π^0 Lifetime Measurement

Dustin E. McNulty PrimEx Collaboration MIT/Jlab mcnulty@jlab.org

April 8, 2005

π^0 Lifetime Measurement

• Introduction: Physics Motivation and Goals

QCD Axial Anomaly Quark Mass Effects

- Pion Photoproduction Cross section
 - Primakoff Nuclear Coherent Incoherent
- Experimental Overview
- Analysis Status

Spokesperson Spokesperson and contact person

A. Afanasev ^p, A. Ahmidouch ^m, M. Alexanian ^u, A. Asratyan ⁱ, I. Aznauryan ^x, K. Baker ^f, J. Ball ^a, A.M. Bernstein ^k, T. Black ^u, W. Briscoe ^e, J.P. Chen ^p, O. Chernyshov ⁱ, M. Christy ^f, E. Chudakoff ^p, E. Clinton ¹, P.L. Cole ^v, H. Crannell ^b, D. Dale ^s, S. Danagoulian ^m, G. Davidenko ⁱ, A. Dolgolenko ⁱ, M. Dugger ^a, G. Dzyubenko ⁱ, H. Egiyan ^p, K. Egiyan ^x, M. Elaasar ^o, R. Ent ^p, A. Evdokimov ⁱ, A.I. Fix ^q, M. Gabrielyan ^s, L. Gan ^u, **A. Gasparian ^m**, S. Gevorgyan ^x, A. Glamazdin ^j, J. Goity ^f, Yu. Goncharenko ^h, V. Goryachev ⁱ, P. Gueye ^f, V. Gyurjyan ^p, R. Hakobyan ^b, D. Hasell ^k, J. He ^g, R. Hicks ¹, M. Hollister ^u, B. Hu ^s, M. Ito ^p, C. Jackson ^m, A. Kamenskii ⁱ, C. Keppel ^f, A. Ketikyan ^x, M. Khandaker ¹, W. Korsch ^s, S. Kowalski ^k, M. Kubantsev ⁱ, V. Kubarovsky ^h, I. Larin ⁱ, D. Lawrence ^t, C. Li ^c, Z. Liu ^c, S. Lu ^c, A. Margaryan ^x, V. Matveev ⁱ, A. Meschanin ^h, B. Milbrath ^d, R. Minehart ^w, R. Miskimen ¹, S. Mtingwa ^m, A. Nathan ^r, A. Omelaenko ^j, E. Pasyuk ^a, A. Petrosyan ^x, V. Punjabi ¹, B.G. Ritchie ^a, C. Salgado ¹, V. Semyachkin ⁱ, A. Shahinyan ^x, Y. Sharabian ^p, A. Sitnikov ⁱ, E. Smith ^p, D. Sober ^b, L. Soloviev ^h, B. Stevens ^w, R. Suleiman ^k, L. Tang ^f, A. Teymurazyan ^s, V.A. Tryasuchev ^q, J. Underwood ^m, A. Vasiliev ^h, V. Verebryusov ⁱ, V. Vishnyakov ⁱ, H. Voskanyan ^x, J. Yuan ^c, L. Yuan ^f, J. Zhou ^c, S. Zhou ^c, X. Zhu ^c, P. Zolnierczuk ^s

^a Arizona State University, Tempe, AZ	^m North Carolina A&T State University, Greensboro, NC
^b Catholic University of America, Washington, DC	ⁿ North Carolina Central University, Durham, NC
^c Chinese Institute of Atomic Energy, Beijing, China	^o Southern University at New Orleans, New Orleans, LA
^d Eastern Kentucky University, Richmond, KY	^p Thomas Jefferson National Accelerator Facility, Newport News, VA
^e George Washington University, Washington, DC	^q Tomsk Polytechnical University, Tomsk, Russia
^f Hampton University, Hampton, VA	^r University of Illinois, Urbana, IL
^g Institute for High Energy Physics, Chinese Academy of Sciences, Beijing, China	^s University of Kentucky, Lexington, KY
^h Institute for High Energy Physics, Protvino, Moscow region, Russia	^t University of Massachusetts, Amherst, MA
ⁱ Institute for Theoretical and Experimental Physics, Moscow, Russia	^u University of North Carolina at Wilmington, Wilmington, NC
^j Kharkov Institute of Physics and Technology, Kharkov, Ukraine	^v University of Texas at El Paso, El Paso, TX
^k Massachusetts Institute of Technology, Cambridge, MA	^w University of Virginia, Charlottesville, VA
¹ Norfolk State University, Norfolk, VA	x Yerevan Physics Institute, Yerevan, Armenia

Physics Motivation

• π^0 decay rate is a fundamental prediction of confinement scale QCD.

Chiral Anomaly

Presence of closed loop triangle diagram results in nonconserved axial vector current, even in the limit of vanishing quark masses.

 \rightarrow In the leading order (chiral limit), the anomaly leads to the decay amplitude:

$$A_{\pi^0 \to \gamma\gamma} = \frac{\alpha_{em}}{4\pi F_{\pi}} \varepsilon_{\mu\nu\rho\sigma} k^{\mu} k^{\prime\nu} \varepsilon^{*\rho} \varepsilon^{*\sigma}, \qquad (1)$$

or the reduced amplitude,

$$A_{\gamma\gamma} = \frac{\alpha_{em}}{4\pi F_{\pi}} = 0.02513 \text{ GeV}^{-1}$$
(2)

where $F_{\pi} = 92.42 \pm 0.25$ MeV is the pion decay constant.

