Applications of Parity Violation

Dustin McNulty Idaho State University *mcnudust@isu.edu* ISU Parity Group: Carlos Bula, Devi Adhikari, Daniel Sluder, Daniel Sluder, Brady Lowe, Joey McCullough

January 29, 2018

Applications of Parity Violation in the Weak Nuclear Force

Outline

- Beta Decay and Parity Violation
- Standard Model and the Weak Force
- Experiments: PREX/CREX and MOLLER
- Quartz Cerenkov Detector R&D at ISU
- Summary and Outlook

Dustin McNulty

Applications of Parity Violation (2018Jan29)

Physics ColloquiumIdahoThe Weak Force: Oh, I didn't know that?

Through a series of nuclear reactions, four protons (hydrogen nuclei) in the core of our Sun combine to form a helium nucleus emitting two positrons and two neutrinos and releasing 27 MeV of energy:

 $p + p + p + p \rightarrow He^4 + e^+ + e^+ + \nu_e + \nu_e + 27 MeV$

- Thermonuclear fusion--Perhaps the most important reaction for all life on planet Earth is caused by a fundamental force of nature that is rarely discussed in the classroom: Weak Interactions or the weak nuclear force
 - Responsible for nearly all radioactive decay processes
 - Beta decay is most common
 - Theoretical understanding is at same level as Quantum Electro Dynamics

Idaho State U.

Idaho State U.

Beta Decay Examples

Beta Decay – Nature's Window into the Weak-nuclear Force

A Quick History:

- 1899 Rutherford Rutherford classifies three types of radioactive emissions: alpha, beta, and gamma
- 1931 Pauli postulates existence of neutrino to explain non-discrete energy spectra of β -decay electrons
- 1933 Fermi develops theory to explain β decay -precursor to theory for weak interaction
- 1956 Neutrino discovered by experiment. $\overline{\nu}_e + p \rightarrow n + e^+$
- 1957 Parity Violation discovered in β decay of ⁶⁰Co

Fermi's Interaction – Precursor to Weak Theory

- Fermi's theory invented a physical mechanism for β decay
- 4-fermion contact interaction at single space-time point
- Modeled after electrodynamic field interactions -- where \vec{J}_E of a charged particle interacts with \vec{A} to create a photon
- For Fermi's theory, the ``weak" current of pn-pair interacts with the ``weak" current of $e\overline{\nu}$ -pair
- Fermi's ``weak" currents/potentials had vector form just as EM.

Idaho State U.

First Neutrino Observations 1956

- Clyde L. Cowan, Frederick Reines (Awarded 1995 Nobel Prize)
- Experiment conducted near nuclear reactor (~10¹³ v's /s/cm²)
- Two water tanks 12m underground and 11m from reactor
- Used inverse beta decay reaction: $\overline{\nu}_e + p \rightarrow n + e^+$
- The e⁺ annihilated with an e⁻ producing two γ rays (detected)

Parity Symmetry

- Parity operation: Spatial reflection through the origin
- "Even" functions: $\mathbf{P} f(x, y, z) \Longrightarrow +f(x, y, z)$
- "Odd" functions: $\mathbf{P} f(x, y, z) \Longrightarrow -f(x, y, z)$
- Classically, scalar quantities (m, E, ρ, V, M, ...) are mainly "even" while vector quantities (x, a, F, E, A, ...) are mainly "odd"
- *Quantum Mechanically*, if **P** commutes with the Hamiltonian, then Parity is conserved (invariant or symmetric)
- Fundamental symmetry of nature known to be conserved in electromagnetism, strong interactions, and gravity

Applications of Parity Violation (2018Jan29)

Parity Violation Discovered in β -decay: 1957

- Chien-Shiung (Madame) Wu Experiment
- Took place at NBS (now NIST)
- Studied β^{-} decay of super-cooled, spinaligned ⁶⁰Co nuclei
- $^{60}_{27}$ Co $\rightarrow ^{60}_{28}$ Ni + e⁻ + $\overline{\nu}_e$ + 2 γ
- Achieved 3 mK and 60% polarization Scintillator (for

