Applications of Parity Violation

Dustin McNulty Idaho State University *mcnudust@isu.edu* ISU Parity Group: Carlos Bula, Devi Adhikari, Daniel Sluder, Daniel Sluder, Brady Lowe, Joey McCullough

January 29, 2018

Applications of Parity Violation in the Weak Nuclear Force

Outline

- Beta Decay and Parity Violation
- Standard Model and the Weak Force
- Experiments: PREX/CREX and MOLLER
- Quartz Cerenkov Detector R&D at ISU
- Summary and Outlook

Dustin McNulty Applications of Parity Violation (2018Jan29) 2

Physics Colloquium Idaho State U. **The Weak Force: Oh, I didn't know that?**

Through a series of nuclear reactions, four protons (hydrogen nuclei) in the core of our Sun combine to form a helium nucleus emitting two positrons and two neutrinos and releasing 27 MeV of energy:

.

 $p + p + p + p \rightarrow He^{4} + e^{+} + e^{+} + \nu_{e} + \nu_{e} + 27MeV$

- Thermonuclear fusion--Perhaps the most important reaction for all life on planet Earth is caused by a fundamental force of nature that is rarely discussed in the classroom: Weak Interactions or the weak nuclear force
	- Responsible for nearly all radioactive decay processes
	- Beta decay is most common
	- \triangleright Theoretical understanding is at same level as Quantum Electro Dynamics

Beta Decay Examples

Beta Decay – Nature's Window into the Weak-nuclear Force

A Quick History:

.

- 1899 Rutherford Rutherford classifies three types of \bullet radioactive emissions: alpha, beta, and gamma
- 1931 Pauli postulates existence of neutrino to explain \bullet non-discrete energy spectra of β -decay electrons
- 1933 Fermi develops theory to explain β decay -- \bullet precursor to theory for weak interaction
- 1956 Neutrino discovered by experiment. \overline{v}_e + p \rightarrow n + e⁺ \bullet
- 1957 Parity Violation discovered in β decay of ⁶⁰Co \bullet

Fermi's Interaction – Precursor to Weak Theory

- Fermi's theory invented a physical mechanism for β decay
- 4-fermion contact interaction at single space-time point
- Modeled after electrodynamic field interactions -- where \vec{J}_E of a charged particle interacts with \vec{A} to create a photon
- For Fermi's theory, the "weak" current of pn-pair interacts with the "weak" \bullet current of $e\overline{v}$ -pair
- Fermi's ``weak" currents/potentials had vector form just as EM.

.

First Neutrino Observations 1956

- Clyde L. Cowan, Frederick Reines (Awarded 1995 Nobel Prize)
- Experiment conducted near nuclear reactor (~10¹³ ν 's /s/cm²)
- Two water tanks 12m underground and 11m from reactor
- Used inverse beta decay reaction: $\overline{\nu}_e$ + p \rightarrow n + e⁺
- The e^+ annihilated with an e^- producing two γ rays (detected)

Parity Symmetry

- Parity operation: Spatial reflection through the origin
- "Even" functions: $P f(x, y, z) \implies f(x, y, z)$
- "Odd" functions: $P f(x, y, z) \implies f(x, y, z)$
- *Classically*, scalar quantities $(m, E, \rho, V, M, ...)$ are mainly "even" while vector quantities $(\vec{x}, \vec{a}, \vec{F}, \vec{E}, \vec{A}, ...)$ are mainly "odd"
- *Quantum Mechanically*, if **P** commutes with the Hamiltonian, then Parity is conserved (invariant or symmetric)
- Fundamental symmetry of nature known to be conserved in electromagnetism, strong interactions, and gravity

liquid helium

z

Dustin McNulty Applications of Parity Violation (2018Jan29) 8

adiabatic demagnetization)

Scintillator (for

liquid nitrogen

Took place at NBS (now NIST)

Photomultiplier

Chien-Shiung (Madame) Wu Experiment

- Studied β decay of super-cooled, spinaligned ⁶⁰Co nuclei
- 60 ₂₇Co \rightarrow 60 ₂₈Ni + e⁻ + $\overline{\nu}_e$ + 2 γ
- Achieved 3 mK and 60% polarization **Scintillator (for**

.

measurement of

gamma ray

Parity Violation Discovered in *β***-decay: 1957** .

