MOLLER CD-2/3 Independent Project Review

Shower-max and Radiation Hardness Studies

Dustin McNulty Idaho State University

Oct 3 – Oct 5, 2023

Outline

- Shower-max Overview
- Design and Engineering
- Risks and Mitigations
- Prototyping, Testbeam and Preproduction Plans
- ES&H and Quality Assurance
- Radiation Hardness Studies: Quartz, Plastic and pmt Base Electronics
- Summary

• Team Members:

- D. McNulty, Idaho State U.
- Michael Gericke, U. Manitoba
- Krishna Kumar, U. Massachusetts
- Larry Bartoszek, Bartoszek Engineering
- Carl Zorn, Jefferson Lab
- Justin Gahley, Idaho State U.
- ISU Graduate students:
- Sudip Bhattarai
- Sagar Regmi
- Jared Insalaco

ISU Undergraduates:

- Edwin Sosa
- Coltyn Fisher
- Freddy Kouakou
- Gabriel Ladipo
- Michael Ladipo

Shower-max Subsystem Overview

- Designed and positioned to provide additional measurement of Ring-5 integrated flux (MOLLER A_{PV})
- Weights flux by energy \Rightarrow less sensitive to low energy and hadronic backgrounds
- Also operates in event mode for calibrations and may give additional handle on background pion identification
- Designed to have ≤ 25% resolution over full energy range and constructed with rad hard components for long term stability

Shower-max Module and Ring Geometry

ShowerMax detector: ring of 28 sampling calorimeters intercepting physics signal flux ~1.7 m downstream of ring 5

- quartz position IR: 1020 mm OR: 1180 mm z-loc: 23920 mm from Hall center G4 GDML view
- See L. Bartoszek's talk for details of the SM and Main detector support structure

- 99.95% pure tungsten and HPFS (quartz) radiators
- Rad. length: ~9.5 X₀

Modules

staggered in z

Molière radius ~ 1.1 cm

• Using Electron Tubes 9305QKB pmt

Shower-max: Pre-production – Chassis parts

- Pre-production chassis parts recently received, inspected and assembled
- Only minor changes in chassis parts since last year's prototype
 - removed all countersink screws and modified support strut base
- Also added the pmt can design

0.25 (1/4)" THICK 6061

ALUMINUM PLATE

1

Pre-production module chassis (assembled)

Shower-max Light Guide Parts

CNC mirror sheet cut outs; 2 piece design; folded by hand

Risks and Mitigations

- Given the high rates on Shower-max and nature of the calorimeter, lifetime dose densities in the quartz layers are high:
 Lifetime peak dose/pixel [GRad/5x5 mm²]
 - ranging from 150 MRad to 1.3 GRad
 - dose accumulation in quartz increases UV light absorption causing progressive signal loss (Risk)
- The large PE yields of Shower-max combined with high rates leads to very high pmt cathode currents (Risk)

(Mitigation)

- Use longpass (LP) filters in front of pmts to eliminate the UV light contribution to signal thus reducing
 affects of radiation damage to quartz and lowering pmt cathode currents to reasonable levels
- Lifetime dose estimates in pmt and electronic components (Risk)

(Mitigation)

- LP filters are corning 7980 HPFS
- pmt windows are fused silica
- We are radiation testing electronics for validation

Quartz layer	гизі	Second	Third	Last
Open	0.7	1.3	1.1	0.7
Transition	0.4	0.65	0.55	0.3
Closed	0.25	0.4	0.3	0.15

Quartz lavar Eirst Second Third Last

	PMT con	PMT component lifetime mean dose/pixel [kRad/5x5 mm ²]							
semi-septant	LP filter	window	Si chips region1	Si chips region2					
Open	3300	1200	75	70					
Transition	2200	890	71	62					
Closed	1400	550	53	47					

Prototyping and Testbeam; pre-production activities

- Assembled and tested a shower-max prototype at Mainz during November 2022 testbeam run
 - Used the MAMI 855 MeV electron testbeam
 - Performed radial and azimuthal scans of signal uniformity across the detector face
 - Performed HV scans
 - Performed longpass filter study using a set of 2" diameter filters
 - Also repeated tests with quartz wrapped in aluminized mylar
- Constructed a pre-production shower-max module this summer. Validated mechanical fitment of final chassis parts, quartz and tungsten
- Tested shower-max at Mainz during Sept 18 26, 2023 testbeam run to validate performance of new quartz and polish from new vendor (Corning 7980 UV grade 5F from HYRD Photonics)
 --We also performed QA radiation hardness tests on samples from new vendor (they passed)
- Cosmic-ray test stand and daq system in place. We are preparing to benchmark the cosmic-ray signal response of the pre-production shower-max module (using simulation and Testbeam data)

