Detectors for High Flux Parity Experiments at JLab: PREX-II, CREX and MOLLER

Dustin McNulty Idaho State University *mcnudust@isu.edu*

February 3, 2020

Detectors for Parity Experiments at JLab

Outline

- The Weak force and Parity Symmetry Violation
- Introduction to Parity-Violating Electron Scattering
	- **–** Why PVES?
	- **–** Experiment blueprint, "how-to", and technical progress
- PREX-II/CREX at Jefferson Laboratory
	- **–** Experimental concept, techniques and apparatus
- New Integrating Detectors for PV
	- **–** PREX-I Main and A T Detectors
	- **–** PREX-II/CREX Main and A T Detectors
	- **–** Shower-max Sampling Calorimeter for MOLLER (if time)
- Summary and Future Plans

Physics Colloquium Idaho State U.

.

The Weak Force: Oh, I didn't know that?

Through a series of nuclear reactions, four protons (hydrogen nuclei) in the core of our Sun combine to form a helium nucleus emitting two positrons and two neutrinos and releasing 27 MeV of energy:

 $p + p + p + p \rightarrow He^{4} + e^{+} + e^{+} + \nu_{e} + \nu_{e} + 27MeV$

- Thermonuclear fusion--Perhaps the most important reaction for all life on planet Earth is caused by a fundamental force of nature that is rarely discussed in the classroom: Weak Interactions or the weak nuclear force
	- Responsible for nearly all radioactive decay processes
	- \triangleright Beta decay is most common
	- \triangleright Theoretical understanding is at same level as Quantum Electro Dynamics

Beta Decay Examples

Beta Decay – Nature's Window into the Weak-nuclear Force

A Quick History:

.

- 1899 Rutherford Rutherford classifies three types of \bullet radioactive emissions: alpha, beta, and gamma
- 1931 Pauli postulates existence of neutrino to explain \bullet non-discrete energy spectra of β -decay electrons
- 1933 Fermi develops theory to explain β decay -- \bullet precursor to theory for weak interaction
- 1956 Neutrino discovered by experiment. \overline{v}_e + p \rightarrow n + e⁺ \bullet
- 1957 Parity Violation discovered in β decay of ⁶⁰Co \bullet

Fermi's Interaction – Precursor to Weak Theory

- Fermi's theory invented a physical mechanism for β decay
- 4-fermion contact interaction at single space-time point
- Modeled after electrodynamic field interactions -- where \vec{J}_E of a charged particle interacts with \vec{A} to create a photon
- For Fermi's theory, the "weak" current of pn-pair interacts with the "weak" \bullet current of $e\overline{v}$ -pair
- Fermi's "weak" currents/potentials had vector form just as EM.

Parity Symmetry

- Parity operation: Spatial reflection through the origin
- "Even" functions: $P f(x, y, z) \implies f(x, y, z)$
- "Odd" functions: $P f(x, y, z) \implies f(x, y, z)$
- *Classically*, scalar quantities $(m, E, \rho, V, M, ...)$ are mainly "even" while vector quantities $(\vec{x}, \vec{a}, \vec{F}, \vec{E}, \vec{A}, ...)$ are mainly "odd"
- *Quantum Mechanically*, if **P** commutes with the Hamiltonian, then Parity is conserved (invariant or symmetric)
- Fundamental symmetry of nature known to be conserved in electromagnetism, strong interactions, and gravity

β − **Decay and Standard Model**

- Julian Schwinger modifies Fermi's theory to \bullet incorporate parity violating potential term (V-A) and idea of intermediate vector bosons; Glashow, Weinberg, and Salam 1979 **Nobel Prize**
- W^{\pm} only couples to left-handed particles and \bullet right-handed anti-particles
- $Z⁰$ couples predominantly to left-handed particles

Why Parity-Violating Electron Scattering?

