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Technical Status Update on PA Lifetime Spectroscopy
Experiments and Results

Outline

• Introduction

• Theory

• Methods and Materials

• Spectrometer Optimization/Benchmarking

• Analysis and Results

• Future Work
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Goals of Study

• Construction and optimization of a Positron Annihilation
Lifetime Spectrometer

–Capable of distinguishing between defect and defect-free

material samples

• Source-based experiments: Benchmarking to literature
values

–Annealed samples (bulk/non-defect)

–Unannealed (defect)

• Accelerator-based experiments: Feasibility studies and
reproducing source-based measurements
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PALS Overview
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22Na Positron Source
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Positron Interactions: Thermalization
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Positron Interactions: Penetration Depth
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Positron Interactions: Diffusion
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Positron Interactions: Trapping
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Positron Interactions: Annihilation
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PALS Spectrometer
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Energy Discrimination & Lifetime Spectrum
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Experimental Setup
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Scintillator Properties
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PMT Specifications (Hamamatsu R3377)
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Physical Properties of Test Samples
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Process of Annealing Samples
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Timing Optimization (Fast Plastic)
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Timing Optimization (BaF 2)
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Lifetime Extraction
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Kansy LT10 Software
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Source-based Fast Plastic Results:22Na without Sample
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Source-based Fast Plastic Results: Aluminum
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Source-based Fast Plastic Results: Copper

Dustin McNulty, Idaho State University Department of Physics, http://www.physics.isu.edu/∼mcnudust 23



Positron Annihilation Lifetime Spectroscopy'

&

$

%

Source-based Fast Plastic Results: Nickel
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Source-based Fast Plastic Results: Lead
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Source-based Fast Plastic Results: Summary
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Source-based Conclusions

• A high precision lifetime spectrometer has been constructed and
successfully benchmarked; Brian Wieland’s Masters degree

• Bulk positron lifetimes in high-purity aluminum, copper, nickel, and
lead are in excellent agreement with current literature values

• Measured defect lifetime values may differ from literaturevalues as a
result of different types of defects within the unannealed samples

• Spectrometer is capable of resolving difference between annealed
and unannealed samples

• Spectrometer is capable of detecting surface defects caused by
oxidation of materials

• Additional studies will need to be completed for BaF2 scintillators

• This study lays the foundation for future accelerator-based positron
annihilation lifetime spectroscopy to access volume defect densities
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Accelerator-based PALS

• Initial Goal: Reproduce source-based lifetime measurements using

the27Al(p,γ)28Si proton-capture reaction

• Decay of excited Si nucleus often produces two or more photons:

One is used as the positron “birth” signal while the other produces

e+e− pairs in the sample leading to the 511keV “death” signal

• Initial measurements used 2MeV Van de Graaf, however 10µA

maximum beam current produced extremely limited event-rates

(∼0.2Hz)

• Pelletron capable of 200µA and up to 8MeV; fabricated custom Al

beamline; first PALS experiments conducted May 2012
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Accelerator-based Experimental Setup
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27Al(p,γ)28Si Cross Section
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27Al(p,γ)28Si Photon Spectrum
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Pelletron-based PALS: Studies

• Event rates for various sample-detector geometries – sample size and

distance from Al endcap very important

• Event rates for various shielding configurations – need to block line

of sight between two detectors, helped to block stop detector from

line of sight to Al endcap, although in general shielding is

problematic for obvious reasons

• Event rates and energy spectra for different proton energies – found

that beam energy needs to be 10-20% above 0.992MeV resonance;

beyond 2 - 2.5MeV, individual pmt event rates/system deadtime

saturated
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Shielding-Sample-Detector Configurations

Dustin McNulty, Idaho State University Department of Physics, http://www.physics.isu.edu/∼mcnudust 33



Positron Annihilation Lifetime Spectroscopy'

&

$

%

Pelletron-based PALS: Issues

• Given the current spectrometer design, the PALS coincidence event

rates are only 2 - 5Hz at best depending on beam current, sample

thickness and shielding;=⇒ 60 hour data-runs to reach 1M events

• Experiment suffers from isotropic photon beam and small solid angle

acceptance of detectors in conjunction with coincidence-style

measurement

• Background events difficult to separate from sample events

• BaF2 scintillator spectra from Pelletron not yet fully understood–this

should provide better background rejection

• Detector signals often exceeded max specs for processing electronics

– needed to operate pmts at much lower voltages than optimal

•
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Positron Annihilation Lifetime Spectroscopy'

&

$

%

Accelerator-based PALS: Ideas and Future Work

• Use fluorine reaction instead of aluminum reaction – can get 4times

more rate with higher photon energies – but still isotropic “beam”

• A very high rep-rate or CW electron to bremsstrahlung beam would

be great; ideally ... energy tunable CW positron beam ...

• Increase numbers of detectors to improve solid angle coverage

• Employ back-to-back 511keV (stop) detectors for greatly improved

background rejection

• Use two CFDD – currently we have only one CFDD and one CFD –

accepts more background

• Simulation work is ongoing to understand issues related to shielding,

sample thickness limitations for 511keV photon escape, photon

multiplicities from excited Si decays,...
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Simulation Studies: MC-NPX Input Deck
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Simulation Studies: 511γ Survival
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Simulation Studies: All γ Survival
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Accelerator-based PALS: Conclusions

• R & D for AG-PALS (volume defect essay) is still in early stages as

there are many technical hurdles to overcome

• Obviously event rate is a big problem with the current measurements;

if we reduce our measurement statistics requirements to 200k

events–could achieve in 12 hours with Pelletron

• The PALS data is rich with information as compared with PAES but

technically much more challenging

• Investment in both accelerator and spectrometer design is needed for

viable AG-PALS and even more so for if one is to achieve “imaging”

measurements

• There is currently one PhD candidate working on this and potentially

more in the queue
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