Shower-max: MAMI Testbeam (Nov 21 – 28, 2022)

Assembly Photos

Shower-max: MAMI Testbeam Setup

Studies performed over 3 shifts:

- Azimuthal position scan
- HV scan with beam centered on stack
- Radial position scan, including scan along lightguide
- Longpass filter study 280, 320, and 400nm
- Above tests were performed for both unwrapped (bare) quartz and aluminized-mylar wrapped quartz configs

Prototype tests performed using 855 MeV electron beam at MAMI

- Radioactive material/radiation: All workers have ISU radiation safety training -- <u>https://www.isu.edu/radiationsafety</u> and several also have JLab rad-worker I training
- Electronics/electrical: Working with common tools (e.g. potential for cutting) implement best practices

 Soldering may be necessary implement electrical and on the job training for workers
- Hazardous materials (including chemicals, lead): –Lead is not handled or moved around by anyone without training –All ISU labs have Chemical Safety Plan with SOPs (we use Isopropyl Alcohol for cleaning)
- Structural (including weldments): Working with common tools as well as Shop tools; workers must pass Machine Shop Safety course for any tools used; all welding needs are outsourced to qualified vendors
- Pressure systems: We follow Jlab pressure system safety protocols (for our GEMs in cosmic stand). Gas systems are designed with over-pressure relief valves that limit maximum pressure to 30 psi
- Gas (including flammable gas): We use non-flammable gases dry air, nitrogen, and Argon/CO2 standard weld mixes
- Cryogenics (ODH): No cryogenics are used
- Personnel access (elevated work, confined space): All ladder use requires training
- Material handling (lifting devices, load testing): Heavy detector modules require training to handle (possible hoisting and rigging training)

ES&H and Quality Assurance

- All activities and deliverables in accord with Jlab ES&H guidelines and Jlab's Integrated Safety Management System <u>https://www.jlab.org/esh/eshhome</u>
- All institutional EH&S rules are followed (Idaho State University EH&S: <u>https://www.isu.edu/ehs/</u>)
- QA/QC considerations:
 - Basic metrology will be applied to all received Shower-max parts (aluminum, tungsten, and quartz); assembly
 fitment is most important test
 - Quartz samples will be acquired for radiation testing from manufacturer production ingots or batches
 - PMT and electronics quality/function checks (quick gain and non-linearity measurement to validate)
 - Light guides will be folded and prepared by qualified individual using custom fixtures and following detailed procedures for consistency
 - Module assembly procedures and instructions document will be developed and followed
 - Module testing and validation procedures document will also be developed

Shower-max Summary

- Shower-max prototype parts fabrication, module assembly and testing went extremely well. MAMI testbeam results validated design, construction, and function
- Testbeam results also validated optical simulation framework; we will use local cosmic-ray testing for validating function and performance of each assembled module
- There have been a few minor tweaks to the chassis and light guide parts based on prototyping experience; these changes are incorporated into final design Shop Drawings
- All pre-production module parts/components have been tested and large order costs updated
- Risks and mitigation strategies have been identified. Using longpass filters eliminates UV light from signal while reducing pmt cathode currents to acceptable levels; the exact filter settings are being determined
- Implementing pmt non-linearity characterization bench tests using full MOLLER readout electronics chain
- Parts procurement for construction of all Shower-max modules is ready to begin

Quartz Radiation Hardness Summary

- Quartz radiation damage study completed; the data needed to inform our optical simulations is in hand
- Dose estimates for radiation tests are at 10% precision level
- Heraeus high H₂ doped Spectrosil 2000 is best performing (clearly) – ~no shoulder structure in losses.
- Heraeus standard sample is worst performing

 it has greatest light loss above 15 20 MRad dose
- We tested 2" LP filters made with Corning 7980 to ~10 MRad; we observed no measurable transmission loss
- Have 3" LP filters, also Corning 7980 (two each: 350 and 400 nm) for Shower-max testing
- Recently QA tested Corning 7980 samples from new vendor (