BETA RAYS

- Parity found to be maximally violated
- T.D. Lee and C.N. Yang awarded 1957 Nobel Prize

β − **Decay and Standard Model**

- Julian Schwinger modifies Fermi's theory to \bullet incorporate parity violating potential term (V-A) and idea of intermediate vector bosons; Glashow, Weinberg, and Salam 1979 **Nobel Prize**
- W^{\pm} only couples to left-handed particles and \bullet right-handed anti-particles
- $Z⁰$ couples predominantly to left-handed particles

IDAHO
STATE

. **Standard Model of Elementary Particles**

Parity Violation and Electron Scattering

- Electron scattering experiments make first measurement of neutral (Z^0) weak current in late 1970's (at SLAC)
- PVeS experiments scatter longitudinally spin-polarized electron beams (with relatively low energies) off unpolarized, fixed nuclear targets
- Since Z^0 couples to opposite spin (helicity) particles with different strengths, one can measure cross section (σ) differences for opposite helicity beams to access the neutral
- Following technological breakthroughs (at SLAC), high beam polarizations and fast helicity reversals become possible
- PVeS experiments measure an Asymmetry: $A_{\text{PV}} = \frac{\sigma_{\text{R}} \sigma_{\text{L}}}{\sigma_{\text{R}} + \sigma_{\text{L}}}$
- Since weak scattering process is only tiny fraction of total σ , PV asymmetries are tiny and difficult to measure accurately

. *AP V* **: Dominated by Electroweak Interference**

- Amplitude for Scattering Process: $S_{\text{tot}} \rightarrow S_{\text{em}} + S_{\text{w}}$, but cross section $\sigma \rightarrow |S_{\text{tot}}|^2 = |S_{\text{em}}|^2 + |S_{\text{w}}|^2 + 2S_{\text{em}}S_{\text{w}}$ (quantum interference term)
- Since $\sigma_{\rm R}^{\rm em} = \sigma_{\rm L}^{\rm em}$ and $|S_{\rm w}|^2$ is negligible,

$$
A_{PV} \longrightarrow \frac{2S_{em}S_w}{2|S_{em}|^2} = \frac{S_w}{S_{em}} \sim 10^{-4} \cdot Q^2
$$

where Q^2 is 4-momentum transferred during interaction (GeV)

3 Decades of Technical Progress

photocathodes, polarimetry, high power cryotargets, nanometer beam stability, precision beam diagnostics, low noise electronics, rad-hard dets **PVeS Experiment Summary**

1st generation 2nd generation 3rd generation 4th generation

 $E122 - 1$ st PVES Expt (late 70's at SLAC) Mainz & MIT-Bates in mid 80's JLab program launched in mid 90's E158 at SLAC meas PV Møller scattering

• Parity-violating electron scattering has become a precision tool

Blueprint of a PVES Experiment (E122 at SLAC)

IDAHO
STATE

Anatomy of a PVES Experiment (E122 at SLAC) .

Selected Applications of PVeS

- Strange Quarks: What is the role of strange quarks in the electromagnetic structure of the proton or nucleon?
- Size of Nucleus: What is the size of a neutron-rich, complex nucleus? What is R_n , n_{skin} ? Implications for Neutron Stars? LIGO overlap
- BSM Searches: Searching for physics Beyond the Standard Model. Obvious Motivations here: Dark sector matter,...

- What do we mean by size? The mass radius, the charge radius?
- PREX (Pb Radius EXperiment) addresses this question in a unique way: Uses a "Weak" nuclear force probe to measure how much neutrons stick out past protons in ²⁰⁸Pb nucleus (called the Neutron "skin")
- CREX (Calcium Radius EXperiment) performs same measurement but on ${}^{48}Ca$

Mass versus EM Charge Radii of . ²⁰⁸**Pb**

- Electromagnetism: Force mediated by γ exchange; protons have EM charge "+e" while neutrons have $0...$
- Weak Nuclear: Force mediated by Z^0 and W^{\pm} ; neutrons have \sim 12 times more Weak charge than protons

PREX Measurement (Pb Radius EXp) .

- Uses \sim 1 GeV elastically scattered electrons (at \pm 5 deg) off 0.5 mm thick isotopically pure ²⁰⁸Pb target
- e beam is longitudinally spin-polarized, target is unpolarized
- Measurement relies on the maximal parity-symmetry violating nature of the Weak force
- e's dominant interaction is EM, but it can also interact via the Weak force; but it does so predominately for only one of the polarization states and not the other -- thus the Asymmetry (A_{PV}) measurement

Motivation: Nuclear Radii in Heavy Nuclei

- Measurements are important for understanding the strong nuclear force
- Calculations are difficult due to non-pQCD regime and complicated due to many-body physics
- Interesting for:

.