8

Parity Violation Discovered in β -decay: 1957

BETA RAYS

- Parity found to be maximally violated
- T.D. Lee and C.N. Yang awarded 1957 Nobel Prize

β^- Decay and Standard Model

- Julian Schwinger modifies Fermi's theory to incorporate parity violating potential term (V-A) and idea of intermediate vector bosons; Glashow, Weinberg, and Salam 1979 Nobel Prize
- W[±] only couples to left-handed particles and right-handed anti-particles
- Z⁰ couples predominantly to left-handed particles

Standard Model of Elementary Particles

Dustin McNulty

Parity Violation and Electron Scattering

- Electron scattering experiments make first measurement of neutral (Z⁰) weak current in late 1970's (at SLAC)
- PVeS experiments scatter longitudinally spin-polarized electron beams (with relatively low energies) off unpolarized, fixed nuclear targets
- Since Z^0 couples to opposite spin (helicity) particles with different strengths, one can measure cross section (σ) differences for opposite helicity beams to access the neutral
- Following technological breakthroughs (at SLAC), high beam polarizations and fast helicity reversals become possible
- PVeS experiments measure an Asymmetry: $A_{PV} = \frac{\sigma_R \sigma_L}{\sigma_R + \sigma_L}$
- Since weak scattering process is only tiny fraction of total σ , PV asymmetries are tiny and difficult to measure accurately

 A_{PV} : Dominated by Electroweak Interference

- Amplitude for Scattering Process: $S_{tot} \rightarrow S_{em} + S_w$, but cross section $\sigma \rightarrow |S_{tot}|^2 = |S_{em}|^2 + |S_w|^2 + 2S_{em}S_w$ (quantum interference term)
- Since $\sigma^{em}_{R} = \sigma^{em}_{L}$ and $|S_w|^2$ is negligible,

$$A_{PV} \longrightarrow \frac{2S_{em}S_{w}}{2|S_{em}|^{2}} = \frac{S_{w}}{S_{em}} \sim 10^{-4} \cdot Q^{2}$$

where Q² is 4-momentum transferred during interaction (GeV)

3 Decades of Technical Progress

photocathodes, polarimetry, high power cryotargets, nanometer beam stability, precision beam diagnostics, low noise electronics, rad-hard dets PVeS Experiment Summary

1st generation2nd generation3rd generation4th generation

E122 – 1st PVES Expt (late 70's at SLAC) Mainz & MIT-Bates in mid 80's JLab program launched in mid 90's E158 at SLAC meas PV Møller scattering

• Parity-violating electron scattering has become a precision tool

Blueprint of a PVES Experiment (E122 at SLAC)

Anatomy of a PVES Experiment (E122 at SLAC)

Idaho State U.

Selected Applications of PVeS

- Strange Quarks: What is the role of strange quarks in the electromagnetic structure of the proton or nucleon?
- Size of Nucleus: What is the size of a neutron-rich, complex nucleus? What is R_n, n_{skin}? Implications for Neutron Stars? LIGO overlap
- **BSM Searches**: Searching for physics Beyond the Standard Model. Obvious Motivations here: Dark sector matter,...

- What do we mean by size? The mass radius, the charge radius?
- PREX (Pb Radius EXperiment) addresses this question in a unique way: Uses a "Weak" nuclear force probe to measure how much neutrons stick out past protons in ²⁰⁸Pb nucleus (called the Neutron "skin")
- CREX (Calcium Radius EXperiment) performs same measurement but on ⁴⁸Ca

Idaho State U.

