PREX/CREX Main Detectors and GEM Trackers

Dustin McNulty Idaho State University mcnulty@jlab.org

March 4, 2017

- Main Integrating Detector design and HRS mount
 - Tandem thin quartz Detectors
 - Sliders with rotary stage mount
- PREX-II/CREX Tandem Detector Testbeam Results
- SAM Testbeam Results
- PREX-II "Small" GEM Tracking System
 - CERN 10x20 cm² GEMs
 - HRS mount
 - Readout system
- Quartz Geometry Idea
- Finalizing Detector Design
- Summaries and Future Work

Main Integrating Detectors and Tandem Mount

- PREX-II/CREX main detector design based on UMass Design3.
- Can accommodate up to ~5cm wide rectangular quartz piece (for CREX)
- Rotatable tandem mount designed and prototype constructed

Dustin McNulty

Detector Configuration in HRS (Top View)

Dustin McNulty

RHRS and LHRS Tandem Rotary Mount CAD

RHRS

- X, Y, and θ degrees of freedom
- Velmex 5 and 10 inch travel sliders (Jack has from PREX-I) and rotary stage (have one, need another)

MAMI testbeam May 24-27, 2016

• ³/₄ shift total for PREX/CREX and SAM tests

- 6mm and 10mm Tandem mount
- Near normal e⁻ incidence

• Final SAM detector PE yield studies:

Hall A SAM

855 MeV e⁻ beam

- Miro27 and UVS light-guides
- With and without 1cm tungsten pre-radiator

PREX/CREX Tandem mount Tests

- Quartz spacing same as for rotary tandem mount (~16 cm)
- Used two Hamamatsu R7723Q pmts
- Quartz is wrapped with 1 mil Al. Mylar
- Took runs for each quartz thickness upstream and downstream
- Example raw data, pedestal fit, and ped-corrected ADC and PE dists

6 mm/10 mm Tandem Testbeam Results

10 mm/6 mm Tandem Testbeam Results

Dustin McNulty

Final SAM Design and 2016 Testbeam

• Final SAM detector PE yield studies:

• MiroSilver27 and UVS light-guides

With and without 1cm tungsten pre-

Assembled & Installed in Hall A Fall 2015

¹⁵ Final SAM detector

- Quartz: 33 x 20 x 13 mm³
- Miro27 LG: 36 x 2.6 x 2.1 cm³
- Optimized 1-bounce funnel mirror

radiator

- Unity or high-gain R375 2" PMTs
- Use of pre-radiator not decided
- Dry-air inlet and outlet ports
- Custom flange adapter for easy deinstall/re-install (radcon permitting)

<u>S</u>mall <u>Angle Monitors:</u> Detect ~0.5° target scattering

Dustin McNulty

SAM PE Yield & LG Testbeam Study: Miro-silver27 vs Anolux UVS (no tungsten)

Ped subtracted SAM ADC fit, run 1103

Miro-silver27, no tungsten, N₂ gas flowing:
 ~7 - 8 peak PEs (using PMT gain) with 39% relative width

 Anolux UVS, no tungsten, N₂ gas flowing, and no clock-triggers: ~5 peak PEs (using PMT gain) with 40% relative width

SAM PE Yield & LG Testbeam Study: Miro-silver27 vs Anolux UVS (w/ tungsten)

Dustin McNulty

PREX/CREX "small" $10x20 \text{ cm}^2$ GEM trackers

- Custom CERN 10 cm X 20 cm active area triple GEM chambers
 - 400μ m pitch x/y, 4 + 2 Panasonic 130pin Readout connectors
 - Standard GEM spacing D-3mm-G1-2mm-G2-2mm-G3-2mm-RO
 - GEM frames are 2mm thick and 2cm wide
 - Standard HV filter circuit
- Readout scheme based on INFN: APV25FE-->backplane->MPD

Dustin McNulty

GEM Chamber Mounting Concept

Bare ladder-frame (old ver)