Provides model-independent determinations of nuclear and fundamental-particle weak-charge form factors and couplings with widespread implications for:

- Understanding nuclear and nucleon structure
	- **–** Strange quark content of nucleon
	- **–** Neutron radii of heavy nuclei −→ density dependence of Symmetry Energy and EOS of nuclear matter; neutron stars; calibrate hadronic probe reactions on radioactive beams
- Search for physics Beyond the Standard Model (BSM)
	- $-$ Indirect searches using low energy $(Q^2 \ll M_Z^2)$ precision electroweak tests at high intensity or precision frontier
	- **–** complements direct searches at high energy frontier

JLab PVES Programs: HAPPEX, G0, PVDIS, PREX, Qweak, CREX MOLLER, SoLID

Parity-Violating Electron Scattering

Blueprint of a PVES Experiment (E122 at SLAC)

IDAHO
STATE

Anatomy of a PVES Experiment (E122 at SLAC) .

How to do a Parity Experiment .

Detector signal noise dominated by electron counting statistics

3 Decades of Technical Progress

photocathodes, polarimetry, high power cryotargets, nanometer beam stability, precision beam diagnostics, low noise electronics, *rad-hard dets* **PVeS Experiment Summary**

1st generation 2nd generation 3rd generation 4th generation

 $E122 - 1$ st PVES Expt (late 70's at SLAC) Mainz & MIT-Bates in mid 80's JLab program launched in mid 90's E158 at SLAC meas PV Møller scattering MOLLER at JLab in mid 2020's

• Parity-violating electron scattering has become a precision tool!

PREX/CREX Concept

(Probing the Weak Charge Distribution of N-rich Nuclei) .

- Neutron distribution not accessible to \bullet the charge-sensitive photon
- Z⁰ couples primarily to neutron \bullet

Present knowledge of neutron distributions comes primarily from hadron scattering \rightarrow model-dependent interpretation, large and uncontrolled uncertainties

❖ Parity violation can measure neutron and weak-charge form factors model-independently with statistics-dominated uncertainty

 $M_{EM} = \frac{4\pi\alpha}{Q^2} F_p(Q^2)$ (EM amplitude accesses charge)
or proton form factor $M_{Weak}^{NC} = \frac{G_F}{\sqrt{2}} [(1 - 4\sin^2{\theta_W}) F_p(Q^2) - F_n(Q^2)]$ $Q^n_{W} \simeq -1$ $Q^p{}_{W} \sim 0$

$$
A_{PV} \approx \frac{G_F Q^2}{4\pi \alpha \sqrt{2}} \frac{F_n(Q^2)}{F_p(Q^2)}
$$

 $F_{n,p}(Q^2) = \frac{1}{4\pi} \int d^3r \ j_0(qr) \ \rho_{n,p}(r)$

$$
r
$$
 clean neutron
$$
r
$$

$$
T^0
$$
 208pb

 0.95 GeV e beam, 50-70 μ A

 $Q^2 = 0.0088$ GeV², A_{pv}~0.5ppm

 0.5 mm thick ²⁰⁸Pb target

5° scattered electrons

680 hours, \sim 35M pairs

 $\delta A_{PV} \sim 15 \text{ ppb} (3\%)$

PREX/PREX-II:

PREX/CREX Overview

CREX:

- 2.22 GeV e beam, 150 μ A
- 5 mm thick ⁴⁸Ca target
- 5° scattered electrons

 $Q^2 = 0.037 \text{ GeV}^2$, A_{py}~2ppm

- 780 hours, $~40M$ pairs
- $\delta A_{\text{PV}} \sim 80 \text{ ppb} (4\%)$
- high polarization, $\sim 89\%$ helicity reversal at 240&30 Hz
	- **New thin quartz detectors**

Symmetric High Resolution Spectrometers

D

Pol

Source

Jefferson Lab, Newport News,

Dustin E. McNulty **Detectors for Parity Experiments at JLab** Feb 3, 2020 16

"Parity Quality" Beam Monitoring

(normalization and false-asymmetry systematics control) .

Precision source-laser alignment ٠

IDAHO
SIATE

PREX-I Systematic Errors .

PREX goal for ~ 2% total systematic error achieved!