Mass versus EM Charge Radii of ²⁰⁸Pb

- Electromagnetism: Force mediated by γ exchange; protons have EM charge "+e" while neutrons have 0...
- Weak Nuclear: Force mediated by Z⁰ and W[±]; neutrons have ~12 times more Weak charge than protons

PREX Measurement (Pb Radius EXp)

- Uses ~1 GeV elastically scattered electrons (at ±5 deg) off 0.5 mm thick isotopically pure ²⁰⁸Pb target
- e⁻ beam is longitudinally spin-polarized, target is unpolarized
- Measurement relies on the maximal parity-symmetry violating nature of the Weak force
- e's dominant interaction is EM, but it can also interact via the Weak force; but it does so predominately for only one of the polarization states and not the other -- thus the Asymmetry (A_{PV}) measurement

Motivation: Nuclear Radii in Heavy Nuclei

- Measurements are important for understanding the strong nuclear force
- Calculations are difficult due to non-pQCD regime and complicated due to many-body physics
- Interesting for:
 - ➢ Fundamental nuclear structure
 - Isospin dependence and nuclear symmetry
 - Dense nuclear matter and neutron stars
- Proton radius is relatively easy electromagnetic probes
- Neutron radius is difficult:
 - > Weakly couples to electroweak probes
 - Hadronic probes have considerable uncertainty
 - > Theory has range of $R_n R_p$ for Pb of 0 0.4 fm

Lead neutron skin vs. corresponding

Motivation: What do we learn from R_n ?

- Constraints on Equation of State (EOS) and symmetry energy of neutron rich matter -- the energy cost for asymmetric matter ($N \neq Z$)
- Slope of EOS can be used to constrain potential models

B.A. Brown, PRL 85, 5296 (2000)

Neutron EOS for 18 Skyrme model sets; dots are FP calcs; crosses are SkX; neutron density in neutron/fm³

Motivation: Neutron Stars

- Neutron star structure is better understood with measurements of R_n
- Larger R_n (and thus ΔR --the skin) correlates with larger pressure P

Idaho State U.

Methods used to Measure \mathbf{R}_{n}

- Hadronic Probes
 - \geq Elastic pN, \vec{p} N, nN, π^{\pm} N
 - $\geq \pi^0$ photo-production (Kruche, et al.)
 - ≻ GDR
 - Antiproton scattering
 - ➤ Have theoretical uncertainty
- Electroweak Probes
 - Parity violating electron scattering
 - ➢ Atomic parity violation
 - ➤ "Clean" measurements, fewer systematics
 - ➤ Technically challenging

Dustin McNulty

Applications of Parity Violation (2018Jan29)

25

Non-Parity Violating Electron Scattering

- Electron scattering γ exchange provides R_p ²⁰⁸Pb through nucleus form factors $(F(Q^2))$ \triangleright For spin 0 nucleus: 0.08 Density (fm⁻³) 60 80 80 80 80 80 80 80 80 $\frac{d\Omega}{d\sigma} = \frac{\alpha^2 \cos^2 \frac{\theta}{2}}{4E^2 \sin^4 \frac{\theta}{2}} |F(Q^2)|^2$ E+M charge Weak charge 0.02 Proton Neutron \blacktriangleright In limit of small Q²: 00 2 $\mathbf{6}$ 8 10 r (fm) $\left. F(Q^2) \approx F(0) + \frac{dF}{dQ^2} \right|_{Q^2=0} + \ldots = \int \rho(\vec{x}) d^3x - \frac{1}{6}Q^2 \langle r_{\rm charge}^2 \rangle$
 - So small Q² measurements give density and RMS electromagnetic radius (dominated by R_p)

Parity Violating Electron Scattering

- The e⁻ can also exchange a Z⁰ which is parity violating (PV)
- Z⁰ primarily couples to the neutron, since:

 $Q_{\mathrm{weak}}^{\mathrm{proton}} \propto 1 - 4 \sin^2 \theta_{\mathrm{W}} \approx 0.076, \qquad Q_{\mathrm{weak}}^{\mathrm{neutron}} = -1$

- Detectable in PV asymmetries of e⁻ with opposite helicities
- In Born approximation, $Q^2 \ll M_Z$, from γ Z interference:

$$A_{PV} = rac{G_F Q^2}{4\pi lpha \sqrt{2}} igg[4 \sin^2 \! heta_W - 1 + rac{F_n(Q^2)}{F_p(Q^2)} igg], \quad F_n(Q^2) = rac{1}{4} \int d^3 r' j_0(qr)
ho_n(r)$$

• For fixed target experiment, typical $A_{PV} \sim 10^{-8}$ - 10^{-4}

Idaho State U.

