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Glimpsing one of Nature’s Secrets:
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Outline
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• Calibration Reactions
Pair Production
Compton Scattering

• π0 Analysis Details

• Final Γπ0→γγ Result

• Summary and Outlook
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Intro: Examples of Charges and their Theories

χPT
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QED QCD

(electric) (color) (axial)

• QED: Relativistic quantum field theory describing the interactions
between electrically charged particles by photon exchange.

→Very successful fundamental theory–can calculate all EM
phenomenon to extremely high precision.

• QCD: Fundamental theory describing the interactions between color
charged particles (quarks and gluons) which make up hadrons.

→Difficult to prove–can only make quantitative, testable

predictions using perturbative approach for high momentum

transfer processes...Here the quark masses are neglected....
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Intro: Examples of Charges and their Theories

χPT

γ

e q

g

p

e’ q’ p’

π o

QED QCD

(electric) (color) (axial)

• χPT: Effective (not fundamental) field theory describing thephysics

of QCD with light quark masses. It does this by replacing the

quark/gluon interactions by a set of nucleon/pion interactions with

strengths governed by the axial charge.

→Strengths and limitations under investigation: Uses perturbative

expansion of exchange currents associated with the near massless

three lightest quarks to make testable predictions about the structure

of hadrons at low energies..
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Intro: Properties of the Neutral Pion (π0)

• Lightest of all hadrons: mass = 264me (134.98MeV)

• Spin = 0 (boson)

• Decay channels:π0 → γγ (98.8%),π0 → e+e−γ (1.1%)

• Composition: (ūu - dd̄)/
√

2

• Quantum numbers: JPC≡ 0−+

→Total angular momentum J = S + L = 0 impliesπ0 is a scalar

(not changed by Lorentz transformations)

→Natural Parity P = (-), implies x→ -x, mirror reversedψ needs to be

multiplied by -1 (meansπ0 is a pseudoscalar).

→Charge Parity C = (+), implies meson unchanged under interchange

of quark and antiquark (q→ q̄); it is its own anti-particle.
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Intro: Connection Between Decay Width and Lifetime

• In addition to other parameters, unstable particles are characterized.

by their mass and mass uncertainty

• The mass uncertainty is called the “width” of the unstable particle

and can be theoretically related to its lifetime (τ) via the Weisskopf -

Wigner relation

Hand-Waving Explanation

• Decay widthΓ = ~/τ follows from the energy-time uncertainty

principle∆E∆t ≦ ~/2

• The idea is this: If you observe a narrow mass peak (small energy

uncertainty,∆E), then its lifetime (∆t) can be relatively long, and vice

versa

• So very short lifetimes can be determined by width measurements
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Intro: History of π0 Lifetime Experiments

• 1947: Pions (π±) discovered in cosmic rays

• 1950:π0 discovered in cosmic rays,π0 → γγ decay mode observed at

Berkeley Cyclotron (lifetime to short to measure)

• Mean lifetimeτπ0 < 10−15 seconds established by 1957 from

K+ → π0π0 emulsion experiment (dπ0 < 0.5µm)

• 1951: Primakoff effect (γγ∗ → π0) invented

• 1970-5: First experiments to use Primakoff effect to measure τπ0

• Particle Data Group (PDG) Book database established by 1988
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Intro: History of π0 Lifetime Theory

• The amplitude (Aπγγ) for π0 → γγ = 0 in the Chiral limit (mq → 0)

according to theory of Partially Conserved Axial Current (PCAC)

• 1968: Adler,Bell, and Jaciw discover the axial anomaly

(non-conservation of axial current)

q
π o

γ

γ

q

→ Aπγγ = αem/πFπ

→ Γπ0→γγ = (m3
π/64π)A2

πγγ = 7.725eV±0.5%

→ τπ0 = 8.07×10−17 s

→ cτπ0 ∼ 25 nm
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Intro: Anomalies in QCD

• Anomaly: When a symmetry of the classical theory is not present in the

quantized version.

