Applications of Parity Violation

Dustin McNulty Idaho State University *mcnudust@isu.edu* Thanks to: Carlos Bula, Brady Lowe, Kevin Rhine, Blake French, and Max Sturgeon

April 7, 2015

1

Applications of Parity Violation

Outline

- Beta Decay and Parity Violation
- Standard Model and the Weak Force
- Experiments: PREX/CREX and MOLLER
- Quartz Cerenkov Detector R&D at ISU
- Summary and Outlook

• Beta decay is most common process

4

Beta Decay – Nature's Window into the Weak-nuclear Force

A Quick History

- 1899: Rutherford classifies three types of radioactive emissions: alpha, beta, and gamma
- 1931: Pauli postulates existence of neutrino to explain non-discrete energy spectra of β -decay electrons
- 1933: Fermi develops theory to explain β decay precursor to theory for weak interaction
- 1956: Neutrino discovered by experiment. $\bar{\nu}_e + p \longrightarrow n + e^+$
- 1957: Parity Violation discovered in β decay of $^{60}\mathrm{Co}$

- Fermi's theory invented a physical mechanism for β decay.
- 4-fermion contact interaction at single space-time point.
- Modeled after electrodynamic field interactions where $\vec{J_E}$ of charged particle interacts with \vec{A} to create photon.
- For Fermi's theory, the "weak" current of pn-pair interacts with "weak" current of $e\bar{\nu}$ -pair.
- Fermi's "weak" currents/potentials had vector form just as EM.

Utah State U.

First Neutrino Observations 1956

- Clyde L. Cowan, Frederick Reines (Awarded 1995 Nobel Prize)
- Experiment conducted near nuclear reactor (~ $10^{13} \nu$'s /s/cm²)
- Two water tanks 12m underground and 11m from reactor
- Used inverse beta decay reaction: $(\bar{\nu}_e + p \longrightarrow n + e^+)$
- The e⁺ annihilated with an e⁻ producing two γ rays (detected)

Parity Symmetry

$$\mathbf{P}: \left(\begin{array}{c} x\\ y\\ z \end{array}\right) \longrightarrow \left(\begin{array}{c} -x\\ -y\\ -z \end{array}\right)$$

- Parity operation: Spacial reflection through the origin
- "Even" functions: $\mathbf{P}f(x,y,z) \Longrightarrow + f(x,y,z)$
- "Odd" functions: $\mathbf{P}f(x,y,z) \Longrightarrow -f(x,y,z)$
- Classically, scalar quantities $(m, E, \rho, V, M, ...)$ are mainly "even" while vector quantities $(\vec{x}, \vec{a}, \vec{F}, \vec{E}, \vec{A}, ...)$ are mainly "odd"
- *Quantum Mechanically*, if **P** commutes with the Hamiltonian, then Parity is conserved (invariant or symmetric)
- Fundamental symmetry of nature known to be conserved in electromagnetism, strong interactions, and gravity

Utah State U.

Parity Violation Discovered in β -decay: 1957

- Chien-Shiung (Madame) Wu Experiment
- Took place at NBS (now NIST)
- Studied β^- decay of super-cooled, spin-aligned ⁶⁰Co nuclei
- ${}^{60}_{27}\text{Co} \longrightarrow {}^{60}_{28}\text{Ni} + e^- + \bar{\nu}_e + 2\gamma$

Utah State U.

- Julian Schwinger modifies Fermi's theory to incorporate parity violating potential term (V-A) and idea of intermediate vector bosons; Glashow, Weinberg, and Salam 1979 Nobel Prize
- W^{\pm} only couples to left-handed particles and right-handed anti-particles
- Z^0 couples predominantly to left-handed particles

Standard Model of Elementary Particles

Parity Violation and Electron Scattering

- Electron scattering experiments make first measurement of neutral (Z^0) weak current in late 1970's (at SLAC).
- PVeS experiments scatter longitudinally spin-polarized electron beams (with relatively low energies) off unpolarized, fixed nuclear targets.
- Since Z^0 couples to opposite spin (helicity) particles with different strengths, one can measure cross section (σ) differences for opposite helicity beams to access the neutral weak current.
- Following technological breakthroughs (at SLAC), ~high beam polarizations and ~fast helicity reversals become possible.
- PVeS experiments measure an Asymmetry: $A_{PV} = \frac{\sigma_R \sigma_L}{\sigma_R + \sigma_L}$
- Since weak scattering process is only tiny fraction of total σ , PV asymmetries are tiny and difficult to measure accurately.

