Prototype Shower-max Testbeam Results (preliminary)

Dustin McNulty Idaho State University mcnulty@jlab.org

October 5, 2019

Prototype Shower-max Testbeam Results

Outline

- Review baseline design and ring concept
- Prototype designs for testbeam (Baseline Designs)
- Prototype construction and testbeam Run
- Some Preliminary Testbeam Results
- Summary and Future Work

1

- Provides additional measurement of e-e ring integrated flux
- Weights flux by energy \Rightarrow less sensitive to low energy and hadronic backgrounds
- Will also operate in tracking mode to give additional handle on background (pion) identification – gives MIP-like signal
- Should have good resolution over full energy range $(\frac{\sigma}{\langle n \rangle} \leq 25\%)$, long term stability and be radiation hard

Baseline ShowerMax Design and Ring Concept

- <u>PLANS</u>: Finalized prototype Stack designs last fall and ordered prototype quartz in Nov 2017, construct in winter/spring 2018 and test in summer/fall using 2 - 10 GeV electron SLAC testbeam
- Shower-max ring design concept: staggered in *ẑ* with reinforced struts and brackets. 28 detectors in ring: 7 Open, 7 Closed, and 14 Transition

"Baseline" <u>Costs: Total w/ spares</u> quartz: \$150k (Heraeus) tungsten: \$60k <u>alum.: \$10k (machined)</u> grand total: \$220k <u>Weights of each</u> <u>assembly:</u> Open: 39.7 lbs. Transition: 42.5 lbs. Closed: 50.8 lbs. ring weight: 1230 lbs.

.935m

.10m

Transition

3

Prototype Designs for Testbeam

Dustin McNulty

Config #1 (original baseline) benchmarking Prototype

Dustin McNulty

Benchmarking Stack Configurations

Highlighted columns show changes due to quartz thickness change: Examined 6 mm and 10 mm thick tiles

	Config #	t _f (mm)	ta (mm)	t _w (mm)	b (mm)	a (mm)	X ₀	R _{molier} (mm)
\langle	1A	8	10	8	64	44	9.5	11.0
	2A	17	10	5	55	55	9.5	11.0
	3A	14	10	6	58	52	9.5	11.0
	4A	6	10	6	58	52	7.3	11.5

	Config #	t _f (mm)	t (mm)	t _w (mm)	b (mm)	a (mm)	X_0	R _{molier} (mm)
\langle	18	8	6	8	48	61	9.5	11.0
	2B	17	6	5	39	67	9.5	11.0
	3B	14	6	6	42	65	9.5	11.0
	4B	6	6	6	42	65	7.3	11.5

Key benefit here is that the parameter "a" (the width of the benchmarking quartz tiles) can now be comfortably large to ensure negligible transverse shower leakage.

JLab Hall A

Dustin McNulty

Prototype Shower-max Testbeam Results (preliminary)

7

JLab Hall A

Collaboration Meeting

JLab Hall A

¹A - 4A Mean PE and Resolution versus Energy

Dustin McNulty

Collaboration Meeting

Simulation results for B configs (6mm quartz)

- The B configs have ~half the slope of the other configs 80
 PEs/GeV while maintaining good resolution and with lower light levels.
- The reduced slope means less variation in PE yields with energy--which will reduce the widths measured during helicity window (it seems a potential win win situation)
- Also interesting is that if you reduce the layers of tungsten to 4mm, the resolution worsens ~drastically (even with 10 mm quartz)

Prototype Construction and SLAC Testbeam Run

Dustin McNulty

1A Full-scale Stack Assembly at SBU, June 2018

Dustin McNulty

Assembled 1A Full-scale ShowerMax Prototype

Dustin McNulty

Testbeam and MC benchmarking strategy

- Engineer benchmarking prototype capable of operation with systematically more stack layers added and with no light guide
- Basic strategy outline:
 - First take data with only one piece of quartz
 - Then add the front tungsten plate and take data, then the next layer of tungsten and quartz, then next, then next
 - This will facilitate benchmarking of optical quartz properties and G4's showering process without light guide complication
- Also construct and test full scale prototypes (with same exact stack configuration as benchmarking prototype) and with full light guide; this will be constructed with machined aluminum