- \triangleright Fundamental nuclear structure
- \triangleright Isospin dependence and nuclear symmetry
- \triangleright Dense nuclear matter and neutron stars
- Proton radius is relatively easy electromagnetic probes
- Neutron radius is difficult:
	- \triangleright Weakly couples to electroweak probes
	- \triangleright Hadronic probes have considerable uncertainty
	- \triangleright Theory has range of R_n R_p for Pb of 0 0.4 fm

. **Motivation: What do we learn from R**ⁿ **?**

- Constraints on Equation of State (EOS) and symmetry energy of \bullet neutron rich matter -- the energy cost for asymmetric matter $(N \neq Z)$
- Slope of EOS can be used to constrain potential models \bullet

B.A. Brown, PRL 85, 5296 (2000)

Motivation: Neutron Stars

- Neutron star structure is better understood with measurements of R_n
- Larger R_n (and thus ΔR --the skin) correlates with larger pressure P \bullet

.

Methods used to Measure Rⁿ

- Hadronic Probes
	- \triangleright Elastic pN, \vec{p} N, nN, $\pi^{\pm}N$
	- $\triangleright \pi^0$ photo-production (Kruche, et al.)
	- \triangleright GDR

.

- \triangleright Antiproton scattering
- \triangleright Have theoretical uncertainty
- Electroweak Probes
	- \triangleright Parity violating electron scattering
	- \triangleright Atomic parity violation
	- \triangleright "Clean" measurements, fewer systematics
	- \triangleright Technically challenging

radius (dominated by R_p)

.

Dustin McNulty Applications of Parity Violation (2018Jan29) 25

 \triangleright So small Q² measurements give density and RMS electromagnetic

• Electron scattering γ exchange provides R_p ^{208}Pb through nucleus form factors $(F(Q²))$ \triangleright For spin 0 nucleus: 0.08 Density (fm⁻³)
ಜ $\frac{d\Omega}{d\sigma} = \frac{\alpha^2 \cos^2{\frac{\theta}{2}}}{4E^2 \sin^4{\frac{\theta}{2}}} |F(Q^2)|^2$ E+M charge Weak charge 0.02 Proton Neutron \triangleright In limit of small Q²: \overline{O} \overline{a} 6 8 10 r (fm) $F(Q^2) \approx F(0) + \frac{dF}{dQ^2}\Bigg|_{Q^2=0} + ... = \int \rho(\vec{x}) d^3x - \frac{1}{6}Q^2 \langle r_{\rm charge}^2 \rangle$

Physics Colloquium Idaho State U. **Non-Parity Violating Electron Scattering**

. **Parity Violating Electron Scattering**

- The e can also exchange a Z^0 which is parity violating (PV)
- Z^0 primarily couples to the neutron, since:

 $Q_{\text{weak}}^{\text{proton}} \propto 1-4\sin^2\theta_{\text{W}} \approx 0.076, \qquad Q_{\text{weak}}^{\text{neutron}} = -1$

- Detectable in PV asymmetries of e with opposite helicities
- In Born approximation, $Q^2 \ll M_z$, from γ Z interference:

$$
A_{PV} = \frac{G_F Q^2}{4\pi \alpha \sqrt{2}} \left[4\sin^2 \theta_W - 1 + \frac{F_n(Q^2)}{F_p(Q^2)} \right], \quad F_n(Q^2) = \frac{1}{4} \int d^3 r' j_0(qr) \rho_n(r)
$$

• For fixed target experiment, typical $A_{\rm PV} \sim 10^{-8}$ - 10⁻⁴

JLab's CEBAF is Excellent Facility for PV

Measurements .

- High quality polarized beam, $P_e \sim 85 90\%$
- PV expt's need quiet beam parms over helicity windows: $\Delta E/E \leq 10^{-3}$ $\Delta x \leq 10 \ \mu m$ $\Delta x'$ < 2 μ rad

PREx Measurement .

