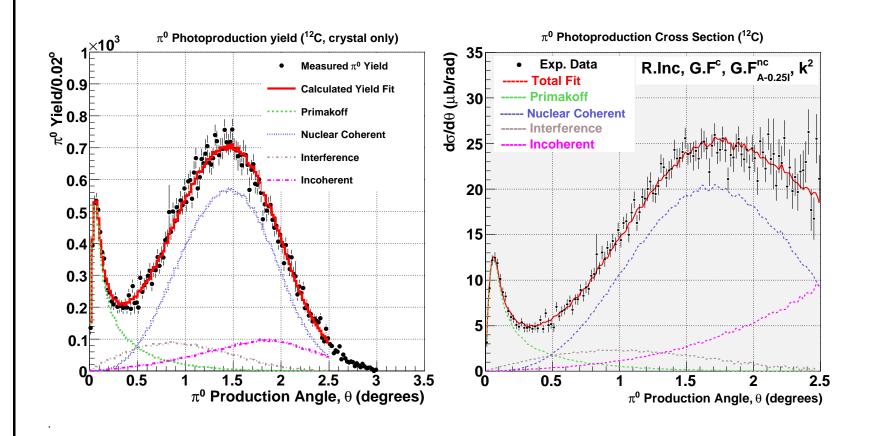

• Parametrize yield using sum of 4 theoretical shapes—smeared according to experimental resolutions.

$$\frac{d\sigma_{exp}}{d\theta_{\pi^0}} = b_p \frac{d\sigma_P}{d\theta} + b_{nc} \frac{d\sigma_N}{d\theta} + b_b \frac{d\sigma_I}{d\theta} + 2cos\phi \sqrt{b_p b_{nc} \frac{d\sigma_P}{d\theta} \frac{d\sigma_C}{d\theta}}$$
(9)

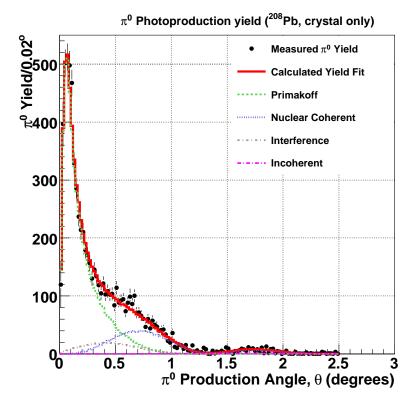
- → Calculate theory input shapes (cross sections) energy-weighted according to experimental flux.
- \rightarrow Create π^0 event generator based on above cross sections and run through Primsim Monte Carlo.
- → Digitize simulated data and reconstruct events using same algorithms as for real data. Produce simulated yield distributions with built-in experimental resolutions.
 - Freely vary amplitudes of 4 shapes and minimize χ^2 .

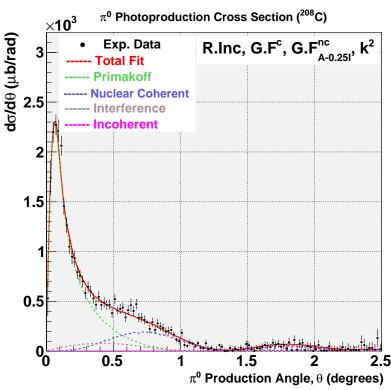


MC Shape Generation: Exmpl. Thrown & Det. Spectra

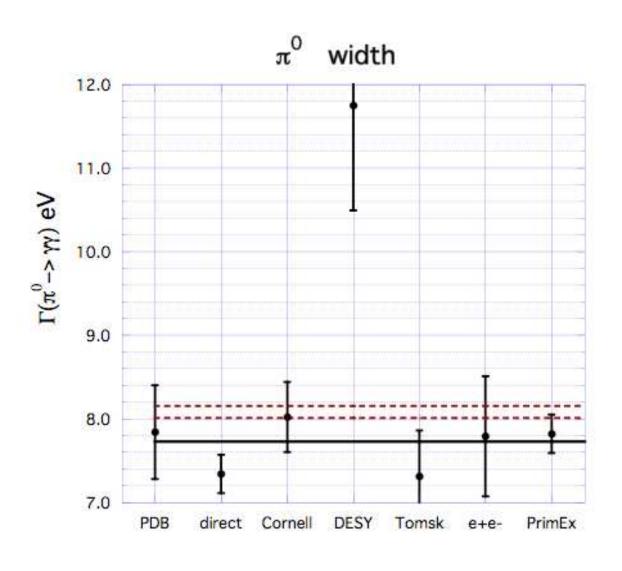


MC Shape Generation: Exmpl Fit Input Shapes (smeared)