LER **Collaboration Meeting**

\$1 9400

Benchmarking Prototype (1A) Expectations

hit n hist

25000

 960.7 ± 2.753

 435.2 ± 1.946

Entries

Mean

RMS

Integral

hit n hist

25000

575.7 ± 1.709

270.2 ± 1.208

Benchmark 1A: n=1

Mean

BMS

hit n hist

 1219 ± 3.441

544.1 + 2.433

25e+04

Intries

Mear

BMS

•Benchmarking PE yields are incredibly high for n = 1 to 4

•Will use 3" ET PMTs: 93050KB

Benchmark 1A: n=2

Benchmark 1A: n=4

Dustin McNulty

Prototype Shower-max Testbeam Results (preliminary)

14(2019Oct05)

M Collaboration Meeting

T-577: SLAC Testbeam, Dec 6 - 12, 2018

- Tested ShowerMax full-scale and benchmarking detectors and new ring5 thin detector designs
- Used 3, 5.5 and 8 GeV electrons with multiplicity of a Poisson distribution with $\mu \approx 1$
- Overall beam rate only 5 Hz (parasitic from LCLS beam) with $\sim 1/3$ of those being single e⁻

Dustin McNulty

CAD of the SLAC testbeam setup

- Testbeam scheduled for Dec 5 10 (we may get more time)
- Setup allows testbeam to cover entire active area of full-scale prototypes

Dustin McNulty

T-577: SLAC Testbeam Setup for Full-Scale ShowerMax

Dustin McNulty

Prototype Shower-max Testbeam Results (preliminary)

(2019Oct05) 17

T-577: SLAC Testbeam Setup: Benchmarking ShowerMax

Beam Spot (5.5 GeV): ~1 cm by 2 cm

Dustin McNulty

Dustin McNulty

ShowerMax Benchmarking Prototype Testbeam Results (1B response vs. stack layers)

- Results are very reasonable—the means and relative widths behave as expected
- Simulations are underway for comparison and MC tuning/benchmarking

Dustin McNulty

ShowerMax Benchmarking Prototype Testbeam Results (1A and 1B full stack response vs energy)

Benchmarking 1A: Full stack

Benchmarking 1B: full stack

- Comparing these results with previous simulations:
- ▶ For 1A simulation: Mean PEs are ~1800, ~4300, and ~6800 for 2, 5, and 8 GeV, respectively
- ➢ For 1A real data: Mean PEs are ~2760, ~4200, and ~5800 for 3, 5.5, and 8 GeV, resp.
- Comparisons are promising, new simulations are underway and further refinement of data analysis

Benchmarking 1A testbeam results compared with simulation (5.5 GeV electron response vs. stack layers)

Photo-Electron Distribution - simulated vs real data

Photo-Electron Distribution - simulated vs real data

- Single quartz data used to benchmark quartz optical polish parameter
- With quartz polish calibrated, simulations performed with successively more stack layers and compared with SLAC data

Dustin McNulty

Benchmarking 1A testbeam results compared with simulation (5.5 GeV electron response vs. stack layers)

Photo-Electron Distribution - simulated vs real data

- Data and simulation agree well (at 10% level)
- Resolution of single electron photopeak goes from 27% to 18% (simulated)

Dustin McNulty

Benchmarking 1A testbeam results compared with simulation (5.5 GeV electron response vs. stack layers)

Photo-Electron Distribution - simulated vs real data

 Resolution of single electron photopeak is 15% (simulated). Analysis of real data resolutions are on-going using GEM tracking data

Dustin McNulty

Benchmarking 1A Golden Track, single e⁻ data compared with simulation (5.5 GeV electron response vs. stack layers)