Total Intensity Loss Across Wavelengths 220-400 [nm]

3D-printed Plastic Radiation Hardness Study (~completed)

Shower-max and Radiation Hardness Studies

Jefferson Lab

3D-printed Plastic Radiation Hardness Results

Preliminary results for 3D-printed plastics:

- Results following irradiations:
 - PLA has high stiffness but is weakened by radiation
 - Nylon has low stiffness and is not weakened by dose
 - ABS is least affected by radiation

	1 Mrad		5 Mra	ad	20 Mrad		
Material	Modulus [ksi]	Yield [ksi]	Modulus [ksi]	Yield [ksi]	Modulus [ksi]	Yield [ksi]	
ABS	390 ± 30	4.7 ± 0.2	380 ± 20	4.7 ± 0.2	370 ± 30	4.7 ± 0.2	
toughPLA	480 ± 20	5.1 ± 0.2	460 ± 30	4.3 ± 0.1	480 ± 30	1.2 ± 0.1	
Nylon	380 ± 30	5.0 ± 0.2	230 ± 70	6.2 ± 0.3	220 ± 60	6.1 ± 0.1	

• Tensile strength results for non-irradiated plastic

	0 Mrad (baseline)				
Material	Modulus [ksi]	Yield [ksi]			
ABS	390 ± 20	4.7 ± 0.2			
tough PLA	430 ± 20	4.8 ± 0.2			
Nylon	250 ± 30	6.1 ± 0.2			
C-fiber Nylon	520 ± 50	5.6 ± 0.3			

- We also recently tested several other plastic materials (analysis is ongoing):
 - Onyx, Ultrasint PA11, Carbon-fiber ABS (dry and wet), and PEEK
 - Radiation dose affects wet samples more than dry, but modulus and yield still sufficient for MOLLER
 - Preliminary result is that Onyx and Ultrasint are rad-hard (up tp 50 MRad), but moduli are lower than other materials tested (we are investigating if this material is still sufficient)

PMT electronics Radiation Hardness Study (ongoing)

➤ Lifetime dose levels on main detector and shower-max pmt electronics is ~60 – 70 kRad

Initial tests took place last December, with follow-up runs this spring and summer

- Beam dose per pulse lower by ~50x compared to plastic and quartz studies
- Irradiated two different regions of the PMT base electronics: both survived to several hundred kRad
 - 1. the integrate-mode op-amp chip (small aerospace grade chip)
 - 2. set of three DC-DC converters used for both DAQ modes
- Collimators were used to localize beam dose on specific chips
- Functionality tested in between successive doses
 - --Following each dose, we attached base to a PMT and exposed cathode to set of light levels (2, 5, 20, and 27 nC) -- tested gain and signal quality using MOLLER ADC

Plastics and Electronics Radiation Hardness Summary

- Plastic irradiation studies nearly complete. We recently tested several filament materials: Onyx® (carbon-nylon), Ultrasint PA11 (castor-oil based laser-sintered material), and carbon fiber (CF) ABS with different moisture content
- Observed trend is that filaments with higher extrusion temperatures are more radiation hard; ABS has not shown any radiation effects up to 50+ MRad dose
- Tensile strength measurements quantify stiffness and strength of the various printed plastics informing deflection analyses of the CAD model and our choice of material
- There are several options for 3D printed plastics that are sufficiently radiation resistant for MOLLER; CF-ABS is the material of choice for the main detector quartz trays
- Electronics radiation testing in progress. So far we have tested main integrating op-amp, original DC-DC converter chip sets, and relay. Preliminary results in general very promising
- Plan to test other sensitive chips later this month: alternative DC-DC converter, voltage regulators, and event-mode amplifier chips (plan to dose very slowly to better mimic experiment)
- Summary documents in progress and will be posted in the Document DB

Shower-max and Radiation Hardness Studies

mcnulty@jlab.org

D. McNulty

- Shower-max overview
- Design and Engineering
- Prototyping, Testbeam and Pre-production Plans
- Risks and Mitigation
- ES&H and Quality Assurance
- Radiation Hardness Studies: Quartz, Plastic and pmt Base Electronics
- Summary

Questions?