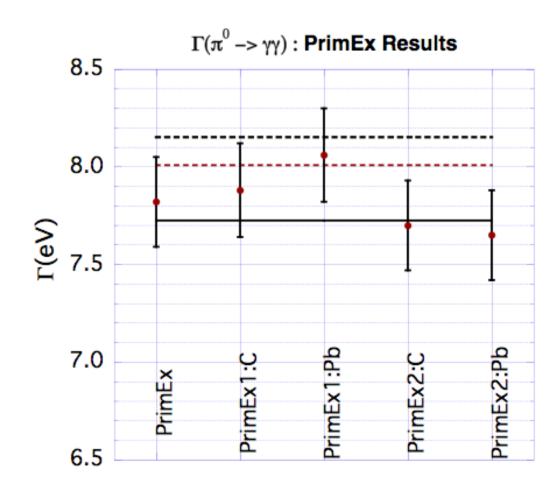

Yield Fit and Cross Section for ¹²**C**

Yield Fit and Cross Section for ²⁰⁸**Pb**



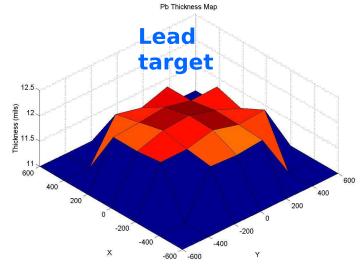
 $\Gamma(\pi^0 \to \gamma \gamma)$ Systematic Errors

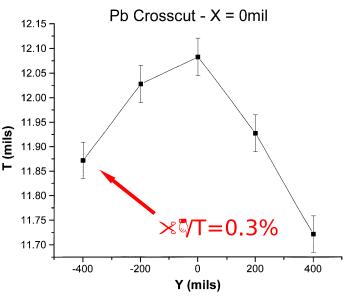
$1(\pi \rightarrow \gamma\gamma)$ Systematic Errors				
Contributions	$\Gamma_{\gamma\gamma}$ dev (%)	PrimEx II		
Photon flux	±1.0			
Target Thickness	± 0.1			
Yield Extraction	±1.6	± 0.5		
HyCal Efficiency	± 0.5	± 0.2		
Beam Parameters	± 0.4			
Trigger Efficiency	± 0.1			
Veto Efficiency	± 0.4			
Fiducial Acceptance	± 0.3			
ModelErrors (Theory)	±0.3			
Physics Background	± 0.25			
Branching Ratio $\pi^0 \nrightarrow \gamma\gamma$	±0.03			
Total	±2.1%	±1.3%		


Summary and Outlook

- High Quality precision π^0 photoproduction data on 12 C and 208 Pb targets using $4.9 \le E_{\gamma}^{tagged} \le 5.5$ GeV has been collected and analyzed by the PrimEx Collaboration
- Cross section results from studied calibration reactions e⁺e⁻ production and Compton scattering are both in excellent agreement with theory (at the 2% level)
- All three \sim independent π^0 analysis groups have achieved very consistent results for both targets
- The final π^0 partial width result: $\Gamma_{\pi^0 \to \gamma \gamma} = 7.82 \text{eV} \pm 2.2\% (\text{stat}) \pm 2.1\% (\text{syst})$; Overall $\pm 3.0\%$ error.
- The mean lifetime: $(8.32 \pm 0.25) \times 10^{-17}$ s
- $\Gamma_{\pi^0 \to \gamma \gamma}$ result consistent with both LO and NLO predictions
- Continuation of this measurement in Hall B next month; approved 12GeV Hall D measurement of η , η' lifetime...