Photo-Electron Distribution - simulated vs real data

Golden Track, Single electron PE Distribution 1A 1-Stack

- Note that polish parameter was decreased from 0.98 (PREX) to 0.94 (4% decrease)
- Simulation uses state of the art understanding of optical properties of active material including attenuation and dispersion inside quartz and pmt window, reflectivity at air-pmt window interface & photocathode, and factory QE of photocathode
- Note: All comparisons and polish benchmarking rely on knowing operational pmt gain (5 – 10% uncertainty (as well as QDC charge sensitivity))

Dustin McNulty

Benchmarking 1A Golden Track, single e⁻ data compared with simulation (5.5 GeV electron response vs. stack layers)

- Data and simulations agree at 10% level
- Data shows larger high-light tails indicating potential mis-identified single e⁻ tracks
- Resolutions get steadily better and agree well with simulated distributions --This tells us there was good alignment and minimal lateral shower leakage

Dustin McNulty

Summary and future work

- Showermax baseline prototypes constructed and tested
 - Analyses of testbeam data still ongoing but converging fast
 - Preliminary results for benchmarking prototypes in good agreement with simulations
 - Full-scale results and uniformity scans still in progress
- First results for full-scale tests show significant difference between data and sims-PE yields ~2.5x lower than expected; likely culprit is light guide but could also include broken TIR-due to excessive pressure on Kapton quartz wrapping
- Shower-max detector design and cost is firm: possible cost reductions use 90/10 W/Cu alloy, thinner quartz bars (marginal saving), PMTs are already one of least expensive options

Collaboration Meeting

Linearity Test Box And Integrating DAQ

Temp. Display DAQ and Other Settings

- Electronic Shutter has now been connected with a relay to turn it "ON" and "OFF" automatically at any interval with computer script
- Filter Wheel Computer Controlled Edmund Optics' Absorptive ND filters (400-700 nm) with 8 (100, 79, 63, 50, 40, 25, 10, 1)% transmission settings (~randomly ordered)
- Filter Wheel is now controlled automatically using a shell script
- UV Diffuser Edmund Optics' ground fused silica
- Different pre-Amp settings with different resistances and offsets tested (MAIN, LUMI, KDPA, and SNS)

	Devi L. Adhikari	PMT Non-Linearity Studies at ISU	February 25, 2018	5	
Dustin Mc.	Nulty Prot	otype Shower-max Testbeam Results (prelim	inary) (2019Oct0.	5)	29

PMT Non-Linearity Studies at ISU

Dustin McNulty

Prototype Shower-max Testbeam Results (preliminary)

18

JLab Hall A

Plans for MOLLER pmt Linearity Measurements

- Apparatus and technique validated for PREX pmts at 240 Hz ff
 - Conclusion: want pmt $I_C \lesssim 15 nA$ and $I_A \sim \! 20$ 30 μA
 - Anticipate < 0.5% non-linearity systematic for PREX-II and even better for CREX
 - Measurements routinely find HV and preamp settings with non-linearity deviations at 0.1 0.2% level
- While 30, 120, and 240 Hz ff data give very similar/same results, we see differences at 480 Hz ff–possibly a result of thermal or other instabilities in the flashing LED
- To address expected problems at 960 Hz ff, we plan to implement a chopper wheel setup with phase-locked controller to shutter the LED instead of flash it (M. Gericke's idea)

Plans for MOLLER pmt Linearity Measurements

- ISU group has two ET 9305KQB pmts with factory bases in hand to start testing this fall
 - Anticipated light levels or PE (I_C) currents for central-open ring5 pmts at ~ 16 nA (~ 4 GHz, ~ 25 PEs/e⁻)
 - Will require custom tuned base divider to achieve desired 0.1% non-linearity
 - M. Gericke and group will design bases for future tests; for now, two different factory bases were purchased: one standard circuit and one tapered (for high pulsed linearity)
- A non-trivial complication for precision measurements is calibrating the incident light level or photocathode current. We use special unity gain bases for PREX/CREX; need this for MOLLER

