# **MOLLERsim Event Generators**

Dustin McNulty UMass mcnulty@jlab.org

September 18, 2009



1

### **MOLLERsim Event Generators**

# Outline

- Overview: Physics Generators
  - Møller
  - Elastic ep
  - Inelastic ep
- Radiative Effects and Other Details
- What's still needed





Dustin McNulty, Sept 18, 2009, MOLLER Collaboration Meeting



# **Møller Event Generator: Coding Stradegy**

- Generate differential cross section (XS) table as function of  $\theta_{cm}$
- Integrate XS and redefine table as running integral sum normalized to total XS. Now table values run from [0,1] as function of  $\theta_{cm}$
- To choose  $\theta_{cm}$  for each thrown event: Pick random number (r1) between [0,1], find the two table indices closest to condition r1 = normXS, and then do linear interpolation between the indices to get the precise angle. This gives proper angular distribution
- To choose  $\phi_{cm}$  for each event: Uniformly sample between  $[0,2\pi]$
- Calculate kinematics in CM and then transform to the lab frame







#### **Inelastic ep Event Generator (from P.Bosted)**

$$\frac{d\sigma}{d\Omega dE'} = \frac{5.2 \times 10^{-9}}{(\text{Esin}^2(\frac{\theta}{2}))^2} \left[ \frac{\cos^2(\frac{\theta}{2})F_2}{\nu} + \frac{2\sin^2(\frac{\theta}{2})F_1}{m_p} \right]$$
(5)  
$$F_1 = (\nu - \frac{Q^2}{2m_p}) \frac{m_p \sigma_T}{4\pi^2 \alpha (0.389)},$$
(6)

$$F_2 = \frac{F_1}{(1 + \frac{2(m_p x)^2}{Q^2})2x(1 + Q^2)},$$
(7)

$$Q^2 = 4EE' \sin^2(\frac{\theta}{2}), \quad x = \frac{Q^2}{2m_p(E - E')}, \quad v = \frac{Q^2}{2m_p x}$$
 (8)

 $\sigma_T \equiv \text{total photoabsorption cross section (use table from PB)}$  (9)

$$W^{2} = m_{p}^{2} + 2m_{p}(E - E') - Q^{2}$$
(10)



# **Inelastic ep Event Generator: Coding Stradegy**

- Generate angular distribution in same fashion as for Møller and elastic ep–using event-by-event generated normalized XS table...
- Since we have double differential XS, we must also sample the event inelasticity (E E'), where E = E<sub>vertex</sub>
- Choose upper E' sampling limit such that  $W = m_p + m_\pi = 1.0779$  and  $Q^2 = 0 \longrightarrow E'_{max} = Evertex 0.150$
- Choose lower E' sampling limit such that  $W = 4.5 \longrightarrow E'_{min} =$ Evertex - 10.3219



#### **Radiative Effects**

- Radiative correction algorithm taken from genercone
- Only incoming (pre-vertex) bremsstrahlung handled; outgoing effects taken care of entirely by GEANT

# **Beam Effects**

• Uniformly rastered beam  $5 \times 5 \text{ mm}^2$ , centered on the target cell

#### **Other Details**

• z-target vertex uniformly sampled; realistic vertex distribution obtained by cross section weighting events



#### What's still needed

- Aluminum Target window scattering
- Realistic beam angle and offset at the target
- Realistic target z-vertex sampling
- Multiple scattering for incoming (pre-vertex) beam
- Internal radiative vertex correction
- Beam target spectrometer misalignments