PREX measures R_n of ²⁰⁸Pb

- Lead is nice because:
	- \triangleright Excess of neutrons (44 more--with some expected to form a neutron-rich skin)
	- \triangleright Doubly magic nucleus (82 protons, 126 neutrons)
	- \triangleright Nearest excited state is 2.6 MeV from elastic peak (possible to exclude inelastics using HRS)
- Ran in Spring 2010 (approved 30 PAC days)
- E_e = 1.063 GeV, $\theta_e \approx 5^\circ$, Q² \approx 0.009 GeV²
- I_e ~ 50 75 μ A
- Proposed uncertainty on $A_{\rm PV}$ of 3%, $R_n \sim 1\%$
- Uncertainty dominated by statistical error

. **Jefferson Lab Hall A (Newport News, Virginia)**

Experimental Setup .

- Std. Hall A HRS's with detector huts well shielded against bkgds
- Run dual, symmetric arms-- cancels out A_{trans} and other systematics
- Use septum magnet to bend 5° to 12.5°
- Upgraded polarimetry (non-inv. Compton \sim 1%, Inv. Moller \sim 1%)
- 0.5mm thick Pb foil in between two 0.15mm Diamond targets $(\sim 1 \text{ in}^2)$ with cryogenically cooled frame; used fast rastered beam
- Quartz Cerenkov detectors with 18-bit integrating ADCs

PREX Result .

- Set 95\% CL on existence of neutron skin
- $R_n = 5.78^{+0.15}$ _{-0.17} fm, $\Delta R = R_n R_p = 0.34^{+0.15}$ _{-0.17} fm
	- \triangleright Each model of neutron density is folded into numerical solution of Dirac eqn with Coulomb and weak axial potential
	- \triangleright Full acceptance (apertures, septum optics, detectors) applied to $A_{\rm PV}$

Result and Error Budget

 $A_{\rm PV} = 0.658 \pm 0.0604 \pm 0.0130 \text{ ppm}$

Summary (PREX)

- PREx exp. ran March June 2010 to measure R_n on ²⁰⁸Pb; Published in Phys. Rev. Lett. 108, 112502 (2012)
- After all corrections: $A_{PV}^{Pb} = 0.658 \pm 0.0604 (9.2%) \pm 0.0130$ (2.0%) ppm (statistics dominated uncertainty)
- From simple fit over calcs: $R_n = 5.78^{+0.15}_{-0.17}$ fm
- Neutron skin: R_n $R_p = 0.34^{+0.15}_{-0.17}$ fm
- Established existence of neutron skin with 95\% CL
- PREx-II experiment set to run in late $2016 -$ will improve stat. err of PREx-I by factor of 3
- PREX-II precision will better discriminate between models allowing predictions relevant for the description of neutron stars

Experimental Setup (Spectrometer & Detectors) .

- Thin quartz Cerenkov detectors with PMTs used to measure scattered electron flux
- Highly relativistic electrons travel faster than light travels through the quartz, thus creating Cerenkov radiation (UV light)
- High purity quartz necessary due to its extreme radiation hardness (maintains transparency during high doses (Grad) of radiation)

. **HRS Detector Package for PREX-II/CREX**

- All HRS standard detector packages removed except for VDCs: No S1, S2, Cerenkov, or Calorimeter
- For counting-mode \bullet operation: Use $S0 + S3$ for triggering
- Additional array of large \bullet GEMs from UVA group installed above PREX detector package
- A T detector not shown: will mount just above small GEMs
- Plan to reuse same hardware \bullet and mounting/installation concept developed for PREX-I

IDAHO
STATE

. **HRS Detector Package for PREX-II/CREX**

. **RHRS Tandem Quartz Mount with GEMs**

Main Integrating Tandem Detector Design

- PREX-II/CREX main detector design based on UMass Design-3.
- Rotatable tandem mount designed and prototype constructed
- New design has shorter quartz rails and incorporates mu-metal shields and 3D \bullet printed Nylon enclosure with Kapton windows

MAMI testbeam May 24-27, 2016

• $\frac{3}{4}$ shift total for PREX/CREX and SAM tests

- 6mm and 10mm Tandem mount
- Near normal e incidence
- Final SAM detector PE yield studies: \bullet
	- Miro27 and UVS light-guides
	- With and without 1cm tungsten pre-radiator

PREX/CREX Tandem mount Tests .

- Quartz spacing same as for rotary tandem mount $(\sim]16$ cm)
- Used two Hamamatsu R7723Q pmts
- Quartz is wrapped with 1 mil Al. Mylar
- Took runs for each quartz thierness upstream and downstream
- Example raw data, pedestal fit, and ped-corrected ADC and PE dists

Dustin McNulty Applications of Parity Violation (2018Jan29) 40

.
PEs from g

IDAHO
STATE

6 mm/10 mm Tandem Testbeam Results .