Backup Slides

Dustin McNulty

M Collaboration Meeting

Shower-max phi-segmentation, rates and energies

Dustin McNulty

Baseline Design Stack and Light Guide Concepts

- Detector concept uses a layered "stack" of tungsten and fused silica (quartz) to induce EM showering and produce Cherenkov light
- "Baseline" design developed using GEANT4 optical MC simulation:
 - Current design uses a 4-layer stack with 8 mm tungsten and 10 mm quartz pieces
 - Cherenkov light directed to 3 inch PMT using air-core, aluminum light guide

- Tungsten is high purity (99.95%) and quartz is optically polished Spectrosil 2000
- Light guides are aluminum specular reflectors (Miro-silver 27, Anolux, or al. mylar, ...)
- Total radiation length: 9.1 X_0 tungsten + 0.4 X_0 quartz = 9.5 X_0

Dustin McNulty

Quartz and Tungsten Ordered in Nov 2017

- For "benchmarking" prototype stack:
 - \blacktriangleright Quartz: 6 mm (thick) by 86 mm (tall) by 40 mm (wide) --4 pieces (\$975/piece = \$3.9k)
 - > Quartz: 10 mm (thick) by 90 mm (tall) by 40 mm (wide) --4 pieces ($\frac{1005}{piece} = 4.0k$)
 - > Tungsten: 6 mm (thick) by 80 mm (tall) by 40 mm (wide) 4 pieces (\$85/piece = \$340)
 - Tungsten: 8 mm (thick) by 80 mm (tall) by 40 mm (wide) 4 pieces (110/piece = 440)
 - Tungsten: 2 mm (thick) by 80 mm (tall) by 40 mm (wide) 4 pieces ($\frac{25}{piece} = 100$)
- For "full-scale" prototype stack:
 - > Quartz: 6 mm (thick) by 111 mm (tall) by 246 mm (wide) -- 4 pieces (\sim \$1750/piece = \$7.0k)
 - Quartz: 10 mm (thick) by 115 mm (tall) by 246 mm (wide) -- 4 pieces (~\$1940/piece = \$7.8k)
 - Tungsten: 6 mm (thick) by 105 mm (tall) by 246 mm (wide) 4 pieces ($\frac{600}{piece} = 2.5k$)
 - Tungsten: 8 mm (thick) by 105 mm (tall) by 246 mm (wide) 4 pieces (\$20/piece = \$3.2k)
 - Tungsten: 2 mm (thick) by 105 mm (tall) by 246 mm (wide) 4 pieces ($\frac{200}{piece} = \frac{0.8k}{200}$

Purchasing these pieces allows for Configs 1, 3, and 4 (A and B) to be tested

Total quartz: \$25k, total tungsten: \$7.5k: Total = \$32.5k

- This purchase enables construction of two benchmarking and two full-scale prototype sets
- Building two sets of prototypes will allow for more efficient testing during both SLAC testbeam and cosmic tests at SBU and ISU. We can each build a different configuration to test

MOLLER Task Tracking: ISU Tasks

Subsystem	Task	Description	Status	Owner	Relation to Director's Review Report	Estimated Completion Date
Detectors	Radiation hardness of detector components	Investigate which detector components need radiation testing and carry out 50 MRad test	Michael and Dustin devise a plan. Status: Initial list being established	Dustin	Page 12:``, all components in the scattered beam envelope should show negligible damage up to 50 MRad."	May 2019
Detectors	QC plan for main detector quartz	Devise plan to evaluate robustness of main detector quartz (Redundant with ``radiation hardness of detector components")	Michael and Dustin to devise a plan? Not yet started	Dustin	Page 12: Recommendation: ``Conduct radiation damage tests to at least 50 MRad to qualify fused silica for use in the thin detector	May 2019
Detectors	Shower-Max module mechanical assembly design	This task incorporates the physical design and prototyping of the showerMax detector, as well as the associated mechanical mounting structure	Advanced state of first prototype design, including mechanical assembly	Dustin	Not explicitly mentioned	May 2018