- Amplitude for Scattering Process: $S_{tot} \longrightarrow S_{em} + S_w$, but cross section $\sigma \longrightarrow |S_{tot}|^2 = |S_{em}|^2 + |S_w|^2 + 2S_{em}S_w$
- Since $\sigma_R^{em} = \sigma_L^{em}$ and $|S_w|^2$ is negligible,

$$A_{PV} \longrightarrow \frac{2S_{em}S_w}{2|S_{em}|^2} = \frac{S_w}{S_{em}} \sim 10^{-4} \cdot Q^2$$

where Q^2 is 4-momentum transferred during interaction (GeV)

Selected Applications of PVeS

- **Strange Quarks**: What is the role of strange quarks in the electromagnetic structure of the proton or nucleon?
- Size of Nucleus: What is the size of a neutron-rich, complex nucleus? What is R_n , n_{skin} ? Implications for Neutron Stars ?
- **BSM Searches**: Searching for physics Beyond the Standard Model. Obvious Motivations here: SUSY, Dark sector,...

- PREx (Pb Radius Experiment) addresses this question in a unique way: Uses a "Weak" nuclear force probe to measure how much neutrons stick out past protons (The Neutron "skin")
- CREx (Calcium Radius Experiment) performs same measurement but on ⁴⁸Ca nucleus

- Electromagnetism: Force mediated by γ exchange; Protons have EM charge "+e" while neutrons have 0...
- Weak Nuclear: Force mediated by Z⁰ and W[±]; Neutrons have 12 times more Weak charge than protons

PREx Measurement (Pb Radius Ex)

- Uses ~1 GeV elastically scattered electrons (at ± 5 deg) off 0.5 mm thick isotopically pure ²⁰⁸Pb target
- $\bullet~{\rm e^-}$ beam is longitudinally spin-polarized, target is unpolarized
- Measurement relies on the maximal parity-symmetry violating nature of the Weak force
- e⁻'s dominant interaction is EM, but it can also interact via the Weak force; but it does so predominately for only one of the polarization states and not the other

Motivation: Nuclear Radii in Heavy Nuclei

- Measurements are important for understanding the strong nuclear force
- Calculations are difficult due to non-pQCD regime and complicated due to many-body physics
- Interesting for:
 - \rightarrow Fundamental nuclear structure
 - \rightarrow Isospin dependence and nuclear symmetry
 - \rightarrow Dense nuclear matter and neutron stars
- Proton radius is relatively easy electromagnetic probes
- Neutron radius is difficult
 - \rightarrow Weakly couples to electroweak probes
 - \rightarrow Hadronic probes have considerable uncertainty
 - $\rightarrow Theory \ has \ range \ of \ R_n$ $R_p \ for \ Pb \ of \ 0$ $0.4 \ fm$

Motivation: What do we learn from R_n ?

• Constraints on Eqn of State (EOS) and symmetry energy of neutron rich matter – the energy cost for asymmetric matter (N \neq Z)

• Slope of EOS can be used to constrain potential models

B.A. Brown, PRL 85, 5296 (2000)

▲ Field-theoretical

Motivation: Neutron Stars

• Neutron star structure is better. Steiner *et al.*, Phys Rep 411, 325 (2005)

understood with measurements of R_n

• Larger P pushes neutrons out against surface tension increasing R_n :

→Thus measurement of R_n (and $\delta R_{\underline{\beta}}^{0.25}$) could calibrate the pressure of neutron $\underline{\xi}_{0.25}^{0.25}$ star matter at sub-nuclear densities