Independent Group Results



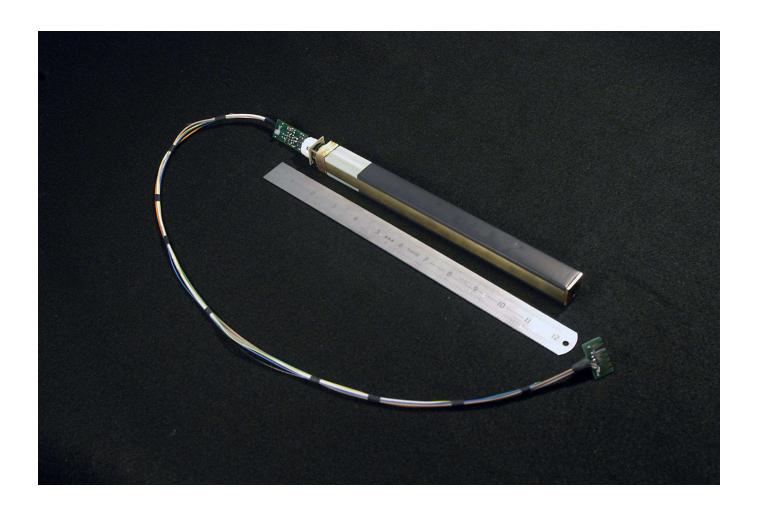

Isotopically pure ¹²C and ²⁰⁸Pb

PRIMEX Targets

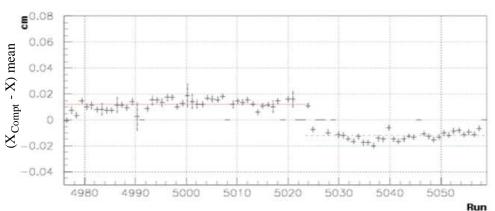
The effective number of carbon atoms/cm² in the carbon target is known to precision of ±0.05%

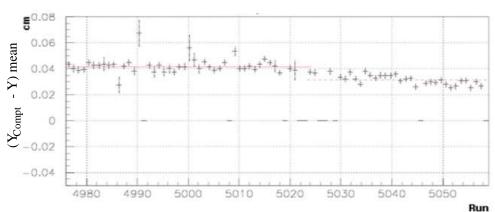
HyCal Specifications

	Lead-glass	PbWO ₄
	(outer)	(inner)
Mechanism	Čerenkov	Scintillator
Block dimensions	$3.80 \times 3.80 \times 45 \text{ cm}^3$	$2.05 \times 2.05 \times 20 \text{ cm}^3$
Number of blocks	576	1152
Density	3.85 g/cm^3	8.28 g/cm^3
Moliere Radius	3.6 cm	2.0 cm
Radiation Length	2.7 cm	0.89 cm
Energy Res.	3 – 5 %	1 – 2 %
Position Res.	\sim 5 mm	$\sim 2 \text{ mm}$
Angular Res.	\sim 675 μ rad	\sim 270 μ rad

