Light Guide Tests at Mainz

Dustin McNulty Idaho State University mcnulty@jlab.org

October 22, 2013

Light Guide Tests: Strategy

- Used Manitoba 60cm Miro-Silver light guide with 3inch "Electron Tubes 9305KFL" pmt SN:509 – Quartz window, standard bi-alkali Cathode, high QE
- Establish pmt HV which allows single PE peak to emerge from pedestal (for unamplified spectra with 0.2pf ADC sensitivity)
- Scan light guide through beam at three different orientations: 45°, 90°, and 135°
- Determine rate of light guide events per incident electron for each configuration

• This configuration expected to have least sensitivity to Cerenkov light and relatively more sensitivity to scintillation light; also would match alternate experimental setup $(133.6^{\circ} - 134.6^{\circ})$

Test Beam Table

Manitoba Setup (135°)

90° Scan Results: Rates

135° Scan Results: Spectra

135° Scan Results: Rates

Dustin McNulty

Rates Summary		
Configuration	Distance from pmt	Rate
45°	16cm	0.290
45°	10cm	0.381
45°	$8 \mathrm{cm}$	0.367
45°	6cm	0.268
45°	4cm	0.523
45°	$2\mathrm{cm}$	0.537
90°	16cm	0.070
90°	9cm	0.064
90°	$2\mathrm{cm}$	0.092
135°	14cm	0.119
135°	$7\mathrm{cm}$	0.100
135°	$0\mathrm{cm}$	0.201

Comments and Disclaimers

- Since Moller ring is at larger radius, it is less susceptible to light guide event backgrounds-but worrying is healthy
- However, if we are serious about clean measurements in the inner rings, we must study this effect and learn how to optimize
- Results agree with simulation claims that air light guide events are at ~single PE level
- Further analysis needed to better understand spectra-how much double PE events, etc. Also, consider the possiblity that Mainz testbeam has instabilities at 10^{-4} level
- Also try to answer question about how much scintillation versus Cerenkov light is contributing
- Rate calculation used here = (Total Events PedInt) / (Total Events - PedCorrection), where PedCorrection = 300*RunTime in seconds (from 300Hz Random ped trigger)

Summary and Conclusions

- In general, relative rate trends in the data roughly agree with expectations although there are some curiousities
- LG events per incident electron increase as beam passes closer to pmt and 45° rates > 135° rates > 90° rates
- For 90° and 135°, $\sim 1/10$ of incident electrons produce PE(s)
- Question: Is non-monotonic nature of rate dependence on position real?
- Results seem promising. Future test runs needed for further study