PMT Non-Linearity Studies at ISU

Devi L. Adhikari

adhidevi@isu.edu

Idaho State University

October 1, 2017

Idaho State

Outline

- Introduction (Asymmetry and non-linearity)
- Motivations
- Black Box Setup
- Qweak ADC Details
- Steps and approaches in Non-Linearity Measurement
- Some Recent Measurements
- Summary Table
- Issues and Questions
- Summary and Future Plans

Introduction (Asymmetry and non-linearity)

A _{LED}= *N*⁺ − *N*[−] N^+ + N [−] With, *Navg* = *N*⁺ + *N*[−] 2

 $A_{LED} = A_{true} (1 + \beta N_{avg})$ is the fit function.

- $\mathsf{N}^{\pm} = \mathsf{N}_{\mathsf{S}}^{\pm} (1 + \beta \mathsf{N}_{\mathsf{S}}^{\pm})$ is the PMT response for the signal $N_{\rm s}^{\pm}$.
- β parameterizes the non-linearity

LED

- \blacksquare N_{avg} settings provided by ND filter wheel
- Fits to A_{LED} vs. N_{avg} plot give A_{true} and A_{true}β and hence the non-linearity.
- Linearity measurement plays an important role in detector systematics.
- R7723Q PMT with modified base for improved non-linearity was used.

PREx-II/CREx

- Polarized beam with unpolarized target.
- Measurements in opposite helicity states.
- Asymmetry of cross sections:

Motivations

- PMTs tested here will be used in the PREx-II/CREx detectors
- PREx-II/CREx are high-precision experiments with statistics dominated uncertainties
- PMT non-linearity is one of the important sources of systematic errors in PREx-II/CREx experiments
- PMT non-linearity will be at most 0.3 % (CREx) and 1 % (PREx-II).
- PMTs should show the best linear response with the LL equivalent to Cerenkov light that it receives during PREx-II/CREx experiments

Black Box Setup and Integrating DAQ Systems

- \cdot LED Holder \longrightarrow holds two LEDs, each with 2 mm diameter collimation
- Electronic Shutter \longrightarrow has now been connected with a relay to turn it "ON" and "OFF" automatically at any interval with computer script
- Filter Wheel \longrightarrow Computer Controlled Edmund Optics' Absorptive ND filters (400-700 nm) with 8 (100, 78, 50, 40, 25, 10, 0)% transmission settings (~randomly ordered)
- Filter Wheel is now controlled automatically using a shell script
- UV Diffuser Edmund Optics' ground fused silica
- PMT Holder \longrightarrow 2" PMT with modified base for improved linearity
- Different pre-Amp settings with different resistances and offsets tested (MAIN, LUMI, KDPA, and SNS)

Qweak ADC Details

- Samples the voltage every 2 μs
- Has a ±10 V range with 18 bit resolution (corresponding to 76.29 μV/channel)
- Has 8 inputs with 12 Ω input impedance
- Working with CODA 2.6.2 and a Linux ROC
- We use a Struck SIS3610 for triggering
- Each GATE is split into 4 blocks with the length (in time) of each block specified by user
- For 120 Hz flipping rate, we set 500 samples/block. So 2000 total samples, every 2 μs, gives 8000 μs long gate
- We are currently using a function generator to provide synchronized DAQ and LED driver signals

Selection of Light Level (Preliminary)

- \cdot Upstream Quartz thickness = 6 mm
- \bullet Downstream Quartz thickness = 10 mm Results from Testbeam (Mainz Germany) w/o wrapping give:
- Peak PEs upstream $=$ 37 with \sim 20% resolution
- Peak PEs downstream $= 65$ with $\sim 17\%$ resolution

PREx-II

- \bullet Rate = 1 GHz
- LL with upstream quartz = 1 GHz*37*e ~ 6 nA
- \cdot LL with downstream quartz \sim 10 nA CREx
- \cdot Rate = 50 MHz
- LL with upstream quartz = $50MHz*37*e$ ~ 0.3 nA
- LL with downstream quartz \sim 0.5 nA
- I have tested 0.7 nA, 3 nA, 7 nA, and 14 nA LLs so far