• In QCD, the anomaly is not anomalous, it is an essential part of the theory.

• For which processes does the anomaly occur?

→ Define a multiplicative quantum number “natural parity” (P)= 1 for S, V, ...

particles. P = -1 for PS, PV, ...

→ An anomalous reaction changes the natural parity:

γπ(P = -1)−→ γπ(P = -1) not anomalous

π0(P = -1)−→ γγ(P = 1) anomalous

γπ(P = -1)−→ ππ(P = 1) anomalous

• All anomalous reactions are governed by the Wess-Zumino Lagrangian in

χPT which permits transitions that violate certain symmetries.

• In the Chiral limit, the absolute rate of these reactions arepredicted by QCD

Dustin McNulty, March 5, 2010, William & Mary Physics Colloquium 8
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Physics Motivation

• π0 decay rate is a fundamental prediction of QCD.

Presence of closed loop triangle diagram
results in nonconserved axial vector current,  

Chiral Anomaly

even in the limit of vanishing quark masses.

→In the leading order (chiral limit), the anomaly leads to thedecay width:

Γπ0→γγ =
α2m3

π
64π3F2

π
= 7.725±0.044 eV (1)

whereFπ = 92.42±0.25 MeV is the pion decay constant.

→ Current Particle Data Book value is7.84±0.56 eV

Dustin McNulty, March 5, 2010, William & Mary Physics Colloquium 9
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Physics Motivation

• LO prediction exact in Chiral limit
• For mq 9 0, there are corrections:

→ Due to isospin sym-breaking
(mu 6= md), π0, η andη′
mixing induced.

→ Further corrections induced by
terms in the Chiral Lagrangian.

• NLO prediction for the decay

width is8.10 eV±1%
→ Calc. using Chiral Perturbation

Theory and 1/Nc expansion.
J.L.Goity et al, Phys. Rev. D66, 076014 (2002); B.Moussallam, Phys. Rev. D51, 4939 (1995)

→ This is4% higher than current experimental value!

◦ A precision measurement of theπ0 decay width is needed.
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CERN (Direct Method) Decay Length Measurement

→ τπ0 ∼ 1×10−16 s⇒ too small to measure
→ Solution–Measure decay length of highly energeticπ0’s:

L = vτπ0E/m (2)

→ for E = 1000GeV, L∼ 100µm (very challenging experiment)

→ Performed in 1984:
Used 450GeV protons

→ Result:
Γ(π0→γγ) = 7.34eV±3.1%

→ Dominant syst. error:
Uncertainty in Eπ0 (±1.5%)

Dustin McNulty, March 5, 2010, William & Mary Physics Colloquium 11
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The Primakoff Effect

• π0 photoproduction from

Coulomb field of nucleus.

• Equivalent production (γγ∗ → π0)

and decay (π0 → γγ) mechanism

implies Primakoff cross section

proportional toπ0 lifetime.

• Primakoffπ0 produced at very

forward angles.

dσP

dΩ
= Γ(π0→γγ)

8αemZ2

m3

β3E4

Q4 |F̃em(Q)|2sin2θπ (3)

Dustin McNulty, March 5, 2010, William & Mary Physics Colloquium 12



PrimEx Collaboration Jefferson Lab Hall B'

&

$

%

Full Cross Section Components
dσπ0

dΩ
=

dσP

dΩ
+

dσC

dΩ
+

dσI

dΩ
+2·

√

dσP

dΩ
· dσC

dΩ
cos(φ) (4)

Primakoff Nucl.Coherent Incoherent Interference

Primakoff:
Proportional to Z2,

peaked atθπ0 = m2
π0/2E2

γ

Nuclear Coherent:

dσC

dΩ
= C ·A2|FN(Q)|2sin2θπ (5)

Nuclear Incoherent:

dσI

dΩ
= ξA(1−G(Q))

dσH

dΩ
(6)

Interference:

Dustin McNulty, March 5, 2010, William & Mary Physics Colloquium 13
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PrimEx Collaboration