Appendix Slides

Quartz Radiation Hardness Study (completed)

- Goal: quantify light transmission losses in detector radiators due to damage from anticipated radiation dose (for lifetime of MOLLER) – 45 MRad peak and 120 MRad peak per 5x5 mm² for ring 5 and ring 2, respectively
- Five candidate fused silica (quartz) samples chosen for testing: from Corning, Ohara, and Heraeus
- Irradiations conducted at the Idaho Accelerator Center using 8 MeV pulsed electron beam, ~40 mA peak current, ~1 μs pulse width (~40 nC/pulse) at 200 Hz repetition rate; samples are 50 cm from beam exit window
- Dose deposition quantified with G4 simulation benchmarked to beam dose profile and source measurements
- Work by Justin Gahley; report in [docDB #886]

Samples: 5 cm diameter or square, 1 cm thick; polished faces

Quartz Radiation Hardness Results: Light Loss

--All samples are wet (> 200 ppm OH content), except SK-1300 which is dry; doped Heraeus has high OH and high H2 content

--Main absorption center at 5.6 eV is the E' – unavoidable point-like defects that cause dangling Si atoms which absorb light

--The shoulder structures are from nonbinding hydroxide absorption centers around 4.5 - 5 eV

--the high H₂ doped Heraeus shows very little of this damage center at our doses

Quartz Radiation Hardness Results: Absorption Coeff's

Corning 7980 UV Homogeneity Grade 5F [cm] Dose [Mrad] 1.6 4.8 14.2 32.7 64.9 133.4 0.8 0.6 0.4 0.2 2.5 3.5 1.5 2 3 4 4.5 5 5.5 6 Energy [eV] Corning 7980 ArF Excimer Dose [Mrad] g 4.8 Absorption Coeff. 14.1 32.8 65.3 135.3 0.8 0.6 0.4 -0.2 3.5 4.5 2.5 5.5

--All samples are wet (> 200 ppm OH content), except SK-1300 which is dry; doped Heraeus has high OH and high H2 content

--Main absorption center at 5.6 eV is the E' – unavoidable point-like defects that cause dangling Si atoms which absorb light

--The shoulder structures are from nonbinding hydroxide absorption centers around 4.5 - 5 eV

--the high H₂ doped Heraeus shows very little of this damage center at our doses

Shower-max and Radiation Hardness Studies

Energy [eV]

Quartz Radiation Hardness Summary

- Quartz radiation damage study completed; the data needed to inform our optical simulations is in hand
- Dose estimates for radiation tests are at 10% precision level
- Heraeus high H₂ doped Spectrosil 2000 is best performing (clearly) – ~no shoulder structure in losses.
- Heraeus standard sample is worst performing

 it has greatest light loss above 15 20 MRad dose
- We tested 2" LP filters made with Corning 7980 to ~10 MRad; we observed no measurable transmission loss
- Have 3" LP filters, also Corning 7980 (two each: 350 and 400 nm) for Shower-max testing
- Recently QA tested Corning 7980 samples from new vendor (

Total Intensity Loss Across Wavelengths 220-400 [nm]

Shower-max Ring Support Structure

- Aluminum bars (15 x 1.25 x 2.5 in³) attach modules to ring structure--which is 2 inch thick (along z)
- Staggered modules are mounted to US and DS face of support ring (in alternating pattern)

Shower-max ring

- View looking radially inward along Shower-max ring
 - Shows reasonable clearance for cabling

Shower-max dose simulations using remoll

Shower-max ring in remoll GDML:

 Work done by Sudip Bhattarai

--We have estimated total dose in each quartz layer of Shower-max during MOLLER lifetime

--We also have estimates for the LP filter, PMT window, and pre-amp Si wafers

[docDB #866]

Shower-max dose simulations using remoll

Open and Closed region detectors are upstream of Transition region detectors in the ring

Quartz layer dose study:

Made each quartz layer sensitive for individual Open, Closed, and Transition detectors located at these specific positions

Shower-max quartz layer lifetime dose estimates

• These are Open-region detector results (worst case)

- Ran 5M Moller, ep-elastic and ep-inelastic generator events
- Peak dose density is in 2nd layer at 1.2 Grad/5x5mm² pixel
- Closed region are 4x lower and Transition are ~3 times lower

Shower-max quartz layer lifetime dose estimates

Shower-max long pass filter and PMT window lifetime dose

Average lifetime doses (Mrad/pixel):