Steps in Data Collection

- LL controlled by HAPPEx timer DAC12, calibrated using R375 PMT with unity gain base
- DAQ (240 Hz) and LED flash (120 Hz) signals were synchronized
- Proper timing setting between LED, TRIGGER and GATE (40 μs and 100 μs respectively) was maintained (GATE duration is 8000 μs and the GATE does not start until 20 μs after the ADC receives the GATE signal)
- An automated filter wheel and shutter script orchestrated the data collection over 20 cycles of filter wheel:
	- ➔ Each filter stayed in its position for 10 sec and during each filter change the shutter remains closed for 2 sec
	- ➔ Just before each new filter cycle, pedestal data was taken for 5sec
	- ➔ Asymmetry Mean and Error from 20 cycles of filter wheel was used to produce non-linearity plot (A $_{\scriptscriptstyle \sf LED}$ vs N $_{\scriptscriptstyle \sf avg})$

Steps and Approaches in Data Analysis

- Used simplified version of vQwk Analyzer to analyze data
- Quartet and non-Quartet approaches were tried for 7 nA LL
- An automated c++ code has been developed that removes any "unclean" data during filter rotation and analyzes the rest
- The pedestal correction was performed in three different ways: (1) include all pedestal data and subtract the same average for all data points (Note, pedestal data was collected anytime shutter closed)
	- (2) like (1) but for even and odd separately
	- (3) include only the pedestal data just before and just after a filter change (to pedestal-correct that specific filter)
- All three approaches were tried for 14 nA LL, and all gave same/consistent results – so we now only use method (1)

Steps and Approaches in Data Analysis (contd.)

 For non-Quartet approach, the data from two consecutive gates were used to calculate simple pair-wise asymmetry

 For Quartet approach, the data from eight consecutive gates was used to determine asymmetry. Asymmetry is formed between the even and odd groups – gives flavor of 30 Hz flipping

S1 S2 S3 S4 S5 S6 S7 S8

$$
A = \frac{\sum_{even}^{4} S_n - \sum_{odd}^{4} S_n}{\sum_{even}^{4} S_n + \sum_{odd}^{4} S_n}
$$

0.7 nA LL Measurement

• 1.0 MΩ preAmp and -780 V High Voltage.

1199

Mean 0.03937

RMS 0.0003904

Entries

N avg = 4.838e+04 (63.6 %):

 1200

0.03939

Entries

Mean 0.03947

RMS 0.0003317

 N avg = 7.245e+03 (9.5 %)

 N avg = 3.864e+04 (50.8 %)

N_avg = 3.081e+04 (40.5 %);

ntriem

.
Nitina 0.0001

Devi L. Adhikari [PMT Non-Linearity Studies at ISU](#page-0-0) Constanting Company 11 / 25

7 nA LL Measurement

• 0.5 MΩ preAmp and -610 V High Voltage.

h0 asym1

Mean 0.03402

RMS 0.0003314

0.0355 0.03

h0_asym4

Entries 1199

Entries -1195

Entries

tfos

*m $h0$ _asym3 20 N_avg = 7.305e+04 (79.9 %)

 N _avg = 8.668e+03 (9.5 %)

 N avg = 4.654e+04 (50.9 %)

h_{0_asym2}

RMS 0.000197

Entries 1199 Mean 0.03396

N avg = 5.798e+04 (63.4 %)

14 nA LL Measurement

• 0.3 MΩ preAmp and -540 V High Voltage.

<u>1992 - 1993 - 1993 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 </u>

N avg = 4.123e+04 (63.7 %)

 20 N_avg = 2.625e+04 (40.5 %):

 $-N$ avg = 6.070e+02 (0.9 %)

بايرت

h0_asym4

h_{0_asym2}

RMS 0.0005329

h0_asym5

Mean 0.03354

RMS 0.0004556

Entries 1200

Entries 1200 Mean 0.03345

Entries

havg_asym6

RMS 0.0031412

0.0325

Ertrios

Mean

Devi L. Adhikari [PMT Non-Linearity Studies at ISU](#page-0-0) Constanting Company 13 / 25

Need of Second Order non-linearity

 \perp

 -750

 $\overline{\mathsf{d}}$

 -1050

 -1000

 -850

 -800

 -900
HV (V)

 -950

∗ smaller non-linearity for smaller preAmp gain and higher HV.