 \rightarrow Combining δ R with observed neutron star radius could allow access to pres.-dens. rel't inside neutron stars

• Additionally, symmetry energy governs proton fraction

 \rightarrow Direct URCA cooling depends on processes:

 $n \rightarrow p + e^- + \bar{\nu}$

$$e^- + p \rightarrow n + \nu$$

 \rightarrow Larger symm. energy gives larger proton fraction (need 11%)

 $P_{g}(n=0.1 \text{ fm}^{-3}) (\text{MeV/fm}^{3})$

Methods used to Measure \mathbf{R}_{n}

- Hadronic Probes
 - \rightarrow Elastic pN, \vec{p} N, nN, π^{\pm} N
 - $\rightarrow \pi^0$ photoproduction (Kruche, et al.)
 - \rightarrow GDR
 - \rightarrow Antiproton scattering
 - \rightarrow Have theoretical uncertainty
- Electroweak Probes
 - \rightarrow Parity violating electron scattering
 - \rightarrow Atomic parity violation
 - \rightarrow "Clean" measurements, fewer systematics
 - \rightarrow Technically challenging

- High quality polarized beam, $P_e \sim 85 90\%$
- PV expt's need quiet beam parms over helicity windows: $\rightarrow \Delta x < 10 \mu m \quad \rightarrow \Delta x' < 2 \mu rad \quad \rightarrow \Delta E < 10^{-3}$

PREx Measurement

PREx measures R_n of ^{208}Pb

• Lead is nice because:

 \rightarrow Excess of neutrons (44 more–with some expected to form a neutron-rich skin)

 \rightarrow Doubly magic nucleus (82 protons, 126 neutrons)

 \rightarrow Nearest excited state is 2.6 MeV from elastic peak (possible to exclude inelastics using HRS)

- Ran in Spring 2010 (approved 30 PAC days)
- $E_e = 1.063 \text{ GeV}, \ \theta_e \approx 5^{\circ}, \ Q^2 \approx 0.009 \text{ GeV}^2$
- $I_e \sim 50 75 \mu A$
- Proposed uncertainty on $A_{\rm PV}$ of 3%, $R_n \sim 1\%$
- Uncertainty dominated by statistical error

Jefferson Lab Hall A (Newport News, Virginia)

Experimental Setup

- Std. Hall A HRS's with det. huts well shielded against bkgds.
- Run. dual, symm. arms cancels out A_{trans} and other systematics
- Use septum magnet to bend 5° to 12.5°
- Upgraded polarimetry (non-inv. Compton $\sim 1\%$, Inv. Moller $\sim 1\%$)
- 0.5mm thick Pb in b/t two 0.15mm Diamond targets ($\sim 1 \times 1 \text{in}^2$) with cryogenically cooled frame; used fast rastered beam
- Quartz Cerenkov detectors with 18-bit integrating ADCs

 \rightarrow Each model of neutron density is folded into numerical solution of Dirac eqn with Coulomb and weak axial potential \rightarrow Full acceptance (apertures, septum optics, detectors) applied to A_{PV}

Result and Error Budget

 $A_{\rm PV} = 0.658 \pm 0.0604 \pm 0.0130 \text{ ppm}$

 $\pm 9.2\%$ (stat) $\pm 2.0\%$ (syst)

Contributions	abs (ppm)	rel (%)
Polarization	0.0071	1.1%
Detector Lin.	0.0071	1.1%
Beam Corrections	0.0072	1.1%
Q^2	0.0028	0.4%
^{12}C Asymmetry	0.0025	0.4%
Transverse Pol.	0.0012	0.2%
BCM Lin.	0.0010	0.1%
Target Thick	0.0006	0.1%
Rescattering	0.0001	0.0%
Inelastic Cont.	0.0000	0.0%

Summary (PREX)