- Filter region:
 Open: ~3.3
 Closed: ~1.4
 Trans: ~2.2
- The 5 mm thick filter models both a 3 mm LP filter + 2 mm ND filter
- PMT window:
 Open: ~1.2
 Closed: ~0.6
 Trans: ~0.9

Shower-max pre-amp Si chip lifetime doses

dose in open pmt region(SiChip1) - ee-ep gen - allParticles Lifetime mean dose/pixel = 74.31±3.20 kRad [mu]₇ ²⁰ 0.25 MRad/5x5mm² 0.2 10 Inner 5 chip 0.15 0 plane -5 -10 -15 0.05 -20 23860 23870 23880 23890 23900 z[mm]

Open region

dose in open pmt region(SiChip2) - ee-ep gen - allParticles Lifetime mean dose/pixel = 69.92=4.11 kRad

Closed region

dose in closed pmt region(SiChip2) - ee-ep gen - allParticles Lifetime mean dose/pixel = 46.70±3.17 kRad

Trans region

dose in trans pmt region(SiChip2) - ee-ep gen - allParticles Lifetime mean dose/pixel = 62.19±2.76 kRad [uu]x 1 0.16 0.12 0.14 WBad/2x2mm² 0.12 0.1 0.08 0.06 -10 0.04 -20 23940 23950 23960 23970 23980 23990 z[mm]

Average lifetime dose (krad/pixel):

Open: ~75 Closed: ~50 Trans: ~70

- Peak doses per pixel can fluctuate as high as 100 to 200+ krad
- Simulated Si wafers are 0.5 mm thick but have a huge area (4 x 5 cm²) to give broad spatial dose sampling

Dose simulation for quartz irradiations

G4 simulation for quantifying dose

Simulated beam calibrated with beamspot measurements at 3 distances

Sample irradiated at 50 cm

Beam energy scans taken at beginning and end of tests

Beam charge data acquired throughout exposures

32

Simulated dose per 5x5 mm² / normalized to average charge per beam pulse

Sample thickness is 10 mm

 Location of light transmission measurements (within single 5 x 5 mm² pixel)

Quartz radiation-hardness results : loss vs. dose

PMT electronics irradiation tests (Simulations)

- Realistic geometry: beam exit window, air, collimator, and sensitive volumes of either OSL array or Si sheet (0.6 mm thick)
- Use similar technique as used for quartz tests vary beam parameters to sample phase space of possible beam profiles (~30 x 30 different simulations for OSL array and separately for Si sheet)
- Bin the Si sheet data into 1.2 x 1.2 mm² pixels to match the OSL array simulation and real data measurements; tally energy deposition in bins
- Plot Si sheet dose/nC versus OSL dose/nC gives linear correlation
- Conclusion: sample receives 75% of OSL dose

Dose Comparison in Osl vs Scilicon sheet

PMT electronics irradiation tests (Beam pulse dosimetry)

Performed beam dose measurements with specialized OSL array shapes overlaying the chip locations of interest
 OSL Array A1 Dose (rad/pulse)
 OSL Array B3 Dose (rad/pulse)
 Rad/pulse
 Dese (rad/pC)

Beam center on Op Amp

Shower-max and Radiation Hardnes

PMT electronics irradiation tests (preliminary results)

• Dose levels per run determined from OSL measurements, beam charge/pulse measurements and conversion factor from simulation

	PMT Base 1: Op amp	Dose	Total Dose
	Run 0	106 kRad	106 kRad
	Run 1	106 kRad	212 kRad
	Run 2	210 kRad	422 kRad
	Run 3	210 kRad	633 kRad
Chautad	Run 4	106 kRad	739 kRad
Started	Run 5	106 kRad	845 kRad
	Run 6	106 kRad	951 kRad
	Run 7	318 kRad	1,270 kRad
	Run 8	106 kRad	1,480 kRad
	Run 9	210 kRad	1,586 kRad

PMT Base 2: DC-DC Converters	Dose	Total Dose	failed
Run 1	206 kRad	206 kRad	

Dose	Total Dose
10.5 kRad	10.5 kRad
42 kRad	52 kRad
53 kRad	104 kRad
	Dose 10.5 kRad 42 kRad 53 kRad

failec

PMT electronics irradiation tests (preliminary results)