							Run HV LL PreAmp Navg non-Linearity non-Linearity/V X2/ndf	
Summary Table (14 nA LL			1643 - 1000 14		0.01	68950 -5.941±0.980	-1.129	189.4/5
				1642 -710 14	0.1	$95810 - 1.669 + 0.870$	-0.228	8.623/5
			1637 -700 14		0.1	94070 -1.798 \pm 0.549	-0.251	10.96/5
			1651 -690 14		0.1	74550 -1.928±0.672	-0.339	10.62/5
			1638 -670 14		0.1	73150 -2.163±0.767	-0.388	6.173/5
			1656 -600 14		0.3	$111400 - 2.905 \pm 0.682$	-0.342	4.381/5
			1657 - 580 14		0.3	94320 -2.802 \pm 0.674	-0.389	7.933/5
			1658 - 560 14		0.3	78190 -3.099±0.640	-0.519	5.036/5
			1660 - 540 14		0.3	64550 -3.198 \pm 0.797	-0.649	1.581/5
			1661 -540 14		0.5	$106600 - 3.460 \pm 0.604$	-0.418	8.637/5
			1663 - 520 14		0.5	88860 -3.800±0.640	-0.561	10.98/5
			1664 - 500 14		0.5	72020 -3.913±0.668	-0.712	4.415/5
			1666 -480 14		0.5	56870 -4.307 \pm 0.636	-0.993	29.52/5
			1662 - 540 14		0.5	$108600 - 3.796 \pm 0.985$	-0.467	4.45/5
	non lingaritu va LIV		1667 -480 14		0.5	57230 -3.849 \pm 0.665	-0.882	14.42/5

non-linearity vs HV

∗ smaller non-linearity for smaller preAmp gain and higher HV.

Issues and Questions

- Should we think about changing quartz thickness for PREx-II? 10 nA LL will be near the acceptable limit.
- Is it a good idea to study linearity to the second order?
- \blacksquare How to handle error (and interpret χ^2) on non-linearity properly?
- Why 2^{nd} order fits give much higher non-linearity error?
- Could use more precise calibration of LL:
	- \rightarrow calibrate picoammeter.
	- \rightarrow use R7723 PMT with unity base, not R375 PMT.
- Question of preAmp bandwidth? What is best? Does it matter? \rightarrow We need a working KDPB preAmp to help test.

Summary and Future Plans

- So far, results are very promissing; we will meet or surpass PMT non-linearity systematic error requirements.
- At 7 nA and 14 nA LLs, get smaller non-linearity for smaller preAmp gain and higher HV.
- At 0.7 nA LL, get smaller non-linearity for larger preAmp gain and smaller HV.
- Results from quartet analysis were not significantly different than those from non-quartet after implementing the 20 cycle data collection technique.
- Different approaches of subtracting pedestal didn't cause any difference in the non-linearity result.
- Planning to study non-linearity at other LLs and with different PMTs.
- Constant temperature data collection technique; exploring now.
- Also, still planning to explore the Qweak style non-linearity measurements which use 3 LEDs (two of them flashing at different rates and one steady).