SAM PE Yield & LG Testbeam Study: Miro-silver27 vs Anolux UVS (no tungsten) .

Ped subtracted SAM ADC fit, run 1103

Miro-silver27, no tungsten, N_2 gas flowing: \bullet \sim 7 - 8 peak PEs (using PMT gain) with 39% relative width

Anolux UVS, no tungsten, N_2 gas flowing, and no clock-triggers: \sim 5 peak PEs (using PMT gain) with 40% relative width

SAM PE Yield & LG Testbeam Study: Miro-silver27 vs Anolux UVS (w/ tungsten) .

Final SAM Design and 2016 Testbeam

• Final SAM detector PE yield studies:

- MiroSilver27 and UVS light-guides
- With and without 1cm tungsten preradiator

Assembled & Installed in Hall A Fall 2015

Final SAM detector

- Quartz: 33 x 20 x 13 mm³
- Miro27 LG: $36 \times 2.6 \times 2.1$ cm³
- Optimized 1-bounce funnel mirror \bullet
- Unity or high-gain R375 2" PMTs
- Use of pre-radiator not decided
- Dry-air inlet and outlet ports
- Custom flange adapter for easy deinstall/re-install (radcon permitting)

Small Angle Monitors: Detect $\sim 0.5^{\circ}$ target scattering

Prototype Development at ISU .

Prototype LHRS Tandem mount

. **Light guide reflectivity measurements**

Measuring light guide (LG) reflectivity as function of angle $(10-90^{\circ})$ and λ (200 – 800nm); ongoing

- Light source: Ocean Optics DH2000: 200 800nm, 25W Deuterium bulb
- Spectrometer: Ocean Optics USB Flame, enhanced sensitivity, UV-VIS grating
- NIST specular calibration standard

Light guide materials tested:

Miro-silver 4270 Miro-silver 27 Alzak-Al and Alzak-Ag Anolux I and UVS Miro 2000Ag (diffuse) 1 mil, single-sided aluminized mylar

Reflectivity vs. λ for various materials at diff. angles

IDAHO
STATE

LG reflectivity radiation hardness study .

- Used 8 MeV e beam, 65 -110mA I_{peak} 4us pulse width at 250 Hz, $310 - 880$ W
- Water-cooled $(15^{\circ} C)$ aluminum brick $w/1.5$ cm radius hole (for beam) more than adequate cooling.

Irradiated several light guide material samples over a 3 day period from Mar 22 - 24, 2016:

Miro-silver 4270 Anolux UVS Miro 2000Ag (diffuse) Miro-silver 27 (from Michael) Alzak-Al and Alzak-Ag (from KK) 1 mil, single-sided aluminized mylar

3.80

300

Wavelength (nm)

Reflectivity (~90 deg) during exposure to 8 MeV e-beam

Reflectivity (~90 deg) during exposure to 8 MeV e-beam

Dustin McNulty Applications of Parity Violation (2018Jan29) 47

 220

 200

Mon Apr 25 23:42:47 2016

Radiation Hardness QC for quartz and other components

25 MeV LINAC (Main Hall and Airport)

-
- A key issue is how well can we calibrate dose exposure?
- Another issue is how low can we go in beam current (while still monitoring it)

daho
ccelerator

Planning for a 1 - 2 day engineering run late spring or early summer to address these questions.

Monte Carlo tuning and Shower-max Simulations .

Quartz optical G4 properties benchmarked at MAMI: Glisur ground polish parameter ~0.981 Photo-Electron Distribution - Prototype B Detector

MAMI testbeam with PREX detector

- Stack configuration MC study:
- Stack thicknesses all same (7.2 X_0) ❖
- \div 2, 5, and 8 GeV incident electrons
- ❖ PE dists generated using tuned polish parameter and 60% LG reflectivity

Conclusion:

4-layer gives comparable performance to 10-layer (and is easier and cheaper to build)

MOLLER Apparatus

(major new installation experiment for Hall A) .

- Provides additional measurement of e-e ring integrated flux
- Weights flux by energy \Rightarrow less sensitive to low energy and hadronic backgrounds
- Will also operate in tracking mode to give additional handle on background $(pion)$ identification – gives MIP-like signal
- Should have good resolution over full energy range $(\frac{\sigma}{\langle n \rangle} \le 25\%)$, long term stability and be radiation hard

IDAHO
STATE

Shower-max phi-segmentation, rates and energies .

