Shower Max Detector Plans for MOLLER

Dustin McNulty Idaho State University mcnulty@jlab.org

May 8, 2014

1

MOLLER Shower Max Detector

Outline

- Conceptual Design and Motivation
- Review 2008 prototype "stack" —Design
 - -Monte Carlo
 - –Beam tests and results
- Plans

Detector Ring Design Concept

MOLLER Collaboration Jefferson Lab Hall A Motivation shower max. • Provides additional measurement of e-e ring flux

• Weights flux by energy–less sensitive to low energy bkgds

MOLLER Collaboration Jefferson Lab Hall A 2008 Shower Max Detector concept 6.7 cm 10 trapezoidal quartz blocks 4cm*4cm area 0.5cm thick (4cm*4cm upper surface, 4.5cm*4cm lower surface) 10 tungsten plates 4cm*4cm*0.17cm Slide from Piotr

Piotr's MC: Tungsten and Quartz thickness study (for \sim 900MeV electrons)

Jan2008 Testbeam Setup and Conditions

- Thin and Stack dets rigidly mounted along 45° angle; installed above rHRS focal plane (between VDC's and S1 scint. plane)
- $E_{beam} = 956 \text{ MeV}, 5 50 \mu \text{A}, 100 \text{mg/cm}^2 \text{ Ta target}$
- rHRS at 19°, using VDC's and s0 trigger (removable)
- Counting rates $\sim 10 \text{ Hz}/\mu\text{A}$

- Small detector footprint made FP alignment non-trivial
- Further complicated by space constraints from s1 scint. plane; creating the need for a $\Delta P/P$ shift of +1.1% from nominal
- This shifted central ray from 45° to 55°
- Q3 defocused (10% field increase) for further improvement

Jan2008 Testbeam Setup Alignment

Jan2008 Testbeam Run conditions Sumary

	Beam	m rHRS		I_{beam}	Q3		Thin	ADC
Run	E (GeV)	angle	Targ	(µA)	Tweak	$^{\mathrm{s0}}$	Det	Change
3512^{a}	2.77	19 ⁰	Pb	60	Before	IN	$10 \mathrm{mm}$	Before
3661^{b}	0.956	19°	\mathbf{C}	5	Before	IN	$10 \mathrm{mm}$	Before
3676	0.956	19°	Ta	50	Before	IN	$10 \mathrm{mm}$	Before
3681	0.956	19°	Ta	50	After	IN	$10 \mathrm{mm}$	After
3686	0.956	19°	Ta	50	After	IN	$10 \mathrm{mm}$	Before
3704	0.956	19°	Ta	8	After	OUT	$10 \mathrm{mm}$	After
3705	0.956	19°	Ta	8	After	OUT	$5 \mathrm{mm}$	After
3720	0.956	12.5°	Ta	5	After	OUT	$5 \mathrm{mm}$	After

^a This run occurred during the Lead target stress-tests at 3-pass.

^b This run occurred before rHRS $\Delta P/P$ change to = +1.1 % (969 MeV).

Jan2008 Testbeam x and y Spectra

Jan2008 Testbeam Pulse Height Dists

Jan2008 Testbeam Pulse Height Dists

January 2008 PREx detectors tests, comparison with simulations

 $N_{PF}=0.2N_{ph}$ (<QE>=0.2)

In panels below widths of gaussian fits to the simulated N_{ph} distributions (red lines) are corrected for the PMT resolution according to the formula (for the used PMTs measured value of the δq is 0.23):

2008 Testbeam Summary

• Results for stack detector were lack-luster: 35% relative width -Why?

-Because energy too low?

- –Or some other reasons? ... det alignment, e $^-$ trajectories,...
- Results do not agree with simulations...Why?
- Would further analysis and/or simulation refinement help here?

Plans for MOLLER Shower Max

- Start with 2008 stack experience
 - –Apply benchmarked "qsim" optical MC to the stack
 - -Try to reproduce Piotr's simulation results
 - –Study dependence on numbers and thicknesses of W and Quartz, distance from pmt, and beam energy
- Modify stack/LG/pmt geomerty for MOLLER; repeat studies
- Other considerations/questions for MOLLER:
 - -90° LG versus 135° (or 45°) LG
 - –Frame support struct: space constraints, ϕ segmentation,
 - staggered to eliminate gaps or use trapezoidal quartz?
 - –What is optimal design for 2 $8~{\rm GeV}$ electrons
 - –Need to worry about sensitivity to pions
 - –Stray electrons, spashback,...What else?
- Build protype and test with beam (at SLAC?)

Extra Slides

x and y Spectra (Before Q3 change)

MOLLER Collaboration Jefferson Lab Hall A Sim. and Exp. (ISU thin quartz cosmic tests) Normalized Ped subtracted preliminary prototype Quartz ADC, run 243 & Simulation Simulation Entries 83241 Events/4ch Mean 221.7 10⁻² RMS 68.53 Entries 1062 Mean 245 10⁻³ RMS 94.97 10⁻⁴ 10⁻⁵ $\times 10^3$ 0.2 0.4 0.6 0.8 ٥ 1 **ADC** channel