MOLLER Simulation: Review and Future Plans

Dustin McNulty Idaho State University mcnulty@jlab.org

Thanks to: Juliette, Mark, Luis, Klaus, and Nevin

December 4, 2010

MOLLER Simulation: Review and Future Plans

Outline

- Simulation Framework
- Physics Generators: Moller, elastic and inelastic ep
- Backgrounds:
 - -Photons and Collimation
 - -Correcting for Inelastic ep's
- Recent Results with new TOSCA Fieldmaps
- Near Future Plans

- GEANT 4 framework based on a distribution example
- Initial proposal (idealized) spectrometer design based on UVA in-house code
- Updated (buildable) spectrometer design based on TOSCA
- Mag. field incorporated using QWeak interpolation code of the fieldmap
- Collimators kill all particles, no showering, no rescattering
- Detectors perfectly detect position and all energy

Inelastic ep Event Generator (from P.Bosted)

$$\frac{d\sigma}{d\Omega dE'} = \frac{5.2 \times 10^{-9}}{(\text{Esin}^2(\frac{\theta}{2}))^2} \left[\frac{\cos^2(\frac{\theta}{2})F_2}{\nu} + \frac{2\sin^2(\frac{\theta}{2})F_1}{m_p} \right]$$
(5)
$$F_1 = (\nu - \frac{Q^2}{2m_p}) \frac{m_p \sigma_T}{4\pi^2 \alpha (0.389)},$$
(6)

$$F_2 = \frac{F_1}{(1 + \frac{2(m_p x)^2}{Q^2})2x(1 + Q^2)},$$
(7)

$$Q^2 = 4EE' \sin^2(\frac{\theta}{2}), \quad x = \frac{Q^2}{2m_p(E - E')}, \quad v = \frac{Q^2}{2m_p x}$$
 (8)

 $\sigma_T \equiv \text{total photoabsorption cross section (use table from PB)}$ (9)

$$W^{2} = m_{p}^{2} + 2m_{p}(E - E') - Q^{2}$$
(10)

Inelastic ep Event Generator: Coding Stradegy

- Generate angular distribution in same fashion as for Møller and elastic ep–using event-by-event generated normalized XS table...
- Since we have double differential XS, we must also sample the event inelasticity (E E'), where E = E_{vertex}
- Choose upper E' sampling limit such that $W = m_p + m_\pi = 1.0779$ and $Q^2 = 0 \longrightarrow E'_{max} = Evertex 0.150$
- Choose lower E' sampling limit such that $W = 4.5 \longrightarrow E'_{min} =$ Evertex - 10.3219

Radiative Effects

- Radiative correction algorithm taken from genercone
- Only incoming (pre-vertex) bremsstrahlung handled; outgoing effects taken care of entirely by GEANT

Beam Effects

• Uniformly rastered beam $5 \times 5 \text{ mm}^2$, centered on the target cell

Other Details

• z-target vertex uniformly sampled; realistic vertex distribution obtained by cross section weighting events

Dustin McNulty, December 3-4, 2010, MOLLER Collaboration Meeting

What's still needed...

- Aluminum Target window scattering
- Realistic beam angle and offset at the target
- Realistic target z-vertex sampling
- Multiple scattering for incoming (pre-vertex) beam
- Internal radiative vertex correction
- Beam target spectrometer misalignments

Backgrounds: Photons and Collimation

–Note that 1M Watt of beam on target produces 150k Watts of γ 's

Photon Trajectories (1000 Møller Events Generated)

Photon Trajectories (1000 Møller Events Generated)

11

Photon Trajectories (1000 Møller Events Generated)

GEANT Photon Summary (Note: 100MeV Energy cut applied here)

1000 Moller events generated

- Out of 1000 Moller events generated, about 70% hit the detector.
- Only 6 photons get through the collimators.
- Photon energies are mostly a few hundred MeV.

Power Dumped in 1st Collimator (preliminary)

- Threw 100,000 beam electrons through target
- These generated 820 GeV total integrated energy absorbed in 1st collimator
- For 75μ A beam current, this gives **620 Watts**
- This is for 20cm thick collimator centered at z=5.6m from target center, with inner radius of 2.3 cm and outer radius of 3.1 cm

Møller Signal Background Corrections

- Systematic corrections resulting from radiative tails of elastic and inelastic ep processes under the measured Møller signal
- For elastic ep (\sim 8% of signal), the PV asymmetry is well known and can be modeled and measured quite easily
- From proposal, with $\langle Q^2 \rangle = 0.004 \text{ GeV}^2$ for the elastic ep's, assuming 4% uncertainty in Q_W^p leads to a 0.3% systematic
- For inelastic ep's ($\leq 0.5\%$ of signal), the PV asym is significantly ($\sim 20\times$) larger than for Møller and $\sim 12\times$ larger than for elastics but is not well known
- The idea is to measure the inelastic asymmetry in a radial region where it dominates, and use simulation to scale this measurement to the Møller signal contamination (using Q²-weighted W² to characterize)

Radial Rates with Auxiliary Detector Regions

W² Signature of Inelastic ep Contamination (in Møller Det. Ring: 880 < r < 1000 mm)

Matching W² of Regions 3 and 4 with Region 5

Dustin McNulty, December 3-4, 2010, MOLLER Collaboration Meeting

Background Summary and Future Work

- Outlook for inelastic correction is promising. Additional radial focusing of Møller signal can further improve situation. Work ongoing.
- Photon backgrounds are very preliminary and additional work in collimation design will ramp-up soon to ensure a ≥2-bounce system.
- Will also need to study weak decay backgrounds using a 4th physics generator.