Radiation Hardness Test plan Update

•Radiation hardness testing of mechanical assembly materials and parts (ISU, UM)

- Irradiated several light-guide (LG) material samples over a 3 day test run from Mar 22 24, 2016 at the Idaho Accelerator Center (IAC) using 8 MeV, 65 mA I_{peak}, 4µs pulse width at 250 Hz reprate (dose exposure rate was calculated but too high to measure):
 - Measured LG specular reflectivity for 200 800 nm at 90, 60, 45, and 30 degrees.
 - No measurable change in reflectivity was detected for >>50 MRad exposure
- Other assembly materials to test could include Kapton and Tedlar (light tight wrappings) and possibly 3D-printed custom plastic assembly components (Nylon, ABS, PLA, ...) as well as high-density shielding plastics, epoxies, ...
- •Radiation hardness testing of electronic components: active bases, preamps, ...(ISU, UM)

•Main Detector Quartz Robustness (radiation hardness, QA, etc.) (ISU, UM)

- ✤ Apparatus developed to make relative transparency measurements between 200 800 nm
 - Uses Ocean Optics USB spectrometer, UV-Visible light source, custom holder/stand
- Energy deposition calculations (dE/dx and brem) underway for 8 MeV beam and 1.5 cm thick quartz—for heating and thermal expansion considerations (do not want to crack quartz)
- Developed plan to calibrate and monitor beam dose exposure during study
- Had a 1 day IAC test run on May 31, 2018; dose exposure rates calibrated; performed preliminary quartz irradiation test

Dustin McNulty

Radiation Hardness QA for quartz and other components

25 MeV LINAC (Main Hall and Airport)

RF Frequency: 2856 MHz (S-Band)

Energy Range: ~4~25 MeV (current varies)

Pulse Width: ~50ns to 4 micro seconds

Repetition Rate: single pulse to 360 Hz

Ports: 0 degree, 45 degree and 90 degree (Beam energy resolution \sim 1+/-15%)

		25B Energy vs Current	
Energy (Min)/	0 port (mb)	45 port (mb)	90 post (m N)
Energy (wiev)	o port (mA)	45 port (mA)	50 port (mA)
23	55	55 @ 3.8LS	46@3.605
20	100	70 @ 4 uS	65 @ 4 uS
16	100	48 @ 3.6 uS	48@ 3.6uS
13	80	30 @ 3.3 uS	15 @ 3.346
10	60	18 @ 3 uS	7.5@3uS
9	110	30 @ 4uS	15 @ 4 uS
6	100	60 @ 4 uS	60 @ 4 uS
4	50	20 @ 4 uS	20 @ 4 uS

daho ccelerato

> Performed a 1 day engineering run this past spring to address this question as well as perform preliminary radiation hardness QA quartz studies

Dustin McNulty

Radiation Hardness QA for quartz and other components

Performed 1 day irradiation study on Spectrosil 2000 quartz and 3D printed ABS plastic samples
Tests performed on May 31, 2018 at the Idaho Accelerator Center (IAC) using 8 GeV electrons

- •Dose exposure rates calibrated using thermographic film dosimetry measurements
- •Quartz transparency measurements taken at 10, 30, and 60 MRad exposure levels
- $\bullet Plastic \ dog bones \ radiated \ at \ similar \ levels \ and \ tensile \ strength \ (stretching) \ measurements \ made$