.
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Experiment Overview

• Conducted at Jefferson Lab, Fall 2004

• Used 5.75 GeV continuous e− beam
and Hall Bγ-tagging facility

• Tagged photons incident on
5%X0 targets:12C and208Pb

• New PrimEx/Hall B calorimeter
(HyCal), upstream of CLAS,
designed to detectπ0 decayγ’s

• Measured 3 physical processes (absolute cross sections): Primary - π0

production, Secondary - Compton and e+e− pair production

• Improvements over previous experiments: Precision taggedγ flux and
incidentγ energy info, enhancedπ0 angular and mass resolution, and
identification and subtraction of background event contamination

Dustin McNulty, March 5, 2010, William & Mary Physics Colloquium 15
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Experiment Overview

Dustin McNulty, March 5, 2010, William & Mary Physics Colloquium 16



PrimEx Collaboration Jefferson Lab Hall B'

&

$

%

Hall B Photon Tagger

e-beam Photon-beam

PrimEx energy Range
0.95 0.85

• Single dipole magnet combined with a hodoscope containing two

planar arrays of plastic scintillators to detect energy-degraded electrons

from a thin bremsstrahlung radiator.

• Tagger has 0.1% energy resolution and is capable of 50 MHz rates.

Dustin McNulty, March 5, 2010, William & Mary Physics Colloquium 17
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Photon Flux Control

• PrimEx achievement: Total uncertainty in photon flux= 0.98%.

• Number of tagged photons on target (Nγ) calibrated periodically using

a Total Absorption Counter (TAC).

• Any drifts in the tagging ratio, occurring between calibration points,

are monitored online with thee+e− pair spectrometer.

Dustin McNulty, March 5, 2010, William & Mary Physics Colloquium 18
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PrimEx Hybrid Calorimeter – “HyCal”

.

• Optimal performance/cost
design

• 1.2 m×1.2 m, 1728 channels

• 576 Lead-glass (outer layers)

• 1152 Lead-Tungstenate
crystal (inner layers)

Lead-glass PbWO4

Energy Res. (∆E/E) 3−5 % 1−2 %

Position Res. (∆x,y) ∼ 5 mm ∼ 1.5 mm

Angular Res. (∆θπ0) ∼ 675µrad ∼ 300µrad

Dustin McNulty, March 5, 2010, William & Mary Physics Colloquium 19
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HyCal Assembly – Support Frame and Cooling System

.
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HyCal Assembly – Light Monitoring System

.
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HyCal Calibration –”Snake Scans”

• Full x,y motion allowed each ch. to be scanned through taggedγ beam.

• Performed at both the beginning and end of the experiment.

Dustin McNulty, March 5, 2010, William & Mary Physics Colloquium 22
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Calibration Reactions: e+ e− Pair Production

.
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Calculation of Pair Production Cross Section at PrimEx
Kinematics

• Bethe-Heitler mechanism of pair production on the nucleus with screening

effects due to atomic electrons and Coulomb distortion

• Pair production off atomic electrons, considering excitation of all atomic

states and correlation effects due to the presence of other electrons and the

nucleus

• Radiative corrections (of orderα/π) (i) virtual photon loops and (ii) real

photon process likeγ + A→e+ + e− + A + γ

• Nuclear incoherent contribution,γ + p→ e+ + e− + p

• Nuclear coherent contribution (VCS),γ + A→ γ∗ + A→e+ + e− + A

Dustin McNulty, March 5, 2010, William & Mary Physics Colloquium 24
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Pair Production Preliminary Result

• Agreement with theory at∼ 1.0% level

Dustin McNulty, March 5, 2010, William & Mary Physics Colloquium 25
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Calibration Reactions: Compton Scattering

PbWO
4

:(x,y,E’)γ

θγscattered photon

incident photon scattered atomic electron

Lead-Glass

Lead-Glass

e:(x,y,E)

beamline

HyCal

Measured
Measured Eo

Measured
• A well known process, useful in several ways:
→ Detector/beam alignment
→ HyCal gain monitoring
→ Overall check of PrimEx setup to measure absolute cross sections

