Detector mechanics update:

- Main detector support structure designed: 2" thick aluminum barrel framing in three sections; supports 28 Pbshield segments (trays) having 8 individual thin quartz detector assemblies each (total of 224 detectors)
- Beamline z-locations of various detector systems are set; in coordination with engineers/drawings and physicist's simulation geometries
- Cabling considerations incorporated into main detector support structure; have first design of patch-panel and internal cabling harness for barrel Pb trays
- External cabling considerations for main barrel underway: cable bundles route along outer faces of AI. frame and come out radially on each side of beamline in two groups; a cable relief system with curtaining allows opening and closing the lower two barrel portions.

ShowerMax update:

• Detector ring location and size near finalized; updated CAD model with reinforced module support chassis passed on to engineering support for a FEA and to design the clam-shell ring support structure.

Quartz radiation hardness update:

- Testing five different types of artificial fused silica for use as radiators in Main detector and Shower-max
- Measure light transmission loss versus λ (200 800 nm) following peak dose exposures of 70 170 Mrad per 5x5 mm² active radiator area

Technical Progress Since CD-1 (Detector Mechanics)

Technical Progress Since CD-1 (Detector Mechanics)

Technical Progress Since CD-1 (Detector Mechanics)

Main detector cabling ("snapshot" of evolving ideas and development)

- Internal barrel segment patch panel and cabling harness concept developed
- High Density connector candidates identified
- External barrel cable routing and management concept started

Jefferson Lab

Technical Progress Since CD-1 (Shower-max)

ShowerMax detector: ring of 28 sampling calorimeters intercepting physics signal flux 1.7 m downstream of ring 5

- Detector z location and radial acceptance near finalized
- New quartz and tungsten tile sizes determined
- CAD model updated and passed to engineer (Larry Bartoszek) for FEA and external ring support structure design
- Simulations of expected radiation loads in each quartz layer have been performed

All aluminum chassis and air-core light guide

Detector Mechanics, Shower-max, quartz irradiation tests

wo ring halves can open: for

stallation and maintenance

Technical Progress Since CD-1 (Quartz Irradiations)

- Goal: quantify light transmission losses in detector radiators due to damage from anticipated radiation dose
- Several candidate artificial fused silica (quartz) samples chosen for testing: from Corning, Ohara, and Heraeus
- Irradiations conducted at the Idaho Accelerator Center using 8 MeV pulsed electron beam, ~50 mA peak current, ~1 μs pulse width (~40 nC/pulse) at 200 Hz repetition rate
- Dose deposition quantified with G4 simulation benchmarked to beam properties and dosimetry measurements

Transmission measurement apparatus

Samples: Two geometries -- 5 cm diameter or square, 1 cm thick and 2 cm diameter, 5 cm long cylinders

Idaho Accelerator Center (IAC)

Technical Progress Since CD-1 (Quartz Irradiations)

Simulated beam calibrated with beamspot measurements at 3 distances-

Sample irradiated at 50 cm

Beam energy scans taken at beginning and end of tests

Beam charge data acquired throughout exposures

Simulated dose per 5x5 mm² normalized to average charge per beam pulse

Sample thickness is 10 mm

Location of light transmission measurements (within single 5×5 mm² pixel)

Beamspot measurement scans

Technical Progress Since CD-1 (Quartz Irradiations)

Several candidate artificial fused silica (quartz) samples tested (5 cm OD rounds or squares and 1 cm thick):

8

- Corning 7980 (UVHGF)
- Corning 7980 (ARF Eximer)
- Ohara (SK-1300)
- Heraeus Spectrosil2000 (standard)
- Heraeus Spectrosil2000 (high OH,H₂)

Exposure time	Preliminary peak dose estimates (per 5x5 mm ²):			
1.3 min 4 min 9.3 min 18 7 min		5 Mrad 15 Mrad 32 Mrad 65 Mrad	This is total accumulated dose at each transmission	
38.7 min		130 Mrad	measurement	

- Clear differences can be seen between different sample types:
 - -- All have a dominant peak loss below 250 nm but with different RMSs and shoulder structure

-- Obviously, samples with larger RMS or shoulders are less desirable

-- 4 out of 5 samples showed no losses for λ > ~350 nm

Detector Modules:

- Working with common tools (e.g. potential for cutting) implement best practices
- PMT HV implement electrical and on the job training for workers

Mechanical:

– Working with common tools as well as Shop tools– workers must pass Machine Shop safety course

Electronics:

- Working with common tools (e.g. potential for cutting) - implement best practices

– Soldering may be necessary – implement electrical and on the job training for workers (use fume hoods, etc.)

