The Lead Radius Experiment PREX

Dustin McNulty Idaho State University for the PREx Collaboration*mcnulty@jlab.org*

July 28, 2011

 \bigcup

The Lead Radius Experiment PREX

Outline

- Motivation
- Parity Violation at JLab
- PREx and Results
- Future Plans and Summary

Motivation: Nuclear Radii in Heavy Nuclei

- Measurements are important for understanding the strong nuclear force
- Calculations are difficult due to non-pQCD regime and complicated due to many-body physics
- Interesting for:

- [→]Fundamental nuclear structure
- \rightarrow Isospin dependence and nuclear symmetry
- \rightarrow Dense nuclear matter and neutron stars
- Proton radius is relatively easy electromagnetic probes
- Neutron radius is difficult
	- \rightarrow Weakly couples to electroweak probes
	- \rightarrow Hadronic probes have considerable uncertainty
	- \rightarrow Theory has range of R_n R_p for Pb of 0 0.4 fm

Motivation: What do we learn from Rn**?**

• Constraints on Eqn of State (EOS) and symmetry energy of neutron rich matter, where symm. energy is energy cost for asymmetric matter $(N \neq Z)$

•Slope of EOS can be used to constrain potential models

B.A. Brown, PRL 85, 5296 (2000)

Dustin McNulty, PANIC11, Massachusetts Institute of Technology, Cambridge, MA, July 24 - 29, 2011

 \bigcup

Motivation: Neutron Stars

• Neutron star structure is better understood with measurements of R_n

PREx Collaboration

 $\bigg($

 \setminus

• Larger ^P pushes neutrons out against surface tension increasing R_n :

 \rightarrow Thus measurement of R_n (and δ R) could calibrate the pressure of neutronstar matter at sub-nuclear densities

 \rightarrow Combining δ R with observed neutron star radius could allow accessto pressure-density rel't inside neutron stars

• Additionally, symmetry energy governs proton fraction

 \rightarrow Direct URCA cooling depends on processes:

 $p + e^- + \bar{v}$

$$
e^- + p \quad \rightarrow \quad n + \nu
$$

 \rightarrow Larger symmetry energy gives larger proton fraction (need 11%)

A.W. Steiner *et al.*, Phys Rep 411, ³²⁵ (2005)

Methods used to Measure Rⁿ

• Hadronic Probes

 $\bigg($

 \setminus

- \rightarrow Elastic pN, \vec{p} N, nN, $\pi^{\pm}N$
- \rightarrow π 0 photoproduction (Kruche, et al.)
- \rightarrow GDR
- \rightarrow Antiproton scattering
- \rightarrow Have theoretical uncertainty
- Electroweak Probes
	- \rightarrow Parity violating electron scattering
	- \rightarrow Atomic parity violation
	- \rightarrow "Clean" measurements, fewer systematics
	- \rightarrow Technically challenging

 $\bigg($

 \bigwedge

Non-Parity Violating Electron Scattering

$$
F(Q^2) \approx F(0) + \frac{dF}{dQ^2}\Bigg|_{Q^2=0} + \dots = \int \rho(\vec{x})d^3x - \frac{1}{6}Q^2\langle r_{\text{charge}}^2 \rangle
$$

radius (dominated by R_p) \bigcup \rightarrow So small Q² measurements give density and RMS electromagnetic

 \setminus •• For fixed target experiment, typical A_{PV} $\sim 10^{-8} - 10^{-4}$

Rn **Extraction**

PV experiments are challenging for several reasons:

- •Asymmetries are small, need lots of statistics
- •Important control systematics

- [→]Precise matching of ^e[−] beam char. for Left vs. Right helicity states
- \rightarrow Precision non-invasive, continuous beam polarimetry
- \rightarrow Precision know. of Luminosity, Q², and spect. accept. and bkgds

✬✩**JLab's CEBAF is Excellent Facility for PV Measurements**

- • \bullet High quality polarized beam, P_e ∼ 85 - 90%
- PV experiments need quiet beam parms over helicity windows: \bullet
	- →∆x < ¹⁰*µ*^m
	- →∆x' < ²*µ*rad $\rightarrow \Delta E < 10^{-3}$

 \setminus

PREx Measurement

PREx measures R_n of ^{208}Pb

• Lead is nice because:

 \rightarrow Excess of neutrons (44 more–with some expected to form a neutron-rich skin)

 \rightarrow Doubly magic nucleus (82 protons, 126 neutrons)

 \rightarrow Nearest excited state is 2.6 MeV from elastic peak (possible to exclude inelastics using HRS)

- •Ran in Spring ²⁰¹⁰ (approved ³⁰ PAC days)
- $E_e = 1.063 \text{ GeV}, \theta_e \approx 5^\circ, Q^2 \approx 0.009 \text{ GeV}^2$
- ^I^e [∼] ⁵⁰−75*µ*^A

- •Proposed uncertainty on A_{PV} of 3%, R_n \sim 1%
- •Uncertainty dominated by statistical error

Experimental Setup

- •Std. Hall ^A HRS Spects. with detector huts well shielded against bkgds.
- •Running dual, symmetric arms cancels out ^Atrans and other systematics
- •Use septum magnet to bend 5° to 12.5°

PREx Collaboration

 $\bigg($

- • \bullet Upgraded polarimetry (non-inv. Compton∼ 1%, Inv. Moller∼ 1%)
- • \bullet 0.5mm thick Lead in between two 0.15mm Diamond targets ($\sim 1 \times 1$ in²) with cryogenically cooled frame; used fast rastered beam
- Quartz Cerenkov detectors with 18-bit integrating ADCs •