JLab's CEBAF is Excellent Facility for PV

Measurements

- High quality polarized beam, $P_e \sim 85 90\%$
- PV expt's need quiet beam parms over helicity windows: $\Delta x < 10 \ \mu m$ $\Delta x' < 2 \ \mu rad$ $\Delta E/E < 10^{-3}$

PREx Measurement

PREX measures R_n of ²⁰⁸Pb

- Lead is nice because:
 - Excess of neutrons (44 more--with some expected to form a neutron-rich skin)
 - Doubly magic nucleus (82 protons, 126 neutrons)
 - Nearest excited state is 2.6 MeV from elastic peak (possible to exclude inelastics using HRS)
- Ran in Spring 2010 (approved 30 PAC days)
- $E_e = 1.063 \text{ GeV}, \theta_e \approx 5^\circ, Q^2 \approx 0.009 \text{ GeV}^2$
- $I_e \sim 50 75 \ \mu A$
- Proposed uncertainty on A_{PV} of 3%, $R_n \sim 1\%$
- Uncertainty dominated by statistical error

Idaho State U.

Jefferson Lab Hall A (Newport News, Virginia)

Experimental Setup

- Std. Hall A HRS's with detector huts well shielded against bkgds
- Run dual, symmetric arms-- cancels out A_{trans} and other systematics
- Use septum magnet to bend 5° to 12.5°
- Upgraded polarimetry (non-inv. Compton ~1%, Inv. Moller ~1%)
- 0.5mm thick Pb foil in between two 0.15mm Diamond targets (~1 in²) with cryogenically cooled frame; used fast rastered beam
- Quartz Cerenkov detectors with 18-bit integrating ADCs

PREX Result

- Set 95\% CL on existence of neutron skin
- $R_n = 5.78^{+0.15}_{-0.17}$ fm, $\Delta R = R_n R_p = 0.34^{+0.15}_{-0.17}$ fm
 - Each model of neutron density is folded into numerical solution of Dirac eqn with Coulomb and weak axial potential
 - \triangleright Full acceptance (apertures, septum optics, detectors) applied to A_{PV}

Result and Error Budget

 $A_{\rm PV} = 0.658 \pm 0.0604 \pm 0.0130 \text{ ppm}$

\pm	9.2%(stat)	$\pm 2.0\%$ (syst)
-------	------------	--------------------

Contributions	abs (ppm)	rel (%)
Polarization	0.0071	1.1%
Detector Lin.	0.0071	1.1%
Beam Corrections	0.0072	1.1%
Q^2	0.0028	0.4%
^{12}C Asymmetry	0.0025	0.4%
Transverse Pol.	0.0012	0.2%
BCM Lin.	0.0010	0.1%
Target Thick	0.0006	0.1%
Rescattering	0.0001	0.0%
Inelastic Cont.	0.0000	0.0%

Summary (PREX)

- PREx exp. ran March June 2010 to measure R_n on ²⁰⁸Pb; Published in Phys. Rev. Lett. 108, 112502 (2012)
- After all corrections: $A_{PV}^{Pb} = 0.658 \pm 0.0604 \ (9.2\%) \pm 0.0130$ (2.0%) ppm (statistics dominated uncertainty)
- From simple fit over calcs: $R_n = 5.78^{+0.15}_{-0.17}$ fm
- Neutron skin: $R_n R_p = 0.34^{+0.15}_{-0.17}$ fm
- $\bullet\,$ Established existence of neutron skin with $95\%\,\,{\rm CL}$
- PREx-II experiment set to run in late 2016 will improve stat. err of PREx-I by factor of 3
- PREx-II precision will better discriminate between models allowing predictions relevant for the description of neutron stars

