PREx detector test-run analysis

Dustin McNulty UMass mcnulty@jlab.org

July 23, 2008

PREx Detector Test-run Analysis

Outline

- Review: Detector Setup and Beamtest Goals
- Beamtest Analysis Results

Tantalum Spectra

Pulse-height distributions & Landau tail assessment Detection efficiencies vs. x,y

- HRS Beamtest Optics Review/Discussion
- Summary and Outlook

PREx Detector Setup and Beamtest Goals

- Examine Tantalum spectrum at 19 ° and 12.5 ° using Sampling DAQ
 - -Adjust HRS momentum to position elastic peak on dets
 - -Question: Does detector encompass entire elastic peak?
- Analyze detector pulse-height distributions and Landau tails
- Verify near 100% detection efficiency in thin quartz
- Determine stack and thin detector rates (not finished)
- At 12.5 °, switch to Integrating DAQ, take 30 Hz data at $50 \,\mu\text{A}$

-Relate integrated signal statistics with expectations based on scattering rates, quartz Čerenkov multiplicity, and PMT gain

PREx/HAPPEx Collaboration

PREx/HAPPEx Collaboration

Dustin McNulty, July 23, 2008, Hall A Parity Meeting

Run Summary Highlights

	Beam	rHRS		I _{beam}	Q3		Thin	ADC
Run	E (GeV)	angle	Targ	(µA)	Tweak	sO	Det	Change
3512	2.77	19 °	Pb	60	Before	IN	10mm	Before
3676	0.956	19 °	Ta	50	Before	IN	10mm	Before
3681	0.956	19 °	Та	50	After	IN	10mm	After
3686	0.956	19 °	Ta	50	After	IN	10mm	Before
3704	0.956	19 °	Ta	8	After	OUT	10mm	After
3705	0.956	19 °	Ta	8	After	OUT	5mm	After
3720	0.956	12.5 °	Та	5	After	OUT	5mm	After

Tantalum Spectrum in Spectrometer Coord System (SCS) x,y plane (at z=0): Run 3676 (before Q3+)

Dustin McNulty, July 23, 2008, Hall A Parity Meeting

7

Tantalum Spectrum in Spectrometer Coord System (SCS) x,y plane (at z=0): Run 3686 (after Q3+)

Dustin McNulty, July 23, 2008, Hall A Parity Meeting

Dustin McNulty, July 23, 2008, Hall A Parity Meeting

Dustin McNulty, July 23, 2008, Hall A Parity Meeting

Dustin McNulty, July 23, 2008, Hall A Parity Meeting

Pulse-height Analysis and Landau Tail Quantification

• To do this, fit ADC distributions with Landau function convoluted with a Gaussian

-parameters: Landau width, Landau MPV, width of Gaussian, and normalization

- Landau tail results from low-probability hard-scatters (usually in first few radiation lengths)
- These tails are exacerbated by too much upstream material (which acts as a preshower)
- For Quartz, $X_o \approx 27.05 \text{ g/cm}^2$, =>10mm thin det is ~ 0.1 X_o
- The S0 detector is $? X_o$

Pulse-height Anal: Sample from run 3676 (s0 in, 10mm)

Pulse-height Anal: Sample from run 3704 (s0 in, 5mm)

Pulse-height Anal: Sample from run 3705 (s0 out, 5mm)

Pulse-height Analysis Summary for Thin Dets								
		5mm Thin Det	_	10mm Thin Det				
Run	Lwidth	MPV±GSigma	Res	Lwidth	MPV±GSigma	Res		
3512	N/A	N/A	N/A	1.0	22.5 ± 5.5	24.4%		
3676	N/A	N/A	N/A	1.1	23.4 ± 5.9	25.3%		
3681	N/A	N/A	N/A	1.1	23.5 ± 6.0	25.5%		
3686	N/A	N/A	N/A	1.9	24.8 ± 5.9	24.0%		
3704	N/A	N/A	N/A	0.69*	25.5 ± 5.7	22.4%		
3705	0.30*	15.9 ± 4.6	28.9%	N/A	N/A	N/A		
3720	0.31*	16.1 ± 4.6	28.7%	N/A	N/A	N/A		
Avg			28.8%			24.3%		

* - s0 removed from detector acceptance.