Data Quality and Analysis

- •All asymmetries were blinded approximately ¹^σ
- Asym. widths are determined by statistics of ^photo-electrons, changes in •beam parameters, electronic noise, etc.
- • Integrated helicity pair-wise asymmetries are corrected for beam flucts. (using dithering/modulation system and standard regression)
- •Measured asymmetries relatively stable over the run
- • Slow helicity reversal with HWP and double-Wien successful in controlling systematics

 $\bigg($

Experimental Issues

Several issues prevented full experimental program

- Large amounts of rad. were dumped into the exp. hall damaging electronics •
- •Mistune of septum field – caused loss of some small angle statistics
- •Destruction of scattering chamber rubber O-rings
- •Targets were destroyed by beam over periods of time

(loss of material $\sim 10\%$); thicker diamond targets were more successful

- •Set 95% CL on existence of neutron skin
- • $R_n = 5.78_{-0.17}^{+0.15}$ fm, $\delta R = R_n - R_p = 0.34_{-0.17}^{+0.15}$ fm

 \rightarrow Each model of neutron density is folded into numerical solution of

Dirac eqn with Coulomb and weak axial potential

 \rightarrow Full acceptance (apertures, septum optics, detectors) applied to A_{PV}

 \setminus •PRL forthcoming

- •Set 95% CL on existence of neutron skin
- • $R_n = 5.78_{-0.17}^{+0.15}$ fm, $\delta R = R_n - R_p = 0.34_{-0.17}^{+0.15}$ fm

 \rightarrow Each model of neutron density is folded into numerical solution of Dirac eqn with Coulomb and weak axial potential

 \rightarrow Full acceptance (apertures, septum optics, detectors) applied to A_{PV}

 \setminus •PRL forthcoming

 $\bigg($

 \setminus

 \bigwedge

Result and Error Budget

 $A_{\rm PV} = 0.658 \quad \pm \quad 0.0604 \qquad \pm 0.0130 \quad \text{ppm}$

Dustin McNulty, PANIC11, Massachusetts Institute of Technology, Cambridge, MA, July 24 - 29, 2011

Future Plans

• New proposa^l to complete measurement to be submittedto August PAC

PREx Collaboration

 $\bigg($

 \setminus

 \rightarrow Measurement of A_{PV} to 3% (combined with PREx-I)with 35 PAC days

- •Several improvements over PREx- \rightarrow Improved metal O-rings \rightarrow Additional radiation mitigation
- •Must run at start of ¹² GeV commissioning - 2014?
- •Separate proposal for similar measurement on ⁴⁸Ca likely in future

 $\bigg($

 \setminus

Summary

- PREx experiment ran March June 2010 to measure R_n on ²⁰⁸Pb
- •• After all corrections: $A_{PV}^{Pb} = 0.658 \pm 0.0604 (9.2%) \pm 0.0130 (2.0%)$ ppm (statistics dominated uncertainty)
- From simple fit over models: $R_n = 5.78^{+0.15}_{-0.17}$ fm
- Neutron skin: $R_n R_p = 0.34^{+0.15}_{-0.17}$ fm
- Established existence of neutron skin with 95% CL
- PREx-II proposal, to reduce quoted uncertainty by factor of 3, to be considered by PAC in upcoming months
- PREx-II precision can better discriminate between models allowing predictions relevant for the description of neutron stars

Extra Slide – Experiment Challenges

- •• Precision Measurement of Q^2
	- [→]Requires beam monitoring at 0.05 *^µ*^A using new BCMs
	- $\rightarrow \pm 0.02^{\circ}$ accuracy in spectrometer angles
- Precision beam polarimetry at 1GeV beam energy
	- [→]Upgrade Compton polarimeter: new cavity, *^e*[−] and ^γ detectors
- Unprecedented control over helicity correlated beam asymmetries

 \rightarrow Q $_{\rm asym}$ $\lesssim 100\pm10$ ppb

- \rightarrow Maintain beam position differences $\lesssim 1\pm0.1$ nm
- \rightarrow High precision beam trajectory corrections: cavity BPMs and new dithering system
- Require sub-100 ppm pulse-to-pulse electronics noise
	- \rightarrow Employ new 18-bit ADCs (currently being commissioned)
	- \rightarrow Improve Luminosity Monitor performance
- Keep all sources of systematics in check...for example

 \rightarrow Septum collimator alignments/acceptances

 \rightarrow Spect. optics tuning and prex detector size and positioning

 $\bigg($

 \bigwedge

Extra Slide – Figure of Merit for New Design

 $FOM \times \varepsilon^2 = R \times A^2 \times \varepsilon^2$ (1)

Extra Slide – Integrate Elastic Peak

Extra Slide – Compton Beam Polarimetry

• Upgrade to green laser cavity and high resolution ^γ-detector

Extra Slide – Test Period Target Design

• 0.5mm, 10% X_0 isotopically pure (99.1%) ²⁰⁸Pb foil sandwiched between 0.2mm thick diamond sheets

Dustin McNulty, PANIC11, Massachusetts Institute of Technology, Cambridge, MA, July 24 - 29, 2011

Dustin McNulty, PANIC11, Massachusetts Institute of Technology, Cambridge, MA, July 24 - 29, 2011