 $Q²$

Integrating Detector Focal Plane for PV Experiments: HAPPEX through PREX-II/CREX

Requirements for PVES Integrating Detectors

- Radiation hardness active medium must give consistent response under extreme and prolonged flux exposures
- Should count individual electrons with good ($\sim 20\%$) resolution – to minimize statistical error inflation
- Photo-sensitive device must give highly linear response (at 0.3% level for PREX-II/CREX) – so care must be taken to understand photo-cathode light levels and anode currents during integration mode *A*_{*PV*} measurements

Dustin E. McNulty **Detectors for Parity Experiments at JLab** Feb 3, 2020 21

Main Integrating Detector for PREX-I ("thin" quartz Tandem Detector)

- Uses rad-hard, optically polished fused silica (quartz) tiles for Cherenkov active medium
- Scattered electrons traverse quartz at nominal angle of 45 degrees
- Aluminum air-core (specular reflector) light guide directs Cherenkov light to 2 inch PMT
- Linear translation stages provide precision positioning in "dispersive" \hat{x} and "transverse" \hat{y}

Jown

 U_D

Duartz

Quartz 6 mm

Main Integrating Detector for PREX-I ("thin" quartz Tandem Detector)

- Quartz geometry: 160 mm by 35 mm by 6 mm (upstream) and 10 mm (downstream)
- Conservative Design for PREX-I: orientation \bullet between pmt, quartz and central ray gives consistent light yields...but relatively low overall yield and okay resolution...

Integrating Detectors for PREX-I (Tandem and A T Dets)

transverse beam

polarization

power)

A T Detectors

Monitor any residual

larger OOP scatters

(enhancing analyzing

Elastic scattered

flux envelopes

Main Tandem

Detectors

Left HRS

<u>Views along dispersive \hat{x} </u>

Right HRS

Left HRS Photo (2010)

Right HRS CAD

- First GEM tracking system to be used at JLab was during PREX-I; system was noisy and cumbersome
- Each HRS used three triple GEM chambers; each 10 by 10 cm² active area
- These supplement VDCs during high rate Q^2 and optics calibration runs

Integrating Detector Design change between PREX-I and PREX-II/CREX

- Orientation between quartz, pmt, and scattered \bullet electron changed
	- Allows capture of both sides of Cherenkov cone - instead of losing one side due to critical angle
	- Use TIR inside quartz as light guide $-$ instead of aluminum air-core reflector to direct light to PMT
	- Less sensitivity to extra noise due to delta-ray production
- This change effectively doubles light yield and \bullet improves RMS by $\sqrt{2}$
- However, there is more light yield variation for ٠ electrons with different incident angles
- ❖ Design validated with G4 optical Monte Carlo benchmarked to "real" Testbeam data

G4 Event Visualizations: PREX-I vs PREX-II/CREX

Physics Colloquium Idaho State U.

Main Integrating Detectors for PREX-II/CREX .

- Both Left and Right HRS main detectors are assembled and ~ready to go
- PREX will use 5 mm thick quartz for all detectors
- CREX will use 6 mm thick quartz upstream and 10 mm downstream

. **MAMI testbeam May 24-27, 2016**

• $\frac{3}{4}$ shift total for PREX-II/CREX and SAM

- 6mm and 10mm Tandem mount
- Near normal e incidence
- $\sqrt{3}$ (2015) SAM detector PE yield studies:
	- Miro27 and UVS light-guides
	- With and without 1cm \bullet tungsten pre-radiator

PREX-II/CREX Tandem Detector Tests

- Quartz spacing same as for rotary tandem mount $(\sim]16 \text{ cm})$
- Used two Hamamatsu R7723Q pmts
- Quartz is wrapped with 1 mil Al. Mylar
- Took runs for each quartz thickness upstream and downstream
- Example raw data, pedestal fit, and ped-corrected ADC and PE dists

Optical Monte Carlo (qsim) Benchmarking

- Detailed geometry; pmt quantum efficiency sampling; refractive index dispersion; light attenuation in quartz; photo-cathode attenuation and reflection; quartz ground polish parameter
- Glisure ground polish parameter is tuned to make agreement between simulation and data

Fri Feb 26 14:44:35 2016

Optical Monte Carlo (qsim) Benchmarking

Photo-Electron Distribution - simulated vs real data

Optical Monte Carlo (qsim) Benchmarking

Peak PEs Vs Detector-Beam Angle

.**RHRS Tandem PREX-II/CREX Dets with GEMs**

Physics Colloquium . Idaho State U.