- Extruded aluminum mounting system for GEMs; not finalized yet
- Chambers mounted to 1/8" thick G10 FR4 platform (w/10x20 area cutout)
- GEM ladder-frame mounts to Velmex slider post using cleats

Dustin McNulty

RHRS Tandem Quartz Mount with GEMs

Beam's view (from below)

Dustin McNulty

Prototype Development at ISU

Prototype LHRS Tandem mount

Dustin McNulty

GEM Readout Plans

- GEM readout scheme based on INFN/UVA SBS front-tracker system:
 - Uses APV25FE rev4.1 cards (have 55 in hand); each chamber needs 6 APVs
 - Requires new 4-slot and 2-slot "backplane" PCBs (designed and in production)
 - Backplanes buss analog-out signals to MPD and pass digital ctrl signals to APVs
 - Have 6 VME MPDs (Multi-Purpose Digitizers); require 2 for each arm
 - Uses fast intel ROCs running Linux (have 3 in hand: GE model XVB601)

Getting much advice and help from Paolo Musico and INFN group, Kondo Gnanvo, Chris Cuevas, Nilanga Liyanage, and Alexandre Camsonne

Dustin McNulty

GEM Readout

Quartz Geometry Idea

Beam's view. Note "stubby" quartz installed upstream, full quartz downstream – for illustrative purposes

Top view showing new quartz-rail supports (at PMT end). No more LGs here.

 48mm wide quartz shown. This is widest we can go with 2" PMT (but maybe not necessary now for CREX)

• New info: Maybe able to re-use PREX-I quartz for PREX-II AND CREX!

Upcoming Plans for Finalizing Detector Design

- Will shorten quartz rails and side-walls
- Thinking to redesign side-walls may replace aluminum with 3D-printed plastic
- Question: Do we want μ -metal PMT shields?
- Also thinking about how to make detector more easily light-tight without using gobs of tape—will facilitate quicker turn-around time for re-configuring quartz arrangement
- We may want thinner quartz (or ND filter) for PREX based on preliminary non-linearity measurements: 40 PEs/e⁻ at 1 GHz gives 6.4 nA light level on photo-cathode; so far, ≤ 3nA LL gives best results (see next talk)

Main Detector Summary

- PREX-II/CREX main detector design near complete
 - Still waiting for CREX focal plane footprint
 - Rotary tandem mount concept $\sim\!\!\mathrm{vetted}$
- Main detector PE yields and relative widths measured at MAMI for 6mm/10mm thick tandem
 - For al. mylar wrapped quartz, 6mm gives 45 PEs
 with 20% rel. width; 10mm gives 80 PEs
 - Note that during 2015 MAMI testbeam, 6mm (unwrapped) gave 40 PEs with 19% rel. width (benchmarked with MC)

SAM Summary

- SAM PE yields studied for final SAM design (the one currently installed in Hall A)
 - Examined two LG materials w/ and w/out W pre-radiator
 - Miro-silver 27 (LG used in Hall A SAM) gave 7.6 PEs/e⁻; ${\sim}120$ nA LL on cathode at 100 GHz
 - Anolux UVS LG gave only 5.2 PEs (unexepected result based on reflectivity measurements)
 - PE yields increase 5-fold using pre-radiator with no significant degradation in rel. width
 - May install W pre-radiators in SAMs this summer

GEM Summary

- "Small" GEM tracking system development underway
 - 5 assembled and tested GEM chambers in hand
 - Readout electronics in hand (55 APVs, 6 MPDs), and in production (20 2-slot and 15 4-slot backplanes)
 - Preliminary GEM mounting concept developed and prototype under construction
 - Plans to start HV burn-in procedure next week, assemble
 HV divider circuit and start to test rudimentary
 functionality
 - Hope to get backplanes from vendor within month or so; start to assemble full readout chain, establish MPD DAQ and eventually cosmic tests over summer
- Thanks to ISU parity group: Carlos Bula-Villarreal, Devi-Adhikari, Joey McCullough, Daniel Sluder, Royal Cole, and Chase Juneau

JLab Hall A