F Frequency:	_ 2856 MHz (S-	Band)				
nergy Range:	~4~25 MeV (current varies)			and the second s	
uleo Width:	Electo 4 mici	e coonde				
ise width.	v50hs to 4 hher	o seconos			5 Martin	-
epetition Rat	e: single pulse	to 360 Hz				_
hts: 0 degre	e, 45 degree ar	nd 90 degree (Beam e	energy resolutio	on ~ 1+/-		
%)						0
		25B Energy vs Current				
		25B Energy vs Current				
Energy (MeV)	0 port (mA)	25B Energy vs Current 45 port (mA)	90 port (mA)			
Energy (MeV) * 23 20	0 port (mA) 55 100	25B Energy vs Current 45 port (mA) 55 @ 3.845	90 port (mA) 46 @ 3.6 u5 65 94 4.6			
Energy (MeV)	0 port (mA) 55 100	25B Energy vs Current 45 port(mA) 55 @ 3.8.6 70 @ 4 us 48 @ 3.6.us	90 port (mA) 46 @ 3.6 u5 65 @ 4 u5 48 @ 3.6 u5			
Energy (MeV)	0 port (mA) 55 100 100 80	25B Energy vs Current 45 port(mA) 55 @ 3.8.6 70 @ 4 u5 48 @ 3.6.05 30 @ 3.3.05	90 port (mA) 46 @ 3.6 u5 65 @ 4 u5 48 @ 3.6 u5 15 @ 3 3.6			
Energy (MeV) - 23 20 16 13 10	0 port (mA) 55 100 100 80 60	25B Energy vs Current 45 port (mA) 55 @ 3.8.6 70 @ 4 u5 48 @ 3.6.0 30 @ 3.3.0 18 @ 3.0.6	90 port (mA) 46 @ 3.6 u5 65 @ 4 u5 48 @ 3.6 u5 15 @ 3.3 u5 7.5 @ 3 u5			
Energy (MeV) 23 20 16 13 10	0 port (mA) 55 100 100 80 60	25B Energy vs Current 45 port (mA) 55 @ 3.8.6 70 @ 4 us 48 @ 3.6.us 30 @ 3.3.us 18 @ 3.us	90 port (mA) 46 இ 3.6 படு 65 இ 4 படு 48 இ 3.6 படு 15 இ 3.3படு 7.5 இ 3 படு			
Energy (MeV) - 23 20 16 13 10 9	0 port (mA) 55 100 100 80 60 110	25B Energy vs Current 45 port(mA) 55 @ 3.845 70 @ 4 us 48 @ 3.645 30 @ 3.345 18 @ 345 30 @ 4.65	90 port (mA) 46 @ 3.6 u5 65 @ 4 u5 15 @ 3.6 u5 7.5 @ 3.u5 15 @ 4 u5			
Energy (MeV) ~ 23 20 16 13 10 9 6	0 port (mA) 55 100 100 80 60 110 100	25B Energy vs Current 45 port(mA) 55 @ 1.845 70 @ 4 u5 48 @ 3.645 30 @ 3.345 18 @ 3.45 30 @ 4.45 60 @ 4.45	90 port (mA) 46 @ 3.6 u5 65 @ 4 u5 15 @ 3.6 u5 7.5 @ 3 u5 15 @ 4 u5 60 @ 4 u5			

ISU Dustin McNulty

JLab Hall A

Beam Dose Exposure Rate Calibrations (May 2018)

Optically Stimulated Luminescence (OSL) dosimeter (~ 7 mm by 7 mm square)

Glass slide for spot profile measurements

ISU MS degree student Connor Harper's thesis based on this work: https://www2.cose.isu.edu/~mcnudust/ publication/studentWork/connorHarper Thesis.pdf

OSL arrays for dose profile measurements

Dustin McNulty

Prototype Shower-max Testbeam Results (preliminary)

(2019Oct05) 41

Dustin McNulty

Prototype Shower-max Testbeam Results (preliminary)

(2019Oct05) 42

Quartz Transparency Measurements

Quartz Transparency Preliminary Results

Quartz Rad Hardness Preliminary Results Summary

- •Apparent onset of radiation damage seen in the UV region (between 200 270 nm)
- •These results need to be double-checked:
- Perform more in-depth future irradiation study
- Examine a few different pieces (same geometry), perform more transparency measurements at smaller intervals of exposure, and redesign apparatus to give less systematic variations
- •We've already seen from reflectivity measurements, combined with MAMI testbeam results, that the deep UV part of the spectrum does not seem as important or contributing as the UV/Vis part--due to cathode sensitivity and QE
- •Perhaps a measurement using a SAM-type or even Moller ring-5 prototype detector during irradiations could show how this effect is dampened by the PMT; use a cathode with very low QE in the < 280 nm region

Fig.2 Typical spectral sensitivity characteristics of standard photocathodes with associated window materials.