- PREX-II took place over summer 2019 and completed successfully in early September
	- \triangleright Measured ~0.5 ppm A_{PV} from ²⁰⁸Pb with ~1 GeV beam at 5° θ_{lab} to ~3% stat. precision
	- Integrated flux rates were >2 GHz per arm (Left and Right HRS); 26% detector resolution
	- \triangleright Achieved 14 ppb statistical precision with a few nanometer control on beam positions
	- \triangleright GEMs operated at 95% efficiency; provided precision Q² avg and systematic checks
	- Overall systematic error well below 14 ppb; will extract neutron skin to ± 0.07 fm precision ➤

Physics Colloquium . Idaho State U.

- CREX (Calcium Radius Experiment) will run from this Dec to April 2020 in Hall A, JLab
	- \triangleright Measure ~2 ppm A_{PV} from ⁴⁸Ca with ~2 GeV beam at 5° θ_{lab} to ~2% stat. precision
	- \triangleright Integrated flux rates are ~30 MHz per arm (Left and Right HRS); 26% detector resolution
	- ≥ 45 ppb (proposed) statistical precision with a few nanometer control on beam positions
	- \triangleright Overall systematic error contribution 26 ppb (proposed); will measure neutron radius and skin with ± 0.02 fm precision

Examples of Focal Plane, Elastic Peak Spectra

- HRS dispersion: 14.3 cm / $\%dp/p$ at det. plane
- At 1-pass (2.183 GeV) , this corresponds to \sim 6.57 mm elastic-peak shift per MeV change
- **Energy lock** with full-scale slow drift stability of 0.4 MeV (1.8*10⁻⁴) provides \pm 1.3 mm stability in peak position

CREX has established its HRS tune \bullet giving expected rates and Q^2 (FOM)

Physics Colloquium Idaho State U.

. **PREX-II/CREX Detector Package**

. **PREX-II/CREX Detector Package**

Dustin E. McNulty **Detectors for Parity Experiments at JLab** Feb 3, 2020 39

Right HRS Detector Package Installation June 2019

IDAHO
STATE

PREX-II/CREX Main Detector Assemblies .

LHRS GEM stand in Cosmic-ray mode

- PREX-II will use 5mm thick \bullet quartz.
- Main and A_T detectors will use \bullet R7723Q pmts

DAHO

List of past and present undergraduate research assistants within past 6 years

Students at Work at Jefferson Lab and SLAC

Dustin E. McNulty **Detectors for Parity Experiments at JLab** Feb 3, 2020 44

Summary and Future Plans

• PVES is a precision tool for measuring weak-charge distributions with implications for nuclear structure and BSM discovery

PREX/CREX:

- PREX-II collected 80% of proposed data and together with PREX-I will reach full precision: ± 0.07 fm resolution on the neutron radius and skin of $208Pb$ with implications for neutron stars, ...
- CREX currently running and on target to reach proposed measurement goal: ±0*.*02 fm resolution on the neutron radius and skin of 48 Ca with implications for nuclear structure and forces

Integrating Detectors

- Much progress over past 5 years new robust design
- "thin" quartz detectors becoming well understood
- Future detector work for MOLLER will quantify rad-hardness of detector materials, including quartz and aluminum reflectors

Extra Slides

Motivations for Downstream Lumi's or SAM's

- Need them for their high sensitivity to helicity-correlated beam parameters
	- Detect charged particle flux at extreme forward angles
	- Very high rates and thus narrow pulse-pair widths – powerful diagnostic tool

- Provides measure of overall electronic noise floor in the hall
- In theory, should have very low/no PV asymmetry and can serve as null asymmetry monitor
- Symmetric 8 piece design helps disentangle beam position and angle HCBP's while 8 SAM sum is insensitive
- Could provide important tests of regression procedures

Physics Colloquium Idaho State U.