Cosmic-ray stand for Shower-max testing in Idaho

Shower-max: MAMI testbeam Results

Conditions:

- E_{beam} = 855 MeV (well below avg energy of accepted electrons during MOLLER)
- Beam rate 3 5 KHz
- HV = -1300 V, pmt gain = $1.67 \pm 0.12 \times 10^6$, 200 fC/channel ADC sensitivity

Results:

- Aluminized-mylar wrapped quartz
- Mean yield 211 PE's per electron with RMS width of 71 PE's (34% resolution)
- Unwrapped (bare) quartz
 - Mean yield 111 PE's per electron with RMS width of 45 PE's (41% resolution)

Shower-max: MAMI testbeam data and simulation comparison

 Prior to testbeam, we simulated our expected PE distribution from MAMI testbeam for the non-wrapped, bare quartz configuration: --Results: 97 PE mean and 36 PE width. The data agree very well with this!

Test Conditions:

- E_{beam} = 855 MeV (note, this is well below average energy of accepted electrons during MOLLER)
- Beam rate 3 5 kHz
- HV = -1300 V, pmt gain = $1.67 \pm 0.12 \times 10^{6}$, 200 fC/channel ADC sensitivity

Shower-max Prototype Test Results (855 MeV electrons)

Simulation results and performance

- Rate weighted, Moller energy ٠ acceptance for each showermax Open, Closed, and Transition region module
- Detector resolution vs. electron • energy with inset PE response dists for 2, 5.5 and 8 GeV

- Detector rates per module: • includes Moller, background e-p processes and gamma-rays
- Mean PE yields per detected ٠ particle for each module

