Studies for Low-Noise Integrating Detectors

Dustin McNulty Idaho State University mcnulty@jlab.org

Thanks to: Carlos Bula, Brady Lowe, Kevin Rhine

December 16, 2014

1

Studies for Low-Noise Integrating Detectors

Outline

- Intro/Strategy
- Prototype Development
- Simulation Studies
- PMT Gain Measurements
- Path to Linearity Measurements
- Prel. Cosmic Test results
- Summary

PREX/CREX Collaboration Jefferson Lab Hall A

Prototype Development

- Design A: PREX I style geometry
 - Quartz in line with PMT

- Design B: based on UMASS design3
 - Quartz and PMT at 45 deg.

Prototype Development

- Design A: PREX I style geometry
 - Quartz in line with PMT
 - Constructed

- Design B: based on UMASS design3
 - Quartz and PMT at 45 deg.
 - Constructed

Prototype Development

- Design A: PREX I style geometry
 - Quartz in line with PMT
 - Constructed
 - Preliminary cosmic tests completed
- Design B: based on UMASS design3
 - Quartz and PMT at 45 deg.
 - Constructed
 - Ready for cosmic tests

PREX/CREX Collaboration Jefferson Lab Hall A

Simulation Development

- Using "qsim" G4 framework developed by Seamus
- Geometry adapted to ISU cosmic test setup
- Additional realistic features implemented:
 - -Muon beam smearing: energy, angles, position
 - –PMT QE sampling

–Simulated coinc. trigger

Cosmic Beam Source

• Uniform sampling of θ and ϕ with cosmic-ray energy profile

Essential Differences between Designs A and B

- Design A gives up back-half of Cerenkov cone, whereas design B does not.
- Design A poses $\sqrt{2}$ times more material than Design B – which results in larger Landau tail for design A.

Simulation Studies

- Produce PE dists. for various test configs. of designs A and B:
 –Different distances between quartz and pmt
 - –Incident beam angle dependence
 - –With and without lightguides
 - –Inclusion of a luminum frame supports for quartz & pmt

Simulation Study Findings

- As quartz is pushed closer to pmt, mean goes up and resolution gets better (light collection fluctuations go down)
 - –Used design A with lightguide and 10mm quartz
 - –Measured photons reaching pmt per muon for 0, 2, and 4 cm separations between end of quartz and pmt

-Results:

Separation (cm)	Mean $(\gamma's/\mu)$	Resolution (%)
0	469	26.8
2	410	29.3
4	365	31.5

Table 1: Shows number of photons reaching pmt decreases at rate of $\sim 25 \gamma$'s/cm and resolution worsens by $\sim 1\%$ /cm as quartz is moved away from pmt.

Simulation Study Findings

• Design A less sensitive to incident angle than design B.

Photo-Electron Distribution

Simulation Study Findings (Design B)

• Sample event visualizations with lightguide

IDAHO STATE

PMT Gain Measurements

- ADC charge sensitivity calibrated
- Gains measured using linearity apparatus with CAEN LED driver, ND filter wheel, and CAEN fast amplifier
- PE peaks extracted using multi-Poisson fit algorithm
- Purchased 4 new R7723Q pmts (with Mod. base); also have two pmts on loan from Jlab

PMT Gain Measurements (ADC Charge Sensitivity)