THANK YOU

All the plots of the study can be found at:

[daq3.physics.isu.edu/linearity/Linearity.html.](http://daq3.physics.isu.edu/linearity/Linearity.html)

Extra Slides

Steps in Error Analysis

First Order non-Linearity	Second Order non-Linearity
\n $A_{LED} = A_{true}(1 + \beta * N_{avg})$ \n	\n $1. A_{LED} = A_{true}(1 + \beta * N_{avg} + \alpha * N_{avg}^2)$ \n
\n $N = \beta * N_{avg} = \frac{p_1}{p_0} * N_{avg} * 100\%$ \n	\n $1. A_{LED} = A_{true}(1 + \beta * N_{avg} + \alpha * N_{avg}^2)$ \n
\n Here, p_1 and p_0 are the fit\n	\n $N = \frac{p_1}{p_0} * N_{avg} * 100\% + \frac{p_2}{p_0} * N_{avg} * 100\% = x + y$ \n
\n $\frac{\partial N}{\partial p_0} = -\frac{p_1}{p_0} * N_{avg} * 100\%$ \n	\n $3. \partial N = \sqrt{(\partial x)^2 + (\partial y)^2}$ \n
\n $\frac{\partial N}{\partial p_1} = \frac{1}{p_0} * N_{avg} * 100\%$ \n	\n $4. \partial x = \sqrt{(\frac{\partial p_1}{p_1})^2 + (\frac{\partial p_0}{p_0})^2} * \frac{p_1}{p_0} * N_{avg} * 100\%$ \n
\n $\partial N = \sqrt{(\frac{\partial p_1}{p_1})^2 + (\frac{\partial p_0}{p_0})^2} * \frac{p_1}{p_0} * N_{avg} * 100\%$ \n	
\n $\partial N = \sqrt{(\frac{\partial p_1}{p_1})^2 + (\frac{\partial p_0}{p_0})^2} * \frac{p_1}{p_0} * N_{avg} * 100\%$ \n	
\n $\partial N = \sqrt{(\frac{\partial p_1}{p_1})^2 + (\frac{\partial p_0}{p_0})^2} * \frac{p_1}{p_0} * N_{avg} * 10$	

0.7 nA LL Measurement

• 0.5 MΩ preAmp and -850 V High Voltage.

Shutter closed (pedestal data)

Pair-wise Asymmetry vs. pair #

Entries 96568
Mean 3.768e+06
RMS 3763 $rac{on}{off}$

3790
ADC (raw ch s

h1_asym_my
Fotoies 240583

Entries 240583
Mean x 1.205e+05

Mean x 1.205e+05
Mean y 0.03862
RMS x 6.936e+04

h_{0_asym2}

RMS 0.0006959

h₀ asym₅

Entries

Mean

 $rac{1200}{0.0388}$

run 1702

 N avg = 5.077e+03 (9.5 %)

a Unive

Entries

B 041 0.046

 0.044 0.04 α

 $\frac{1}{2}$ avg = 3.398e+04 (63.5 %)

ivg_asym

avg asym:

Devi L. Adhikari [PMT Non-Linearity Studies at ISU](#page-0-0) Constanting Company 23 / 25

7 nA LL Measurement

• 0.5 MΩ preAmp and -590 V High Voltage.

N avg = $4.643e+04(63.7%)$

 20 N_avg = 2.950e+04 (40.4 %):

็√^พเมา

յակի

 ${}^{\circ}$ [N_avg = 3.704e+04 (50.8 %)

h0 asym1

Mean 0.03255

RMS 0.0002582

Entries -1200

> 7m -6.65

 $9 + 5\%$ ND 6%

 0.03

avg asymt

Mean 0.0325

RMS 0.0001332

iettie:

Devi L. Adhikari [PMT Non-Linearity Studies at ISU](#page-0-0) October 1, 2017 24 / 25

h_{0_asym2}

RMS 0.0003659

h_{0_asym5}

Mean 0.03265

RMS 0.0003196

51448

Entries 1200

Entries -1199 Mean 0.03255

14 nA LL Measurement

• 0.01 MΩ preAmp and -1000 V High Voltage.

Entries

h0_asym7

RMS 0.0002812

Entries 1199

Mean 0.0364

h.

 20 N_avg = 5.533e+04 (79.3 %):

 N _{_avg} = 5.305e+03 (7.6 %)

havg_asym4

RMS 0.00023

 α Mean 0.03586

Entries

Ertrios

.
Mean 0.0334

RMS 0.003626

Devi L. Adhikari [PMT Non-Linearity Studies at ISU](#page-0-0) October 1, 2017 25 / 25