- PREx exp. ran March June 2010 to measure R_n on ²⁰⁸Pb; Published in Phys. Rev. Lett. 108, 112502 (2012)
- After all corrections: $A_{PV}^{Pb} = 0.658 \pm 0.0604 \ (9.2\%) \pm 0.0130$ (2.0%) ppm (statistics dominated uncertainty)
- From simple fit over calcs: $R_n = 5.78^{+0.15}_{-0.17}$ fm
- Neutron skin: $\mathrm{R_n}$ $\mathrm{R_p} = 0.34^{+0.15}_{-0.17}~\mathrm{fm}$
- $\bullet\,$ Established existence of neutron skin with $95\%\,\,{\rm CL}$
- PREx-II experiment set to run in late 2016 will improve stat. err of PREx-I by factor of 3
- PREx-II precision will better discriminate between models allowing predictions relevant for the description of neutron stars

Experimental Setup (Spectrometer & Detectors)

- Thin quartz Cerenkov detectors with PMTs used to measure scattered electron flux
- Highly relativistic electrons travel faster than light travels through the quartz, thus creating Cerenkov radiation (UV light)
- High purity quartz necessary due to its extreme radiation hardness (maintains transparency during high doses (Grad) of radiation)

Ongoing Work at ISU for PREx and CREx

Quartz Cerenkov detector development

• Cosmic ray tests

-Constructed baseline prototype detector

- -Constructed cosmic/beam test stand
- –Established counting Data Acquisition System (DAQ)
- Optical Monte Carlo Simulation
 - -Using "qsim" framework: GEANT4, C++ based
 - -Modeled precise geometry of cosmic test setup
 - -Continuing to develop and refine.
 - –Once benchmarked, will use to optimize detector design

Baseline prototype Quartz Detector

- SolidWorks CAD based on PREx I (Carlos Bula)
 - Quartz: Spectrosil 2000, $14 \times 3.5 \times 1.0(0.6)$ cm³, 45° bevel on one end, optical polish all sides
- Light guide: Anolux Miro-silver 4270AG, ...

Baseline prototype Quartz Detector

Cosmic/Beam Test Stand

Utah State U.

Counting DAQ

Quartz Proto-1 ADC LanGau Fit, run 243 Events/10ch Entries 1062 90 Mean 245 RMS 94.97 80 χ^2 / ndf 42.35 / 50 70 Lwidth 14.63 ± 1.38 MPV **195.9 ± 1.7** 60 Integral 1.043e+04 ± 3.328e+02 GSigma $\textbf{26.09} \pm \textbf{2.16}$ 50 RMS = 0.388 40 Mean Gsigma 0.133 30 MP\ 20

39

- Two scintillators: each 20 cm \times 7 cm, separated by 110 cm
- bare PREX detector: quartz bar, 5 mm from 2in PMT, angled at 45° wrt scintillators
- 8 inches of Pb installed just above lower scintillator

Realistic Muon Beam Energy

Utah State U.

Distribution of Photo-electrons (PE's) per Muon **Photo-Electron Distribution** ×10³ photo_electrons 800 Photo-Tube Entries 1.619274e+07 72.25 Mean R7723 700 20.61 RMS - R7723Q photo electrons 600 Entries 1.620641e+07 33.91 Mean 500 RMS 10.51 400 300 200 100 0 50 100 150 200 250 300 350 400 450 500

New Detector Prototype B: Parts Machined

Utah State U.

New Detector Prototype B: Constructed

New Detector Prototype B: Constructed

New Detector Prototype B: Cosmic Tests

Prototype B: Cosmic simulations

Prototype B: e⁻ Beam simulations

Prototype B: e⁻ Beam simulations

Utah State U.

R&D Summary and Plans

- Continued cosmic ray testing of baseline prototype
- Continued refinement and studies of GEANT simulations by Carlos Bula
- New prototype design completed by Brady Lowe
- New prototype constructed and ready for cosmic testing
- Work started on shower-max quartz detector for MOLLER: Carlos – simulation, Kevin Rhine – light guide and support structure designs
- Plans to test Prototype B using 850MeV e⁻ beam at MAMI May/June 2015

More info can be found at http://www.isu.edu/~mcnudust

Extra Slides

Utah State U.

Prototype B: Cosmic simulations PE vs. θ

Utah State U.