Experimental Setup (Spectrometer & Detectors)

- Thin quartz Cerenkov detectors with PMTs used to measure scattered electron flux
- Highly relativistic electrons travel faster than light travels through the quartz, thus creating Cerenkov radiation (UV light)
- High purity quartz necessary due to its extreme radiation hardness (maintains transparency during high doses (Grad) of radiation)

HRS Detector Package for PREX-II/CREX

- All HRS standard detector packages removed except for VDCs: No S1, S2, Cerenkov, or Calorimeter
- For counting-mode operation: Use S0 + S3 for triggering
- Additional array of large GEMs from UVA group installed above PREX detector package
- A_T detector not shown: will mount just above small GEMs
- Plan to reuse same hardware and mounting/installation concept developed for PREX-I

Idaho State U.

HRS Detector Package for PREX-II/CREX

Dustin McNulty

RHRS Tandem Quartz Mount with GEMs

Main Integrating Tandem Detector Design

- PREX-II/CREX main detector design based on UMass Design-3.
- Rotatable tandem mount designed and prototype constructed
- New design has shorter quartz rails and incorporates mu-metal shields and 3D printed Nylon enclosure with Kapton windows

MAMI testbeam May 24-27, 2016

• ³/₄ shift total for PREX/CREX and SAM tests

- 6mm and 10mm Tandem mount
- Near normal e⁻ incidence

- Final SAM detector PE yield studies:
 - Miro27 and UVS light-guides
 - With and without 1cm tungsten pre-radiator

PREX/CREX Tandem mount Tests

- Quartz spacing same as for rotary tandem mount (~16 cm)
- Used two Hamamatsu R7723Q pmts
- Quartz is wrapped with 1 mil Al. Mylar
- Took runs for each quartz thickness upstream and downstream
- Example raw data, pedestal fit, and ped-corrected ADC and PE dists

Applications of Parity Violation (2018Jan29)

6 mm/10 mm Tandem Testbeam Results

SAM PE Yield & LG Testbeam Study: Miro-silver27 vs Anolux UVS (no tungsten)

Ped subtracted SAM ADC fit, run 1103

Miro-silver27, no tungsten, N₂ gas flowing:
 ~7 - 8 peak PEs (using PMT gain) with 39% relative width

 Anolux UVS, no tungsten, N₂ gas flowing, and no clock-triggers: ~5 peak PEs (using PMT gain) with 40% relative width

SAM PE Yield & LG Testbeam Study: Miro-silver27 vs Anolux UVS (w/ tungsten)

Idaho State U.

• Final SAM detector PE yield studies:

• MiroSilver27 and UVS light-guides

With and without 1cm tungsten pre-

Final SAM Design and 2016 Testbeam

Assembled & Installed in Hall A Fall 2015 Final SAM detector

- Quartz: 33 x 20 x 13 mm³
- Miro27 LG: 36 x 2.6 x 2.1 cm³
- Optimized 1-bounce funnel mirror

radiator

- Unity or high-gain R375 2" PMTs
- Use of pre-radiator not decided
- Dry-air inlet and outlet ports
- Custom flange adapter for easy deinstall/re-install (radcon permitting)

<u>S</u>mall <u>A</u>ngle <u>M</u>onitors: Detect ~0.5° target scattering

Dustin McNulty

Idaho State U.

Prototype Development at ISU

Dustin McNulty

Light guide reflectivity measurements

• Measuring light guide (LG) reflectivity as function of angle $(10 - 90^{\circ})$ and λ (200 - 800nm); ongoing

- Light source: Ocean Optics DH2000: 200 800nm, 25W Deuterium bulb
- Spectrometer: Ocean Optics USB Flame, enhanced sensitivity, UV-VIS grating
- NIST specular calibration standard

Light guide materials tested:

Miro-silver 4270Miro-silver 27Anolux I and UVSAlzak-Al and Alzak-AgMiro 2000Ag (diffuse)1 mil, single-sided aluminized mylar