◦ Dedicated ”Double-Arm” Compton Runs:
→ Performed on a weekly basis, BPS= 0, Ibeam∼ 5−10 nA
→ Both e− and scattered photon detected in HyCal
→ Compton Cross Section Measured:12C and 0.5%X0

4Be
◦ “Single-Arm” Compton Data:
→ Dominant Source of Events inπ0 production data-runs
→ BPS∼ 2 T, Ibeam∼ 100 nA, only scattered photon detected

Dustin McNulty, March 5, 2010, William & Mary Physics Colloquium 26
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Compton Cross Section Preliminary Result

• Average statistical error: 0.6%

• Total error: 1.3% (dominated by photon flux: 1.0%)

Dustin McNulty, March 5, 2010, William & Mary Physics Colloquium 27
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Analysis Details: π0 Event Selection

.
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Analysis Details: Yield with backgrounds (12C and 208Pb)

Tue Sep 23 22:51:43 2008  (degrees)θ Production Angle, 0π
0 0.5 1 1.5 2 2.5 3

)o
 Y

ie
ld

 (
pe

r 
0.

02
0 π

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
310× C, crystal only)12 Photoproduction Yield (0π

 yield0πElastic + bkgd 

 bkgd0πInelastic 
 bkgd0π (Coh+Inc+II) ω

Tue Sep 23 22:53:00 2008  (degrees)θ Production Angle, 0π
0 0.5 1 1.5 2 2.5

)o
 Y

ie
ld

 (
pe

r 
0.

02
0 π

0

100

200

300

400

500

Pb, crystal only)208 Photoproduction Yield (0π

 yield0πElastic + bkgd 

 bkgd0πInelastic 
 bkgd0π (Coh+Inc+II) ω

.

Dustin McNulty, March 5, 2010, William & Mary Physics Colloquium 30



PrimEx Collaboration Jefferson Lab Hall B'

&

$

%

Analysis Details: Γπ0→γγ Determination

• Convert Yield to Cross Section.

dσexp

dθπ0
=

Nyield
π0 (θπ0)

Nγ ×Nt × επ0(θπ0)×∆θπ0
(7)

→ whereNγ ≡ # of γ’s on target(uncertainty∼ 1.0%).

→ whereNt ≡ target atoms/cm2 (thickness mapped to∼ 0.05%).

→ whereεπ0 ≡ experimental acceptance(uncertainty∼ 0.6%).

• Fit experimental data with parametrization:

dσexp

dθπ0
= bp

dσP

dθ
+bnc

dσN

dθ
+bb

dσI

dθ
+2cosφ

√

bpbnc
dσP

dθ
dσC

dθ
(8)

→ where the parameterbp = Γγγ

◦ Vary the four parameters (bp, bnc, bb, andφ) and minimizeχ2.

Dustin McNulty, March 5, 2010, William & Mary Physics Colloquium 31
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Hycal Geometric acceptance of bothπ0 decayγ’s
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Yield Fit, Γγγ Extraction: Procedure

• Parametrize yield using sum of 4 theoretical shapes–smeared
according to experimental resolutions.

dσexp

dθπ0
= bp

dσP

dθ
+bnc

dσN

dθ
+bb

dσI

dθ
+2cosφ

√

bpbnc
dσP

dθ
dσC

dθ
(9)

→ Calculate theory input shapes (cross sections) energy-weighted
according to experimental flux.

→ Createπ0 event generator based on above cross sections and run
through Primsim Monte Carlo.

→ Digitize simulated data and reconstruct events using same
algorithms as for real data. Produce simulated yield distributions with
built-in experimental resolutions.

• Freely vary amplitudes of 4 shapes and minimizeχ2.