Rate comparisons between Juliette's recent fieldmaps

Comparison Summary

	Rates (GHz)					
Fieldmap Name [det width]	Moller	Elastic ep	Inelastic ep			
BA2.6 [920 - 1060mm]	169	15.8 (9.3%)	0.58 (0.3%)			
BA2.11 [900 - 1060mm]	169	20.6 (12%)	0.74 (0.4%)			

Table 1: Rate Summary

- Nearly all simulation results for the realistic spectrometer design are remarkably similar to those of idealized proposal design
- BA2.6 together with upstream toroid field increased by 25% give best results so far...better peak separation and better S/N; uses ~14cm main detector ring

Near Future Plans: General Remarks

- Need to establish larger coding community involving students, postdocs, and faculty responsible for simulation and analysis
- Need to maintain detailed **documentation** which is tedious but pays off in many ways:

-student leaves project => have to reinvent the wheel
-stating facts, assumptions, procedures...(quality control)
-easier to lure new collaborator into coding (simulation/analysis)

- Need framework **expansions** to allow flexibility in handling configuration changes...
- Need to establish and maintain good version control habits...

Near Future Plans: Documentation

• Low level online documentation: DOxygen –DOxygen is a tool to convert your C++ comments into publishable HTML

- High level software documentation:
 - -MediaWiki
 - –PMWiki
 - -Simply a Latex Document

Documenting must become a habit!

Near Future Plans: Expansions

• Use **Geant4 Messenger** functionality for steering simulation configuration through external macro file(s) w/o changing the simulation code

-turning off/on various physical reactions

- -changing target charateristics...length, position, windows
- -changing collimator/detector sizes, positions etc.
- Stand alone event generators: Produce rootfiles read-in by GEANT 4
- Clever track storage parameters contain info about a track's previous interaction points–very useful for understanding and minimizing n-bounce detector hits
- Use an OpenGL viewer: Coin3D, OpenInventor allows interactive 3D scene visualization
- Use external CAD file, **convert to GDML**, and import into GEANT 4 for geometry/materials description

Summary

- Initial simulation framework appropriate for producing proposal (in a short time frame)
- Framework is general enough to be used as starting position for near future full simulation effort
- We will start to have regular meetings and all are welcome

Jefferson Lab Hall A

Extra Slides

Møller Event Generator: Coding Stradegy

- Generate differential cross section (XS) table as function of θ_{cm}
- Integrate XS and redefine table as running integral sum normalized to total XS. Now table values run from [0,1] as function of θ_{cm}
- To choose θ_{cm} for each thrown event: Pick random number (r1) between [0,1], find the two table indices closest to condition r1 = normXS, and then do linear interpolation between the indices to get the precise angle. This gives proper angular distribution
- To choose ϕ_{cm} for each event: Uniformly sample between $[0,2\pi]$
- Calculate kinematics in CM and then transform to the lab frame

Møller Trajectories r:z:init_ang 1000 p 0.018 900 0.016 800 0.014 700 600 0.012 500 0.01 400 300 0.008 200 0.006 100 0 0.004 30000 5000 10000 15000 20000 25000 z

Event Fractions for Different W², ϕ , r regions

Range3	780 < r ·	< 830:							
phi	0 - 2	2 - 3	3 - 4	4 - 6	6 - 8	8 -10	10-12	12-14	14-20
red:	0.212	0.221	0.166	0.221	0.097	0.053	0.028	0.002	0.000
green:	0.205	0.206	0.131	0.200	0.125	0.082	0.047	0.004	0.000
blue:	0.205	0.186	0.102	0.154	0.133	0.119	0.089	0.010	0.000
Range4:	830 < r	< 880:							
phi	0 - 2	2 - 3	3 - 4	4 - 6	6 - 8	8 -10	10-12	12-14	14-20
red:	0.205	0.186	0.103	0.200	0.153	0.080	0.046	0.025	0.002
green:	0.203	0.181	0.096	0.149	0.137	0.110	0.077	0.045	0.003
blue:	0.199	0.176	0.082	0.099	0.080	0.096	0.152	0.107	0.008
Range5:	880 < r	< 1000:							
phi	0 - 2	2 - 3	3 - 4	4 - 6	6 - 8	8 -10	10-12	12-14	14-20
red:	0.208	0.180	0.088	0.117	0.132	0.123	0.077	0.045	0.029
green:	0.206	0.184	0.084	0.107	0.102	0.096	0.089	0.077	0.054
blue:	0.217	0.191	0.086	0.090	0.060	0.052	0.069	0.111	0.124