Radiation:

- All workers will have ISU radiation safety training -- https://www.isu.edu/radiationsafety/
- All activities and deliverables in accord with Jlab EH&S manual and Jlab's Integrated Safety Management System
- All institutional EH&S rules will be followed (Idaho State University EH&S: <u>https://www.isu.edu/ehs/</u>)

A concept for robotic insertion of barrel segments

Latest Development: Coupling to A-Frame

Larry Bartoszek, Robin Wines, Ryan Biraben, Danovic Spell

Beam-left and beamright halves retracted from beam position

Barrel cabling

Appendix Slides (Detector Mechanics)

Appendix Slides (HD connector candidates)

Coax: MHC Contacts (Smithsinterconnect.com)

Detector Mechanics, Shower-max, quartz irra

Features

- Fits Size 8 and 12 cavities for MIL-DTL-38999, ARINC 404 and ARINC 600
- Fits Size 8 cavity for MIL-DTL-24308 D-Sub
- Spring loaded for optimum contact mating force
- High frequency performance
- Low VSWR:
 - Size 8: 1.15:1 Typ Mated Pair (DC to 26.5 GHz)
 - Size 12: 1.25:1 Typ Mated Pair (DC to 26.5 GHz)
 - 1.5:1 Typ Mated Pair (26.5 40 GHz)
- Insertion Loss:
- 0.15 dB to 26.5 GHz Typ (Size 8)
- 0.2 dB to 40 GHz Typ (Size 12)
- Socket contacts are spring loaded float mount for superior RF performance and reliability

Electrical Specifications

(MIL-DTL-38999 / ARINC 404 / ARINC 600)

Impedance	50 Ohms
Frequency Range	DC to 26.5 GHz (Size 8) DC to 40 GHz (Size 12)
VSWR	1.15:1 Typ (Size 8) to 26.5 GHz 1.25:1 Typ (Size 12) to 26.5 GHz 1.50:1 Typ (Size 12) to 40 GHz (mated pair)
DWV	500 VRMS @ Sea Level (Size 8) 325 VRMS @ Sea Level (Size 12)
Temperature Range	-65°C to +165°C

Materials & Finishes

Center & Outer Spring Contacts	Brass per ASTM-B16, alloy UNS C36000 or BeCu per ASTM-B196, alloy UNS C17200, C17300 Gold plate per MIL-DTL-45204, Type II, Class 1
Shell	Brass per ASTM-B16, alloy UNS C36000 Gold plate per MIL-DTL-45204, Type II, Class 1
Hood	305 CRES per ASTM-A240, passivated per ASTM-A967
Insulators	PTFE per ASTM D-170

MHC Sample Insert Arrangements

Consult Factory For:

- Custom or Special Insert Arrangements
- Connector Ordering Information
- PC Tail Versions of Contacts

HV: (ges-highvoltage.com)

Type M915/1E 8(+1) Pole 12 kVDC

Electrical values		Characteristics	Characteristics	
Operating voltage (DC)	12 kV	Number of pins high voltage (HV)	8	
Test voltage (DC)	18 kV	Number of pins E-contact 2.5 mm (LV)	1	
Rated current	30 A	Number of pins I-contact 1.5 mm (LV)	-	
		Insulation material	PTEE	

Type / Version / Part number	Picture / Drawing		
Type: receptacle, panel mount Version: GB 915/1E/PTFE Part no. 7749011		Grow view	3.50 0.138 0.1