∑ ⁴ F	Sect	tors				PE hits d	listribution of showerMaxD	etector_v3-0-0 with elec	tron beam
	-⊷ al	I	04	•	/bin	1400 F		h_h	itn_2.0GeV
	- op	pen osed	U.4	•	ounts			Entries Mean	10000 62.45 ± 0.1481
		ans	E		0			Std Dev RMS/me	14.81 ± 0.1047 an 0.24
		(0.35	•				Entries	10000 163.5 + 0.2774
			F			800 - []	ſĽ	Std Dev RMS/me	27.74 ± 0.1961 ean 0.17
				•		600	۲ ک	h_h Entries	itn_8.0GeV 10000
			0.3	•				Mean Std Dev	231.2 ± 0.3652 36.52 ± 0.2582
			F	•		+00	_{ } }′		san 0.16
			0.25	•	•		ر <i>ک</i> ر کر ا	λ.	
			F		••	0 0 0 50 1	00 150 200 25	0 300 350 4	00 450 500
			- F		•				PE per event
			0.2						
	•	•	-				••••		
			0.15					•••••	•••
		×10 ³							
0 1 2 3 4 5	6 7	8		1 2	3	4 5	6	7 8 Deem ener	9
	Energy	VINEVI						Beam ener	gy lin Gevi
	Enorg.								
				1		•.•		m , 1	1
	O	pen	Clo	osed	Trar	isition	Ring	Total]
		γ	Clo e ⁻	$\frac{1}{\gamma}$	Trar e ⁻	sition γ	Ring e ⁻	Total γ	
	OI e ⁻	γ	Clo e ⁻	γ	Trar e ⁻	γ	Ring e ⁻	Total γ	
Rate [GHz]	Op e ⁻ 9.3	$\frac{\gamma}{83.3}$	Clo e ⁻ 3.9	osed γ 29.4	Tran e ⁻ 4.8	$\begin{array}{c c} \hline \\ \gamma \\ \hline \\ 50.9 \end{array}$	Ring e ⁻ 159.8	$\frac{\text{Total}}{\gamma}$ 1501	
Rate [GHz] Mean PE yield [PEs]	O _I e ⁻ 9.3 188	γ 83.3 1.3	Clo e ⁻ 3.9 107	γ 29.4 1.0	Trar e ⁻ 4.8	xition γ 50.9 0.9	Ring e ⁻ 159.8	$\frac{\gamma}{1501}$	
Rate [GHz] Mean PE yield [PEs]	O _I e ⁻ 9.3 188 280	pen γ 83.3 1.3 17	Clo e ⁻ 3.9 107 67	γ 29.4 1.0 4.9	Trar e ⁻ 4.8 117	$\begin{array}{c c} \gamma \\ \hline 50.9 \\ \hline 0.9 \\ \hline 7.4 \end{array}$	Ring e ⁻ 159.8	Total γ 1501	
Rate [GHz] Mean PE yield [PEs] partial Cathode I [nA]	O _I e ⁻ 9.3 188 280	pen γ 83.3 1.3 17	Clo e ⁻ 3.9 107 67	x γ 29.4 1.0 4.9	Trar e ⁻ 4.8 117 90	$ \begin{array}{c c} \gamma \\ \hline 50.9 \\ \hline 0.9 \\ \hline 7.4 \\ \end{array} $	Ring e ⁻ 159.8	Total γ 1501 o LP F	ilters
Rate [GHz] Mean PE yield [PEs] partial Cathode I [nA] Cathode current [nA]	O _I e ⁻ 9.3 188 280 29	pen γ 83.3 1.3 17 97	Clo e ⁻ 3.9 107 67	x γ 29.4 1.0 4.9 72	Trar e ⁻ 4.8 117 90	$ \begin{array}{c c} \gamma \\ \hline 50.9 \\ \hline 0.9 \\ \hline 7.4 \\ \hline 98 \\ \end{array} $	Ring e ⁻ 159.8	Total γ 1501 ο LP F	ilters
Rate [GHz] Mean PE yield [PEs] partial Cathode I [nA] Cathode current [nA]	O _I e ⁻ 9.3 188 280 29	pen γ 83.3 1.3 17 97	Clo e ⁻ 3.9 107 67	γ 29.4 1.0 4.9 72	Trar e ⁻ 4.8 117 90	$ \begin{array}{c c} \gamma \\ 50.9 \\ 0.9 \\ 7.4 \\ 98 \\ \hline 0.22 \\ \hline$	Ring e ⁻ 159.8	Total γ 1501 ο LP F	ilters
Rate [GHz] Mean PE yield [PEs] partial Cathode I [nA] Cathode current [nA] Mean PE yield [PEs]	O _I e ⁻ 9.3 188 280 29 18.8		Clo e ⁻ 3.9 107 67 27		Trar e ⁻ 4.8 117 90	$ \begin{array}{c c} \gamma \\ 50.9 \\ 0.9 \\ 7.4 \\ 98 \\ \hline 0.23 \\ \end{array} $	Ring e ⁻ 159.8	Total γ 1501 o LP F	ilters
Rate [GHz] Mean PE yield [PEs] partial Cathode I [nA] Cathode current [nA] Mean PE yield [PEs] partial Cathode I [nA]	O _I e ⁻ 9.3 188 280 29 18.8 28		Clo e ⁻ 3.9 107 67 27 27 17		Trar e ⁻ 4.8 117 90 29 23	$ \begin{array}{c c} \gamma \\ 50.9 \\ 0.9 \\ 7.4 \\ 98 \\ \hline 0.23 \\ 1.9 \\ \end{array} $	Ring e ⁻ 159.8 - N	Total γ 1501 o LP F	Filters
Rate [GHz] Mean PE yield [PEs] partial Cathode I [nA] Cathode current [nA] Mean PE yield [PEs] partial Cathode I [nA] Cathode current [nA]	O _I e ⁻ 9.3 188 280 29 18.8 28		Clo e ⁻ 3.9 107 67 27 27 17	γ 29.4 1.0 4.9 72 0.25 1.2	Trar e ⁻ 4.8 117 90 29 23	$ \begin{array}{c c} \gamma \\ 50.9 \\ 0.9 \\ 7.4 \\ 98 \\ \hline 0.23 \\ 1.9 \\ 95 \\ \hline \end{array} $	Ring e ⁻ 159.8 - N - N - W (4	Total γ 1501 o LP F 'ith LP 00 – 50	ilters Filters 00 nm)
Rate [GHz] Mean PE yield [PEs] partial Cathode I [nA] Cathode current [nA] Mean PE yield [PEs] partial Cathode I [nA] Cathode current [nA]	OI e ⁻ 9.3 188 280 18.8 28 18.8	$ \begin{array}{r} \gamma \\ \hline \gamma \\ 83.3 \\ 1.3 \\ 17 \\ 97 \\ \hline 0.13 \\ 1.7 \\ 30 \\ \end{array} $	Clo e ⁻ 3.9 107 67 27 17		Trar e ⁻ 4.8 117 90 29 23	$ \begin{array}{c c} \gamma \\ 50.9 \\ 0.9 \\ 7.4 \\ 98 \\ \hline 0.23 \\ 1.9 \\ 25 \\ \hline \end{array} $	$ \begin{array}{c} \text{Ring} \\ e^{-} \\ 159.8 \\ \end{array} \\ - \\ N \\ - \\ N \\ - \\ W \\ (4 \\ - \\ (4 \\ (4$	Total γ 1501 o LP F 'ith LP 00 – 50	ilters Filters 00 nm)
Rate [GHz] Mean PE yield [PEs] partial Cathode I [nA] Cathode current [nA] Mean PE yield [PEs] partial Cathode I [nA] Cathode current [nA]	OI e ⁻ 9.3 188 280 18.8 28 18.8 28	pen γ 83.3 1.3 17 97 0.13 1.7 30	Clo e ⁻ 3.9 107 67 27 17	$ \begin{array}{r} \gamma \\ 29.4 \\ 1.0 \\ 4.9 \\ 72 \\ \hline 0.25 \\ 1.2 \\ 18 \\ \end{array} $	Trar e ⁻ 4.8 117 90 29 23	$ \begin{array}{c c} \gamma \\ \hline 50.9 \\ \hline 0.9 \\ \hline 7.4 \\ \hline 98 \\ \hline 0.23 \\ \hline 1.9 \\ \hline 25 \\ \hline \end{array} $	$ \begin{array}{c} \text{Ring} \\ e^{-} \\ 159.8 \\ \end{array} $ $ \begin{array}{c} \text{N} \\ \text{V} \\ \text{(4)} \\ \text{Je} \\ \end{array} $	Total γ 1501 o LP F ith LP 00 – 50	ilters Filters 00 nm)