Reflectivity vs. λ for various materials at diff. angles

LG reflectivity radiation hardness study

Irradiated several light guide material samples over a 3 day period from Mar 22 - 24, 2016:

Miro-silver 4270 Anolux UVS Miro 2000Ag (diffuse) Miro-silver 27 (from Michael) Alzak-Al and Alzak-Ag (from KK) 1 mil, single-sided aluminized mylar

• Used 8 MeV e⁻ beam, 65 -110mA I_{peak}, 4µs pulse width at 250 Hz, 310 - 880 W

Apr 25 23:46:36 2016

Mon Apr 25 23:42:47 2016

• Water-cooled (15° C) aluminum brick w/ 1.5 cm radius hole (for beam) more than adequate cooling.

Anolux UVS

0.80 C

1.60 C 1.80 C 2.00 C 2.20 C 2.40 C 2.60 C 3.80 C

800 Wavelength (nm)

Anolux UVS

2.00

3.40 3.80

280 300 Wavelength (nm)

Rad. Exposed Reflectivities (90 degree)

Rad. Exposed Reflectivities (90 degree)

Reflectivity (~90 deg) during exposure to 8 MeV e-beam

Reflectivity (~90 deg) during exposure to 8 MeV e-beam

Applications of Parity Violation (2018Jan29)

220

240

200

47

Radiation Hardness QC for quartz and other components

RF Frequency: 2856 MHz (S-Band)
Energy Range: ~4~25 MeV (current varies)
Pulse Width: ~50ns to 4 micro seconds
Repetition Rate: single pulse to 360 Hz
Ports: 0 degree, 45 degree and 90 degree (Beam energy resolution ~ 1+/- 15%)

25 MoV/ LINAC (Main Hall and Airport)

		25B Energy vs Current	
Energy (MeV)	0 port (mA)	45 port (mA)	90 port (mA)
23	55	55 @ 3.8uS	46 @ 3.6 uS
20	100	70 @ 4 uS	65 @ 4 uS
16	100	48 @ 3.6 uS	48 @ 3.6 uS
13	80	30 @ 3.3 uS	15 @ 3.3uS
10	60	18 @ 3 uS	7.5 @ 3 uS
9	110	30 @ 4uS	15 @ 4 uS
6	100	60 @ 4 uS	60 @ 4 uS
4	50	20 @ 4 uS	20 @ 4 uS

- A key issue is how well can we calibrate dose exposure?
- Another issue is how low can we go in beam current (while still monitoring it)

daho ccelerator

> Planning for a 1 - 2 day engineering run late spring or early summer to address these questions.

Monte Carlo tuning and Shower-max Simulations

Quartz optical G4 properties benchmarked at MAMI: Glisur ground polish parameter ~0.981

MAMI testbeam with PREX detector

- Stack configuration MC study:
- * Stack thicknesses all same $(7.2 X_0)$
- ✤ 2, 5, and 8 GeV incident electrons
- PE dists generated using tuned polish parameter and 60% LG reflectivity

Conclusion:

4-layer gives comparable performance to 10-layer (and is easier and cheaper to build)

Idaho State U.

MOLLER Apparatus

(major new installation experiment for Hall A)

- Provides additional measurement of e-e ring integrated flux
- Weights flux by energy \Rightarrow less sensitive to low energy and hadronic backgrounds
- Will also operate in tracking mode to give additional handle on background (pion) identification – gives MIP-like signal
- Should have good resolution over full energy range $(\frac{\sigma}{\langle n \rangle} \leq 25\%)$, long term stability and be radiation hard

Idaho State U.

Shower-max phi-segmentation, rates and energies

Baseline Design Stack and Light Guide Concepts

- Detector concept uses a layered "stack" of tungsten and fused silica (quartz) to induce EM showering and produce Cherenkov light
- "Baseline" design developed using GEANT4 optical MC simulation:
 - Current design uses a 4-layer stack with 8mm tungsten and 12.5mm quartz pieces
 - Cherenkov light directed to 3inch PMT using air-core, aluminum light guide

- Tungsten is high purity (99.95%) and quartz is optically polished Spectrosil 2000
- Light guides are aluminum specular reflectors (Miro-silver 27, Anolux, or al. mylar, ...)
- Total radiation length: 9.1 X_0 tungsten + 0.4 X_0 quartz = 9.5 X_0

Idaho State U.