Requirements Table from MOLLER-NSF CDR

- Shower-max required to ~match flux acceptance of Ring-5 but with a 3:1 reduction in azimuthal segmentation
- Quartz elements optically polished with stringent geometrical tolerances for TIR considerations
- Tungsten is high purity (99.95%) with dimensional tolerances of ± 0.005 inch
- Detector resolution for single-electron response at least 25% to avoid excessive error inflation
- Optical detector elements must be sufficiently radiation-hard to allow Shower-max to preform as required for the duration of the experiment

SM Dose Study using remoll

ShowerMax ring: Looking downstream

> C – Closed O – Open T – Transition

This is a study to determine the anticipated total dose in each quartz layer of ShowerMax during MOLLER

- Beefed up chassis cross-strut supports ____
- Welds are no longer used on the outer supports, instead use a U-channel cross-strut support with square mounting plate
- Active area 16 cm x 26.5 cm
- 6 mm thick quartz and 8 mm thick tungsten

- Two piece LG design

ShowerMax Design Updates (June 2021)

360° Stack support concept (from Nov 2020)

'Top plate' for prototype only

<u>'Struts'</u> --4 total: run the entire radial extent of detector (1/4 inch thick 6061)

--welded supports on outer end (note: with no top plate, welded supports are reinforced)

<u>'The Ledge'</u> --grabs the outer end of stack at the edges (~3 mm bite) --precision machined aluminum --can be shimmed for perfect height/pressure fit

<u>'The Floor'</u>: supports inner end of stack at edges

Each consists of two aluminum parts:

- -- ¹/₄ inch thick 6061 plate (3 counter sunk through holes)
- -- 1/4 inch thick 6061 U-channel (3 tapped holes, 2 through holes)
- --U-channel with floor plate attaches to struts and front and back plates
- Lateral or phi-direction stack support relies on precision fit of stack coffin into aluminum chassis

Prototypes constructed in 2018: both Full-scale and Benchmarking versions with two different "stack" configurations:

- 8 mm thick tungsten and 10 mm thick quartz (1A)
- 8 mm thick tungsten and 6 mm thick quartz (1B)
- SLAC testbeam T-577 run: Dec 6 12, 2018
- Exposed prototypes to 3, 5.5, and 8 GeV electrons
- Validated our optical Monte Carlo with benchmarking prototype

htemp --Stack design validated: number of 350 Single electron events: 1A Full-scale 5202 Entries 283.7 layers/thicknesses; yields and Mean 5.5 GeV 65.73 Std Dev resolutions match G4 predictions 300 ~280 PEs/electron 250 $\frac{47.9}{283}$ = 17% resolution Prototype beam performance Mis-200 sufficient for MOLLER and 2nd identified 0-electron pass mechanical design Mis-identified 150 events 2-electron events improvements underway 100 50 100 200 300 400 500 600 700 800

Full-scale prototype: 12 cm x 25 cm active area

• 1st-pass engineered design concept vetted

(PEs)

25

• Light guide construction techniques developed

ShowerMax: Detector Concept and Materials

Appendix Slides (Shower-max)

- Detector concept uses a layered "stack" of tungsten and fused silica (quartz) to induce EM showering and produce Cherenkov light
- "Baseline" design developed using GEANT4
 optical MC simulation:
 - Design uses a 4-layer "stack" with 8 mm tungsten and 10 (or 6) mm quartz pieces
 - Cherenkov light directed to 3 inch PMT using aircore, aluminum light guide

Materials:

- Aluminum chassis
- Light guides are aluminum specular reflectors (Anolux Miro-silver 27)
- High purity tungsten and quartz
- Total radiation length: 9.1 X₀ tungsten + 0.4 X₀ quartz = 9.5 X₀; Molière radius ~ 1.1 cm

e

Appendix Slides (Quartz rad-hard tests)

Jefferson Lab

Beam Charge Distribution for all Sample runs

Appendix Slides (Quartz rad-hard tests)

Dose and beamspot measurements for G4 simulation

Nanodot OSL dosimeter array beam Titanium window 50 cm beam

OSLs read using microStar

Glass slide