Dustin McNulty, March 5, 2010, William & Mary Physics Colloquium 33
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MC Shape Generation: Exmpl. Thrown & Det. Spectra
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MC Shape Generation: Exmpl Fit Input Shapes
(smeared)

Tue Feb 24 12:48:02 2009
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Yield Fit and Cross Section for12C
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Yield Fit and Cross Section for208Pb
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Γ(π0 → γγ) Systematic Errors
Contributions Γγγ dev (%) PrimEx II

Photon flux ±1.0

Target Thickness ±0.1

Yield Extraction ±1.6 ±0.5

HyCal Efficiency ±0.5 ±0.2

Beam Parameters ±0.4

Trigger Efficiency ±0.1

Veto Efficiency ±0.4

Fiducial Acceptance ±0.3

ModelErrors (Theory) ±0.3

Physics Background ±0.25

Branching Ratioπ0
9 γγ ±0.03

Total ±2.1% ±1.3%
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Γπ0→γγ Final Result

.
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Summary and Outlook

• High Quality precisionπ0 photoproduction data on12C and208Pb targets

using 4.9≤ Etagged
γ ≤ 5.5 GeV has been collected and analyzed by the

PrimEx Collaboration

• Cross section results from studied calibration reactions e+e− production and

Compton scattering are both in excellent agreement with theory (at the 2%

level)

• All three∼independentπ0 analysis groups have achieved very consistent

results for both targets

• The finalπ0 partial width result:

Γπ0→γγ = 7.82eV±2.2%(stat)±2.1%(syst); Overall±3.0% error.

• The mean lifetime:(8.32±0.25)×10−17 s

• Γπ0→γγ result consistent with both LO and NLO predictions

• Continuation of this measurement in Hall B late this year; approved 12GeV

Hall D measurement ofη, η′ lifetime...

Dustin McNulty, March 5, 2010, William & Mary Physics Colloquium 40
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Extra Slides

.
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Independent Group Results

.
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Isotopically pure 12C and 208Pb

.
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HyCal Specifications

Lead-glass PbWO4

(outer) (inner)

Mechanism Čerenkov Scintillator

Block dimensions 3.80×3.80×45 cm3 2.05×2.05×20 cm3

Number of blocks 576 1152

Density 3.85 g/cm3 8.28 g/cm3

Moliere Radius 3.6 cm 2.0 cm

Radiation Length 2.7 cm 0.89 cm

Energy Res. 3−5 % 1−2 %

Position Res. ∼ 5 mm ∼ 2 mm

Angular Res. ∼ 675µrad ∼ 270µrad
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HyCal – Bare (unwrapped) PbWO4 Crystals

.
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HyCal Assembly – Crystal Wrapping

.
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Beam Alignment Monitoring using Single-Arm Compton
(Y
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• Only scatteredγ measured

• X ≡ reported HyCal coord

• XCompt≡ calc. (x,y) from

Hycal E and Compton kin.

• If beam alignment

perfect: (XCompt-X) = 0

• Technique tracks

alignment at 0.1 mm level

• Jump in X correlated with

beamline BPM
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The ω → π0γ Background Correction
• dσ/dθπ0 for ω → π0γ taken from T. Rodrigues and implemented

• Convertω cross section into absolute yield while imposing experimental

resolutions using Monte Carlo

• Explicitly subtract contribution from experimental yield

.
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Final Yields for 12C and 208Pb
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Photon Flux

Tagged Photon Energy (GeV)
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Flux for 12C: 2.33×1012 γ′s Flux for208Pb: 1.31×1012 γ′s
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Experimental Efficiencies

Losses (%)

Description 12C 208Pb

Photon Absorption in Target 5.41±0.02 5.92±0.01

Best (tdiff) Candidate selection 2.5±0.3 1.1±0.3

Elasticity Cut:[0.906,1.086] 1.7±0.3 1.7±0.3

Veto Cut: all flags(0,1,2,3) 1.97±0.12 1.97±0.12

Branching Ratioπ0
9 γγ 1.2±0.03 1.2±0.03

Total 12.8±0.5 11.9±0.4

Table 1: Summary of non-geometric losses.
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