Prototype Baseline Design and ring concept

- Engineered shop drawings and Prototype CADs in hand
- **PLANS**: Finalize prototype Stack designs this summer, order quartz by fall, construct in winter 2018 and test in spring using 5 -8 GeV electron testbeam at SLAC
- Shower-max ring design concept: staggered in \hat{z} with reinforced struts and brackets. 28 detectors in ring: 7 Open, 7 Closed, and 14 Transition

Costs: Total w/ spares quartz: \$150k (Heraeus) tungsten: \$60k alum .: \$10k (machined) grand total: \$220k Weights of each assembly: Open: 39.7 lbs. Transition: 42.5 lbs. Closed: 50.8 lbs. ring weight: 1230 lbs.

10m

Updated Full-Scale Prototype (1A) for Beamtest

Dustin McNulty

Shower-max Benchmarking Prototype concept

- Concept allows stack to be assembled and beam-tested one piece at a time for detailed benchmarking study
- Fabricated with Nylon and ABS plastic using 3D printer

Config #1 (original baseline) benchmarking Prototype

Dustin McNulty

Quartz and Tungsten Ordered in Nov 2017

- For "benchmarking" prototype stack:
 - > Quartz: 6 mm (thick) by 86 mm (tall) by 40 mm (wide) --4 pieces (\$975/piece = \$3.9k)
 - > Quartz: 10 mm (thick) by 90 mm (tall) by 40 mm (wide) --4 pieces (1005/piece = 4.0k)
 - > Tungsten: 6 mm (thick) by 80 mm (tall) by 40 mm (wide) -4 pieces (\$85/piece = \$340)
 - Tungsten: 8 mm (thick) by 80 mm (tall) by 40 mm (wide) 4 pieces (\$110/piece = \$440)
 - > Tungsten: 2 mm (thick) by 80 mm (tall) by 40 mm (wide) 4 pieces ($\frac{25}{piece} = 100$)
- For "full-scale" prototype stack:
 - > Quartz: 6 mm (thick) by 111 mm (tall) by 246 mm (wide) -- 4 pieces (\sim \$1750/piece = \$7.0k)
 - Quartz: 10 mm (thick) by 115 mm (tall) by 246 mm (wide) -- 4 pieces (~\$1940/piece = \$7.8k)
 - Tungsten: 6 mm (thick) by 105 mm (tall) by 246 mm (wide) 4 pieces ($\frac{600}{piece} = 2.5k$)
 - Tungsten: 8 mm (thick) by 105 mm (tall) by 246 mm (wide) 4 pieces (\$20/piece = \$3.2k)
 - Tungsten: 2 mm (thick) by 105 mm (tall) by 246 mm (wide) 4 pieces ($\frac{200}{piece} = 0.8k$)

Purchasing these pieces allows for Configs 1, 3, and 4 (A and B) to be tested

Total quartz: \$25k, total tungsten: \$7.5k: Total = \$32.5k

- Going with 6mm tiles allows construction of two benchmarking and two full-scale prototype sets
- Building two sets of prototypes will allow for more efficient testing during both SLAC testbeam and cosmic tests at SBU and ISU. We can each build a different configuration to test

4-layer baseline PE Dists for 2, 5, and 8 GeV

PE Distribution: Showermax Open - 8mm W

Idaho State U.

Precision PMT Gain Measurements Planned

- ADC charge sensitivity calibrated
- PE peaks extracted using multi-Poisson fit algorithm
- Gains measured using linearity apparatus with CAEN LED driver, ND filter wheel, and CAEN fast amplifier
- Purchased 4 new R7723Q pmts (with Mod. base); purchasing two 3" ET9305QKB PMTs this spring

Thank you