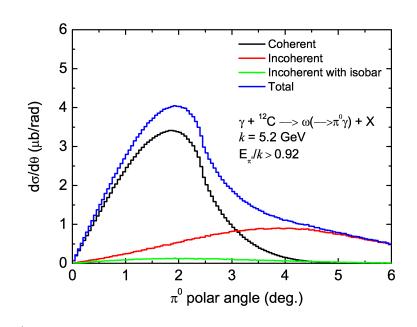


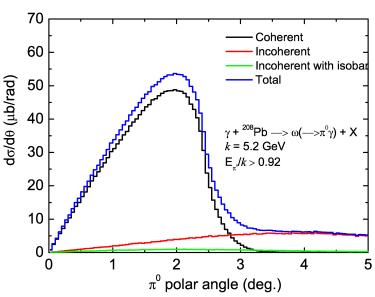
HyCal – Bare (unwrapped) PbWO₄ Crystals



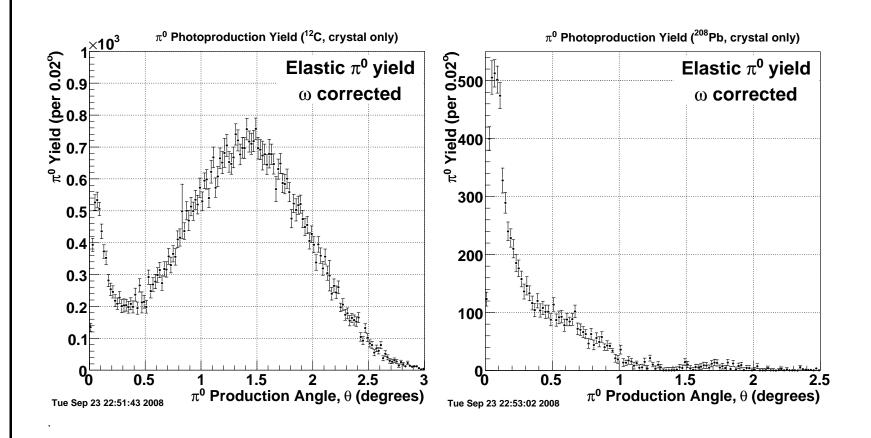

HyCal Assembly – Crystal Wrapping

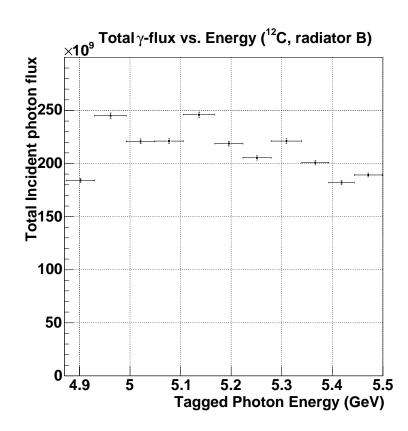
Beam Alignment Monitoring using Single-Arm Compton

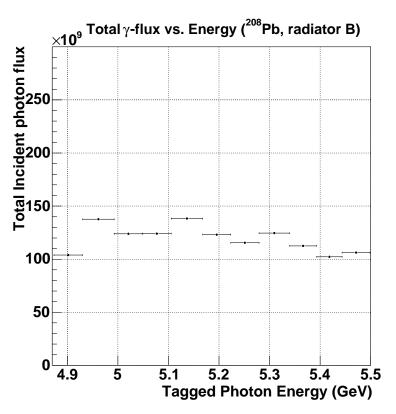



- Only scattered γ measured
- $X \equiv reported HyCal coord$
- $X_{Compt} \equiv calc.$ (x,y) from Hycal E and Compton kin.
- If beam alignment perfect: $(X_{Compt}-X) = 0$
- Technique tracks alignment at 0.1 mm level
- Jump in X correlated with beamline BPM

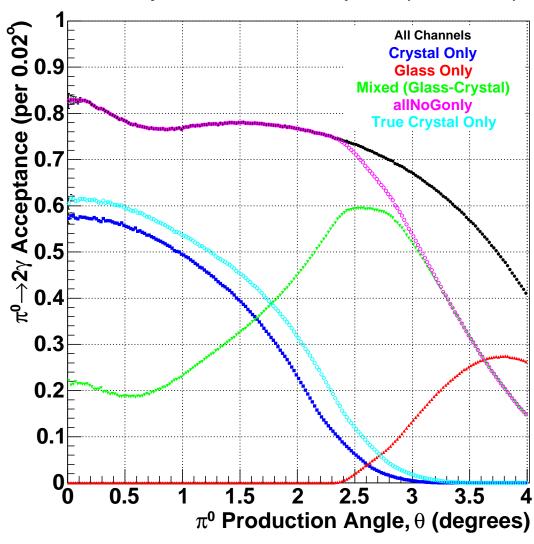
The $\omega \to \pi^0 \gamma$ Background Correction


- $d\sigma/d\theta_{\pi^0}$ for $\omega \to \pi^0 \gamma$ taken from T. Rodrigues and implemented
- Convert ω cross section into absolute yield while imposing experimental resolutions using Monte Carlo
- Explicitly subtract contribution from experimental yield




Final Yields for ¹²C and ²⁰⁸Pb

Photon Flux



Flux for 12 C: $2.33 \times 10^{12} \text{ y/s}$ Flux for 208 Pb: $1.31 \times 10^{12} \text{ y/s}$

Hycal Geometric acceptance of both π^0 decay γ 's

HyCal π^0 Geometric Acceptance (All Fiducials)

Experimental Efficiencies

	Losses (%)	
Description	¹² C	²⁰⁸ Pb
Photon Absorption in Target	5.41 ± 0.02	5.92 ± 0.01
Best (tdiff) Candidate selection	2.5 ± 0.3	1.1 ± 0.3
Elasticity Cut: [0.906, 1.086]	1.7 ± 0.3	1.7 ± 0.3
Veto Cut: all flags $(0,1,2,3)$	1.97 ± 0.12	1.97 ± 0.12
Branching Ratio $\pi^0 \nrightarrow \gamma \gamma$	1.2 ± 0.03	1.2 ± 0.03
Total	12.8 ± 0.5	11.9 ± 0.4

Table 1: Summary of non-geometric losses.