PMT Gain Measurements PMT 1 (new) gain at -2000 V for two different light levels: ×10³ XNð4 ₩ 250 10364 Entries 10329 Entries 2044 Mean 1040 Mean RMS 36.77 RMS 5.107 0.8 200 norm 256.8 ± 3.3 norm 1125 ± 24.7 0.1531±0.0046 lambda 0.24 ± 0.01 lambda 0.6 pedMean pedMean $\textbf{2028} \pm \textbf{0.2}$ $\textbf{1038} \pm \textbf{0.1}$ 150 pedSigma 3.442 ± 0.052 pedSigma 14.31±0.14 1PEMean 2094 ± 1.0 1PEMean $\textbf{1044} \pm \textbf{0.0}$ 0.4 100 1PESigma 4.229 ± 0.209 1PESigma 24.04 ± 1.97 0.2 50 \$01 8N 500 H Entries 10299 Entries 10378 Mean 1046 Mean 2101 RMS 8.66 RMS 76.16 400 80 norm 1060 ± 78.2 norm 180.6 ± 2.8 lambda $\textbf{1.14} \pm \textbf{0.03}$ lambda 0.8125 ± 0.0129 pedMean 300 1038 ± 0.1 pedMean 2025 ± 0.4 60 pedSigma 3.211± 0.088 pedSigma 15.29 ± 0.26 1PEMean $\textbf{2093} \pm \textbf{0.6}$ 1044 ± 0.1 1PEMean 200 40 1PESigma 3.793 ± 0.280 1PESigma 24.39 ± 0.40 100 20 ر <u>بر مار مو</u>همالاند. $\times 10^3$ n 2.1 2.3 2.4 1.02 1.04 1.06 1.08 1.1 1.12 2 2.2 Ŭ.94 0.96 0.98 **ADC channels** ADC channels

PMT Gain Measurements

RUN	LED amplitude	PMT	Amp	Gain $(\times 10^6)$
1410	4,50	1	No	1.33
1412	$5,\!50$	1	No	1.16
1417	4,50	1	Yes	1.23
1419	$5,\!50$	1	Yes	1.25
1424	$4,\!50$	2	No	0.75
1426	$5,\!50$	2	No	1.16
1431	4,50	2	Yes	0.96
1433	5,50	2	Yes	0.99

Table 2: Table of gain measurements at -2000 V. Uncertainty is about 10% right now and is dominated by uncertainty in 10x amp. Gains measured without amplifier are somewhat sensitive to fitting.

Path to Linearity Measurements

- Test apparatus constructed (based on Luis' setup):
 −Two LEDs (one steady, one flashing) → filter wheel → diffuser → pmt
 - -Integrating DAQ using Qweak ADC: have HAPPEX timer and ported drivers for linuxROC, NEED help porting drivers for Qweak ADC!!!- Paul King volunteered to help

Linearity Study Strategy

- Using apparatus to map out pmt gains over large range of HV
- Will use these gains to calibrate PE's from real data tests. Can then use estimated e⁻ flux combined with PE's/e⁻ to estimate anticipated pmt anode currents during PREX II and CREX
- LED light level is then adjusted to yield those anticipated PE rates
- For various HV's, LED asymmetries are measured for each filter setting and the degree of non-linearity is extracted from fits to the data.
- Choose HV setting that gives best linearity while utilizing \sim full range of 18-bit ADCs

PREX/CREX Collaboration Jefferson Lab Hall A

Cosmic Stand: Design A Tests

Simulated PE distribution: Design A

Cosmic Stand: Design B Tests (Coming soon)

Summary and Plans

- Two prototypes constructed including new 45deg design
- Optical simulations are mature and producing pulse height distributions that compare well with real data
- Simulation studies show that:
 - -Minimize quartz pmt separation (best of both worlds!)
 - -Design B more sensitive to incident angle (sweet spot limited to 45 ± 3 degrees)
 - –If have enough light, then don't want or need a lightguide
- Purchased 4 new R7723Q pmts and have started mapping-out gain vs. HV
- Linearity Studies: Getting closer to an integrating DAQ using Qweak ADC and linuxROC (Paul King to help port drivers)
- First "full-circle" PE comparison between real (LanGau and gain method) and simulated data almost too good...story to be continued
- Cosmic data for design B coming by the end of the month

PREX/CREX Collaboration Jefferson Lab Hall A

Filter Wheel

- Edmunds Intelligent Filter Wheel; computer controlled
- Absorptive ND filters: 400 700 nm
- Eight transmission settings (%): 100, 79, 63, 50, 40, 25, 10, 0

PMT Linearity Box and Integrating DAQ

