E05-009: MOLLER Status Update

Dustin McNulty UMass mcnulty@jlab.org

June 11, 2010

E05-009: MOLLER Status Update

Outline

- Intro: (fully approved at PAC34) Moller Scattering, A_{PV} Measurement Proposed Measurement Details Goals and Motivation
- Experimental Setup/Design
 Details: Beam, Target, Spectrometer
 Simulation Studies
 New Challenges
- Timeline and Status

MOLLER Collaboration

- MOLLER Measurement of Lepton-Lepton Electroweak Reaction
- ~100 authors from 30 institutions, with veterans from all the JLab parity violating experiments

Moller Scattering, A_{PV} Measurement

• Purely leptonic reaction provides clean probe of weak neutral current interactions via parity violating electroweak interference

$$A_{\rm PV} = m_{\rm e} E_{\rm lab} \frac{G_{\rm F}}{\sqrt{2}\pi\alpha} \frac{4\sin^2\theta}{(3+\cos^2\theta)^2} Q_{\rm W}^{\rm e}, \qquad (1)$$

$$Q_{\rm W}^{\rm e} \equiv 4 \cdot g_{\rm V}^{\rm e} \cdot g_{\rm A}^{\rm e} = (1 - 4\sin^2\theta_{\rm W}) \tag{2}$$

- e_{beam}^- : 11GeV, 85 μ A, 85% polarization $\rightarrow \langle Q^2 \rangle = 0.0056 \text{ (GeV/c)}^2, \langle A_{PV} \rangle = 35.6 \text{ppb}$
- For 38 week run: $\delta(A_{PV}) = 0.74 \text{ppb}, \ \delta(Q_W^e) = \pm 2.1(\text{stat}) \pm 1.0(\text{syst})$:

 $\rightarrow \delta(\theta_W) = \pm 0.00026(\text{stat}) \pm 0.00012(\text{syst}) \sim 0.1\%$ precision!

MOLLER Collaboration

Physics Motivation: $sin^2\theta_W$, the Higgs Mass, and Beyond the Standard Model

- World data avg: $\sin^2 \theta_W = 0.23122(17)$ => $m_H = 89^{+38}_{-28}$ GeV (favors SUSY, rules out Technicolor)
- Avg dominated by two measurements separated by 3σ:

$$\rightarrow A_1(SLD) : 0.2310(3), => m_H = 35^{+26}_{-17} \text{ GeV}$$

rules out SM!

- $\rightarrow A_{fb}^{0,1}: 0.2322(3), => m_H = 480^{+350}_{-230} \text{ GeV}$ rules out SUSY, favors Technicolor
 - Proposed measurement precise enough to effect the central value of $\sin^2\theta_W$ and its implications for m_H

The Search for the Higgs

Dustin McNulty, June 11, 2010, Hall A Collaboration Meeting, Jefferson Lab

Establishing Limits for New Contact Interactions (Off the Z Resonance)

Important component of indirect signatures for"new physics"

- Proposed Measurement will reach $\sim 7.5 \text{TeV}$ interaction scale
- Best current limits on 4e⁻ contact interac. come from LEP, LEPII: $\Lambda/g \sim 5$ TeV, but insensitive to $|g_{RR}^2 g_{LL}^2|$
- Near the Z resonance, new physics interactions (e.g. Z'_X exchange) don't visibly mix with standard model A_Z (Collider Experiments)
- This underscores importance of low energy measurements of Q^e_W: E158, Qweak, PVDIS, and 12GeV Moller

Current and Future sin^2 \theta_W Measurements

Jefferson Lab Hall A

- Long and skinny design (\sim 30m from target to detector)
- 150cm lH₂ target
- Novel two toroid spectrometer design (prebender and hybrid) with full azimuthal acceptance
- Flux integrating detector ring with azimuthal and radial segmentation

Optimized Spectrometer (\sim **100% Acceptance)**

Jefferson Lab Hall A

Jefferson Lab Hall A

Optics Raytrace

--Defocusing effects results in population of full azimuth

Main Detector Reference Design

--Rad-hard flux, integrating detectors

--Radial segmentation for systematic checks (backgrounds)

--Azimuthal segmentation for systematic checks (e.g. parity conserving $cos(\phi)$ asym, azimuthal defocusing, beam sensitivities, backgrounds, etc.)

--Ancillary detectors (not shown): Tracking, pion, and lumi

New Challenges

- 150GHz total detected Moller event rate
 - \rightarrow Must flip pockels cell at \sim 2kHz
 - \rightarrow 80ppm pulse-to-pulse statistical fluctuations
 - Electronic noise and density fluctuations $< 10^{-5}$
 - Pulse-to-pulse beam monitoring res. a few microns at 1kHz
- 0.5nm/0.05nrad control of beam on target
 - \rightarrow Requires improvement on control of pol. src. laser transport
 - \rightarrow Improved methods of "slow helicity reversal" (double wien)
- Target requires \sim 5kW of cooling power at 85 μ A I_{beam}
- Full azimuthal acceptance with θ_{lab} between 5 and 17mrad
 - \rightarrow Aggressive spectrometer design
 - \rightarrow Complex collimation and shielding issues
- Robust and redundant 0.4% beam polarimetry
 - \rightarrow Plan to pursue both Compton and atomic Hydrogen techniques

Timeline and Status

• JLab PAC 34 - full approval - strong endorsement

"The proposed physics reach is outstanding and capable of making this effort a flagship experiment at JLab. The PAC believes the mission of this experiment... is so important that the Laboratory should make every effort to support the securing of the resources required"

- Detailed cost estimates and R&D plan formulation underway
- Working with lab management to prepare funding request (DOE, NSF, and international funding agencies)
- First review (JLab director's review) took place last January Addressed charges: Physics case, and experimental approach
- Construction/Installation: 2012 2015
- Experiment likely to have two running periods: The first 6 months, and second 2 years

Extra Slides

Dustin McNulty, June 11, 2010, Hall A Collaboration Meeting, Jefferson Lab

Dustin McNulty, June 11, 2010, Hall A Collaboration Meeting, Jefferson Lab

Magnet Design

Dustin McNulty, June 11, 2010, Hall A Collaboration Meeting, Jefferson Lab

Main Detector Reference Design

Jefferson Lab Hall A

Spectrometer Beamline Draft

Dustin McNulty, June 11, 2010, Hall A Collaboration Meeting, Jefferson Lab