Physics Motivation

The $\pi^0 \rightarrow \gamma \gamma$ decay width predicted by this amplitude is

$$\Gamma_{\pi^0 \to \gamma\gamma} = m_{\pi}^3 \frac{|A_{\gamma\gamma}|^2}{64\pi} = 7.725 \pm 0.044 \text{ eV}$$
 (3)

 \rightarrow Current Particle Data Book value is 7.84 ± 0.56 eV

The above result for the decay amplitude is exact in the chiral limit, however, for non-vanishing quark masses there are corrections to this amplitude.

 \rightarrow Next to Leading Order prediction for the decay width is 8.10 eV \pm < 1% This is 4% higher than current experimental value.

- π^0 photoproduction from Coulomb field of nucleus.
- Equivalent production $(\gamma\gamma^* \to \pi^0)$ and decay $(\pi^0 \to \gamma\gamma)$ mechanism implies Primakoff cross section proportional to π^0 lifetime.
- Primakoff π^0 produced at very forward angles.

Primakoff Cross Section

$$\frac{d\sigma_P}{d\Omega} = \Gamma_{(\pi^0 \to \gamma\gamma)} \frac{8\alpha_{em}Z^2}{m^3} \frac{\beta^3 E^4}{Q^4} |F_{em}(Q)|^2 \sin^2\theta_{\pi} \tag{4}$$

- $\Gamma_{(\pi^0 \to \gamma \gamma)}$ is the pion decay width $\propto \frac{1}{lifetime}$.
- α_{em} is fine structure constant, and Z is the atomic # of target nuclei.
- m, β , θ_{π} are the mass, velocity and production angle of the pion.
- *E* is the energy of incoming photon.
- Q is the momentum transfer to the nucleus.
- $F_{em}(Q)$ is the nuclear electromagnetic form factor.

- $\sqrt{Csin\theta_{\pi}}$ is the spin independent part of the neutral meson photoproduction amplitude on a single nucleon.
- $F_N(Q)$ is the form factor for nuclear matter distribution in the target nucleus.

Incoherent

$$\frac{d\sigma_I}{d\Omega} = \xi A (1 - G(Q)) \frac{d\sigma_H}{d\Omega}$$

- ξ is the absorption factor for the incoherently produced pions.
- 1 G(Q) ia a factor which reduces the cross section at small momentum transfer.
- $\frac{d\sigma_H}{d\Omega}$ is the π^0 photoproduction cross section on a single nucleon.

(6)

Dustin McNulty, April 8, 2005, Electromagnetic Meson Production and Chiral Dynamics Workshop, Osaka University, Japan

Experiment Overview

- Tagged photons of energy 4.9 5.5 GeV were used to measure the absolute cross section of π^0 photoproduction from two nuclei– ${}^{12}C$ and ${}^{208}Pb$.
- Pion invariant mass and production angle were reconstructed by detecting the two π^0 decay photons in a highly segmented calorimeter centered on the beamline.
- Number of tagged photons on target was calibrated using a Total Absorption Counter (TAC) and monitored with an e⁺e⁻ pair spectrometer.

Photon Tagger

- Single dipole magnet combined with a hodoscope containing two planar arrays of plastic scintillators to detect energy-degraded electrons from a thin bremsstrahlung radiator.
- Tagger has energy resolution of 0.1% and is capable of 50 MHz rates

Pair Spectrometer

- Uses the physics target as the e^+e^- pair converter.
- Large dipole sweep magnet bends pairs into a series of plastic scintillator telescopes.

• 1.2 m ×1.2 m, 1728 channel electromagnetic shower calorimeter with Lead-glass outer layers and high resolution Lead-Tungstenate inner layers.

HyCal Specifications

	Lead-glass	PbWO ₄
	(outer)	(inner)
Mechanism	Čerenkov	Scintillator
Block dimensions	$3.80 \times 3.80 \times 45 \text{ cm}^3$	$2.05 \times 2.05 \times 20 \text{ cm}^3$
Number of blocks	576	1152
Density	3.85 g/cm^3	8.28 g/cm^3
Moliere Radius	3.6 cm	2.0 cm
Radiation Length	2.7 cm	0.89 cm
Energy Res.	3-5%	1-2%
Position Res.	$\sim 5 \text{ mm}$	$\sim 2 \text{ mm}$
Angular Res.	\sim 675 μ rad	$\sim 270 \mu$ rad

Dustin McNulty, April 8, 2005, Electromagnetic Meson Production and Chiral Dynamics Workshop, Osaka University, Japan

Data Collection

- HyCal Calibration: "snake" scan before and after experiment (for gain alignment and energy calibration)
- Periodic TAC/luminosity runs-measure absolute tagging efficiency for photon flux determination
- Periodic Compton runs (to measure absolute Compton coss section)–used for systematic studies of experimental setup (detector/beam alignment, π^0 yield normalization, and Hycal gain drift monitoring).
- π^0 photoproduction from 5% χ_0^{12} C and ²⁰⁸Pb targets using ~ 100 nA e-beam current which generated ~ 5 MHz tagged photon rate. DAQ event readout triggered by HyCal total ADC sum in coincidence with tagger hodoscope hit (produced a rate of ~ 1.2 kHz)

Data Analysis

statistical	0.4%
target thickness $(atoms/cm^2)$	0.7%
photon flux	1.0%
π^{o} detector acceptance and misalignment	0.4%
background subtraction	0.2%
beam energy	0.2%
distorted form factor calculation errors	0.3%
total	1.4%

Proposed PrimEx Error Budget

Summary

- This has been a progress report on a very challenging experiment.
- Primakoff π^0 statistics in hand: ~ 25k events for Carbon, ~ 12k for Lead.
- Continued analysis is ongoing: photon flux, refinement of energy calibration and position resolution, systematic studies.