Electron beam energy vs det resolution

Energy distn for Gen:ee, Particle:electron

Past prototyping and testbeam

Prototypes constructed in 2018: both Full-scale and Benchmarking versions with two different "stack" configurations:

- 8 mm thick tungsten and 10 mm thick quartz (1A)
- 8 mm thick tungsten and 6 mm thick quartz (1B)
- SLAC testbeam T-577 run: Dec 6 12, 2018

Full-scale prototype: 12 cm x 25 cm active area

- 1st-pass engineered design concept vetted
- Light guide construction techniques developed
- Exposed prototypes to 3, 5.5, and 8 GeV electrons with Poisson beam multiplicity
- Validated our optical Monte Carlo with benchmarking prototype

Past prototyping and testbeam results

T-577: SLAC Testbeam Setup: Benchmarking ShowerMax

Past prototyping and testbeam results

Events/pe quartzADC 15825 Entries 15828 Entries Single quartz Jean 16.25 Mean 48.23 45.62 Std Dev 68.9 Benchmarking1A 10mm Quartz (PMT5), run run 292 293 294 295, channel 10³ run run_292_293_294_295, PMT voltage = 1200, gain = 870000 9305OKEL PMT5 ch 2 quartz polish 0.940, position = (0.00,0.00)cm 9305QKFL quantum efficiency, cathode ref. 0.125 10² 10 e peak (sim) = 80.11, rms mean = 0.22 e peak (real) = 80.55 0 100 200 300 400 500 600 Photo-electrons Photo-Electron Distribution - simulated vs real data Events/pe 03 quartzADC 1589 Entries 3 Stack 2474 loan 2416 Mean 3456 Std Dev 3253 Benchmarking1A, 3Q, 3W 10mm Quartz (PMT5), run run 331 332 333, channel 2 10² run run_331_332_333, PMT voltage = 950, gain = 150000 9305QKFL PMT5, ch.2 quartz polish 0.940, position = (0.00,0.00)cm 9305QKFL quantum efficiency, cathode ref. 0.125 10 : 3891.86, rms = 0.18 10

10000

Shower-max and Radiation Hardness Studies

15000

20000

Photo-electrons

5000

Photo-Electron Distribution - simulated vs real data

Photo-Electron Distribution - simulated vs real data

- Single quartz data used to benchmark quartz optical polish parameter in optical simulation
- With quartz polish calibrated, simulations performed with successively more stack layers and compared with SLAC data
- Data and simulation agree well (at 10% level); resolution steadily increases as more layers added

.