Old Hall A Luminosity Monitor

- Conceptual Design 2002–Riad Suleiman; refurbished in 2008
- 8 quartz Cherenkov detectors with air-core light guides placed symmetrically around beam line 7m downstream of pivot
- Used $6.0 \times 2.0 \times 1.0$ cm³ quartz placed 4.5 cm from beam center \Rightarrow 0.3 - 0.8 deg polar angle acceptance

- Incorporate Qweak's downstream Lumi experience:
	- –Use pre-radiator and "unity gain" PMT
	- –Use radially smaller, but thicker quartz
	- –May achieve desired linearity at anticipated photocathode currents, but running unity gain mode guarantees it
	- –Use TRIUMF preAmps at SAM for signal cond. and gain
- *Work within constraints of existing beampipe insertion tubes*

Final SAM Design and 2016 Testbeam

• Final (v3) SAM detector PE yield studies:

- MiroSilver27 and UVS light-guides
- With and without 1cm tungsten preradiator

Assembled & Installed in Hall A Fall 2015

v₃ SAM detector

- Quartz: 33 x 20 x 13 mm³
- Miro27 LG: $36 \times 2.6 \times 2.1$ cm³
- Optimized 1-bounce funnel mirror
- Unity or high-gain R375 2" PMTs
- Use of pre-radiator not decided
- Dry-air inlet and outlet ports
- Custom flange adapter for easy deinstall/re-install (radcon permitting)

Small Angle Monitors: Detect ~ 0.5 ° target scattering

Optical Monte Carlo (qsim) Benchmarking: SAMs

Photo-Electron Distribution - simulated vs real data

SAM light guide reflectivity: explored many options Reflectivity (~90 degree)

Møller Scattering A_{PV} **Measurement**

• MOLLER aimed at precision measurement of parity-violating asymmetry A_{PV} in polarized electron-electron scattering.

Standard Model gives precise prediction for Møller A_{PV} –which can be measured as a test.

 γ - Z mixing diagrams and W loops. "Hard" radiative corrections involving the massive vector bosons—modify the tree level prediction significantly.

- At proposed kinematics: 11GeV $e_{\text{beam}}^ (75 \mu \text{A}, 80\% \ P_e)$, and $5mrad < \theta_{lab} < 20mrad$: \rightarrow Predicted $\langle A_{PV} \rangle$ =36ppb at $\langle Q^2 \rangle$ =0.0056 (GeV/c)² • For 49 (PAC) week run: $\delta A_{PV} = 0.74$ ppb:
	- $\rightarrow \delta Q_W^e/Q_W^e = \pm 2.1\% (\rm stat) \pm 1.0\% (\rm syst)$
		- $\rightarrow \delta\theta_W = \pm 0.00026(\text{stat}) \pm 0.00012(\text{syst}) \sim 0.1\%$ precision!

Challenging 4th generation measurement requiring:

- Unprecedented precision matching of electron beam characteristics for Left versus Right helicity states
- Precision non-invasive, redundant continuous beam polarimetry
- Precision knowledge of luminosity, spectrometer acceptance $(Q²)$ and backgrounds

MOLLER Apparatus

(major new installation experiment for Hall A) .

Optimized Spectrometer (∼ **100% Acceptance)**

• The combination of a toroidal magnetic system with an odd number of coils together with the symmetric, identical particle scattering nature of the Møller process allows for $\sim 100\%$ azimuthal acceptance

Toroid Design Concept

Projected radial coordinate of scattered Møller electron trajectories. Colors represent θ_{lab} (rad). Magnet coils (grey) and collimators (black) are overlaid.

Single Hybrid coil shown with 1/10 scale in z direction. Note the 4 current returns give successively higher downstream fields.

- Spectrometer employs two back-to-back toroid magnets and precision collimation:
	- **–** Upstream toroid has conventional geometry
	- **–** Downstream "hybrid" toroid novel design inspired by the need to focus Møller electrons with a wide momentum range while separating them from e-p (Mott) scattering background

MOLLER Integrating Detector Layout and Rates

Physics Colloquium Idaho State U.

- Spectrometer separates signal from bkgd and radially focuses at detector plane
- Rates for 11 GeV/75 μ A (80% pol.) beam, $\frac{5}{9}$ ⁸ 1.5m liquid hydrogen target. See fig. \longrightarrow
- Six radial rings, 28 phi segments per ring^{*}
- Ring 5 intercepts Moller peak (∼150 GHz), Ring 2 intercepts bkgd "ep" peaks
- 250 quartz tiles: allow full characterization $\frac{1}{26}$ and deconvolution of bkgd and signal processes