.**Baseline Design Stack and Light Guide Concepts**

- Detector concept uses a layered "stack" of tungsten and fused silica (quartz) to induce EM showering and produce Cherenkov light
- "Baseline" design developed using GEANT4 optical MC simulation:
	- \triangleright Current design uses a 4-layer stack with 8mm tungsten and 12.5mm quartz pieces
	- \triangleright Cherenkov light directed to 3inch PMT using air-core, aluminum light guide

- Tungsten is high purity (99.95%) and quartz is optically polished Spectrosil 2000
- Light guides are aluminum specular reflectors (Miro-silver 27, Anolux, or al. mylar, ...)
- Total radiation length: 9.1 X_0 tungsten + 0.4 X_0 quartz = 9.5 X_0

Prototype Baseline Design and ring concept .

- Engineered shop drawings and Prototype CADs in hand
- **PLANS:** Finalize prototype Stack designs this summer, order quartz by fall, construct in winter 2018 and test in spring using 5 -8 GeV electron testbeam at SLAC
- Shower-max ring design concept: staggered in \hat{z} with reinforced struts and brackets. 28 detectors in ring: 7 Open, 7 Closed, and 14 Transition

quartz: \$150k (Heraeus) tungsten: \$60k alum.: \$10k (machined) grand total: \$220k Weights of each assembly: Open: 39.7 lbs. Transition: 42.5 lbs. Closed: 50.8 lbs. ring weight: 1230 lbs.

 $0.935m$

 10_m

Updated Full-Scale Prototype (1A) for Beamtest .

. **Shower-max Benchmarking Prototype concept**

- Concept allows stack to be assembled and beam-tested one piece at a time for detailed benchmarking study
- Fabricated with Nylon and ABS plastic using 3D printer

Config #1 (original baseline) benchmarking Prototype

Quartz and Tungsten Ordered in Nov 2017

• For "benchmarking" prototype stack:

.

- Quartz: 6 mm (thick) by 86 mm (tall) by 40 mm (wide) --4 pieces $(\$975/piece = \$3.9k)$ \triangleright
- Quartz: 10 mm (thick) by 90 mm (tall) by 40 mm (wide) --4 pieces $(\$1005/piece = \$4.0k)$ \blacktriangleright
- Tungsten: 6 mm (thick) by 80 mm (tall) by 40 mm (wide) -4 pieces (\$85/piece = \$340) ➤
- Tungsten: 8 mm (thick) by 80 mm (tall) by 40 mm (wide) 4 pieces $(\$110/piece = \$440)$ ➤
- Tungsten: 2 mm (thick) by 80 mm (tall) by 40 mm (wide) 4 pieces $(\$25/piece = \$100)$
- For "full-scale" prototype stack:
	- \triangleright Quartz: 6 mm (thick) by 111 mm (tall) by 246 mm (wide) -- 4 pieces (~\$1750/piece = \$7.0k)
	- Quartz: 10 mm (thick) by 115 mm (tall) by 246 mm (wide) -- 4 pieces $(\sim $1940/piece = $7.8k)$ ➤
	- Tungsten: 6 mm (thick) by 105 mm (tall) by 246 mm (wide) 4 pieces $(\$600/piece = \$2.5k)$ ➤
	- Tungsten: 8 mm (thick) by 105 mm (tall) by 246 mm (wide) 4 pieces $(\$820/piece = \$3.2k)$ ➤
	- Tungsten: 2 mm (thick) by 105 mm (tall) by 246 mm (wide) 4 pieces $(\$200/piece = \$0.8k)$ \blacktriangleright

Purchasing these pieces allows for Configs 1, 3, and 4 (A and B) to be tested

Total quartz: $$25k$, total tungsten: $$7.5k$: Total = $$32.5k$

- Going with 6mm tiles allows construction of two benchmarking and two full-scale prototype sets \bullet
- Building two sets of prototypes will allow for more efficient testing during both SLAC testbeam \bullet and cosmic tests at SBU and ISU. We can each build a different configuration to test

4-layer baseline PE Dists for 2, 5, and 8 GeV

PE Distribution: Showermax Open - 8mm W

Precision PMT Gain Measurements Planned

- ADC charge sensitivity calibrated
- PE peaks extracted using multi-Poisson fit algorithm
- Gains measured using linearity apparatus with CAEN LED driver, ND filter wheel, and CAEN fast amplifier
- Purchased 4 new R7723Q pmts (with Mod. base); purchasing two 3" ET9305QKB PMTs this spring

Thank you