QE (%) ~
$$\frac{124}{\lambda(nm)}$$
 x radiant sensitivity (mA/W)

PMT Window Characteristics

type of window glass	cut-off wavelength, -10% (nm)	refractive index
lime glass	300	1.54 (at 400 nm)
borosilicate	270	1.50 (at 400 nm)
UV glass	190	1.49 (at 400 nm)
fused silica	160	1.47 (at 400 nm)
Tuseu silica	100	1.50 (at 250 nm)
sapphire	150	1.80 (at 400 nm)

Simulated Yields from Photons (1A Full-scale)

ShowerMax 1A Photon Response 4000 ×10³ Config 1A - Photon Beam hit n hist hit n hist hit n hist 20 Entries 5000000 Entries 5000000 Entries 5000000 Mean Mean Mean 5.9 ± 0.003426 Mean 0.7633 ± 0.001109 13.36 ± 0.004886 18 3.6 Resolution RMS 2.481 ± 0.0007844 RMS 7.661 ± 0.002423 RMS 10.93 ± 0.003455 800 Integral 5e+06 Integra 5e+06 Integral 5e+06 16 3.2 RMS Mean = 3.3 RMS Mean RMS = 0.82700 14 2.8 Mean 600 12 2.4 rms/mean PE Mean 500 10 2 ShowerMax, config1A 400 photon beam, centered 1.6 8 100 MeV 50 MeV 300 6 1.2 10 MeV 200 0.8 4 100 2 0.4 mean = 0.14E - 0.990 0 0 20 30 10 40 50 60 70 90 100 80 10 30 40 50 60 70 80 90 20 100 Photo-electrons Energy (MeV)

Dustin McNulty

Simulated Yields from Pions (1A & 1B Full-scale)

ShowerMax Pion Response

ShowerMax Pion Response

Simulated MIP signal for cosmic-ray tests

(Full-scale)

ShowerMax - 1 GeV Muons

Dustin McNulty

Uniformity Studies: 1A PE means along ϕ and r

Dustin McNulty

Uniformity Studies: 1A Resolutions along ϕ and r

Dustin McNulty

Config #	t _f (mm)	to (mm)	tw (mm)	b (mm)	a (mm)	\mathbf{X}_{0}	R _{mol} (mm)	Leakage (%) 2, 5, 8 GeV from G4 MC	1mm offset Leakage (%)	2mm offset Leakage (%)	Bench. Mean PEs	Bench. RMS / Mean	full- scale Mean PEs	full-scale RMS / Mean
2	17	12.5	5	65	43.2	9.5	11.0	~0 ~0	~0 ~0	~0 ~0	2412 4994	0.19 0.15	382 1075 1772	0.26 0.18 0.16

Config #	t _f (mm)	to (mm)	t _w (mm)	b (mm)	a (mm)	X ₀	R _{mol} (mm)	Leakage (%) 2, 5, 8 GeV from G4	1mm offset Leakage	2mm offset Leakage	Bench. Mean PEs	Bench. RMS / Mean	full- scale Mean	full-scale RMS / Mean
3	14	12.5	6	68	38.2	9.5	11.0	0.5 0.3	0.6 0.4	0.8	2412 5113	0.19 0.13	393 1052 1696	0.22 0.17 0.15