- For 10mm, tail width reduced by factor ~ 2 when s0 removed
- Tail width reduced by additional factor of ~ 2 for 5mm thin det

Pulse-height Analysis Summary for Stack Det

Run	Lwidth	MPV±GSigma	Res
3512	3.5	396.8 ± 94.4	23.8%
3676	2.4	130.7 ± 46.2	35.3%
3681	2.3	136.1 ± 42.3	31.1%
3686	1.7	134.6 ± 43.7	32.4%
3704	2.7*	147.0 ± 49.9	34.0%
3705	2.5*	148.5 ± 49.8	33.5%
3720	1.9*	119.8 ± 56.0	46.7% [†]
Avg			33.3%

- *-s0 removed from detector acceptance.
- † Not included in average.
 - For stack, Landau tail dominated by shower development fluctuations and ~insensitive to whether s0 is in or out

Thin Detectors: Landau RMS factor = RMS/Gsigma

	Beam		I _{beam}	Q3		Thin	Landau
Run	E (GeV)	Targ	(µA)	Tweak	s0	Det	factor
3512	2.77	Pb	60	Before	IN	10mm	1.7
3676	0.956	Ta	50	Before	IN	10mm	1.9
3681	0.956	Ta	50	After	IN	10mm	1.9
3686	0.956	Ta	50	After	IN	10mm	2.7
3704	0.956	Ta	8	After	OUT	10m	1.5
3705	0.956	Ta	8	After	OUT	5mm	1.2
3720	0.956	Та	5	After	OUT	5mm	1.3

Thn and Stk x,y Efficiency profiles: run 3676 (before Q3+)

Thn and Stk x,y Efficiency profiles: run 3686 (after Q3+)

Dustin McNulty, July 23, 2008, Hall A Parity Meeting

22

PREx/HAPPEx Collaboration

Dustin McNulty, July 23, 2008, Hall A Parity Meeting

Summary and Outlook

- Goal of the Jan beamtest-shore-up final design for PREx dets
- Ta elastic peak had $\sigma \sim 1.5$ cm in the dispersive direction and extended ~ 6 cm in the transverse

-Above numbers are for 19 $^{\circ}$ and at z=0 in the SCS

-For Pb target at 5 $^{\circ}$ and z=det_z, peak size likely different–need robust simulation for finalizing optimal detector size

• Thin det resolutions (24% and 29%) agreed well with simulation and are deemed adequate for PREx

-Could improve res. by replacing alzak mirrors with anodized Al or Silver

-Increased resolution of 10mm det is offset by its larger Landau tail -s0 upstream of detector causes large and unnecessary Landau tails

• Usefulness of Stack detector in question

- As expected, it's resolution is worse but more importantly, it stops the electron thus not allowing s0 to be downstream of dets (where it should be)

Summary and Outlook continued

- Preliminary results show flat and near 100% detection efficiencies in both x and y for thin det
 - -Still need more work here to understand strangeness in spacial extent of the detection efficiency
- Need further investigation into stack and thin rates observed immediately following the integrating DAQ runs
- In order to finalize PREx detector design, need optics simulation which reproduces observed Ta spectra-both before and after Q3 change. After tuning simulation to match observed spectra, replace Ta target at 19 $^{\circ}$ with Pb target at 5 $^{\circ}$ and see what we see.
- Goal is to finalize design by end of this year

Lessons learned for future beamtest

- Need s0 (unbiased) triggers for all test configurations
- If plan to shift $\Delta P/P$, need appropriate central ray alignment of two dets
- 10% increase in Q3 was probably too much