Dustin McNulty

Config #	t _f (mm)	ta (mm)	t⊮ (mm)	b (mm)	a (mm)	\mathbf{X}_{0}	R _{mol} (mm)	Leakage (%) 2, 5, 8 GeV from G4 MC	1mm offset Leakage (%)	2mm offset Leakage (%)	Bench. Mean PEs	Bench. RMS / Mean	full- scale Mean PEs	full-scale RMS / Mean
4	6	12.5	6	68	38.2	7.3	11.0	~0 ~0	~0 ~0	~0 ~0	5171	0.17	469 1067 1603	0.21 0.20 0.20

Dustin McNulty

Simulation Results for new Stack Configs

					Max		Tungsten	Quartz	Total	Moliere
Config #	t_f (mm)	t_q (mm)	t_w (mm)	b (mm)	A (mm)	Х	Weight (N)	Weight (N)	Weight (N)	R_m (mm)
1A	8	10	8	64	44.59	9.46	156.09	35.57	191.66	11.00
1B	8	6	8	48	61.48	9.33	156.09	35.57	191.66	11.00
4A	6	10	8	64	44.59	8.89	146.33	35.57	181.91	11.11
4B	6	6	6	42	65.73	7.04	117.07	35.57	152.64	11.53

	Benchmark - 2GeV			
Config #	RMS/Mean	Leakage (%)	Leakage 2mm offset (%)	Leakage 2° angle (%)
1A	0.17	0	0	-0.1
1B	0.19	0	0	0.2
4A	0.19	0	0	-
4B	0.21	0	0	-

	Benchmark - 5GeV			
	Leakage Leakage			
Config #	RMS/Mean	Leakage (%)	2mm offset (%)	2° angle (%)
1A	0.13	0.04	0.09	-0.4
1B	0.14	0	0	0.2
4A	0.17	0.06	0.3	-
4B	0.19	0	0	-

	Benchmark – 8GeV			
Leak			Leakage	Leakage
Config #	RMS/Mean	Leakage (%)	2mm offset (%)	2° angle (%)
1A	0.12	0	0	-
1B	0.13	0	0	-
4A*	0.18	0	0	-
4B	0.19	0	0	-

	Full Scale ShowerMax – 2GeV		
Config #	DMS	Maan	DMC/Maan
Config #	RMS	Mean	RMS/Mean
1A	63.36	315.9	0.20
1B	45.46	197.7	0.23
4A**	60.16	300.2	0.20
4B**	39.67	179.3	0.22

	Full Scale ShowerMax – 5GeV		
Config #	RMS	Mean	RMS/Mean
1A	123.7	768.5	0.16
1B	87.82	473.6	0.19
4A**	126.8	677.4	0.19
4B**	80.61	397.4	0.20

	Full Scale ShowerMax – 8GeV		
Config #	DMC	Maan	
Config #	RMS	Mean	RMS/Mean
1A	183.2	1197	0.15
1B	129.1	732.3	0.18
4A**	187.9	1012	0.19
4B**	118.8	591.3	0.20

Dustin McNulty

Prototype Shower-max Testbeam Results (preliminary)

(2019Oct05) 54

• Could be possible to use conventional 3" pmts with electronic switching between unity gain base (integrating mode) and high gain base (counting mode)

ShowerMax Prototype Construction Timeline

- <u>Feb Mar 2018</u>: Benchmarking prototype frames fabricated with 3Dprinter using ABS plastic (configs 1A and 1B)
- <u>April 2018</u>: Full-scale aluminum frame and light guide cut-outs fabricated at machine shop
- <u>May 2018</u>: Light guide bending and frame assembly at ISU for fullscale configs 1A and 1B
- June 2018: Config 1A full-scale and benchmarking prototype frames and LG delivered to SBU for stack assembly and installation

14

M Collaboration Meeting

Teatbeam Apparatus under construction

- Testbeam stand under construction
- Motion control system in place
- GEM system is operational, analysis software under development

ISU Cosmic stand with 4 GEM chambers

Dustin McNulty