Dustin McNulty UMass *mcnulty@jlab.org* February 20, 2010

• VDC Checkout (s0 triggers, low current/thin target)

→Use white spectrum and measure VDC wire hit occupancies: U,V planes in VDCs 1 & 2 (plots from standard analyzer)

→Measure VDC rate dependence for different currents (simple macro uses total triggers/clock for normalization)

- →Examine VDC efficiencies for above rate measurements (plots from standard analyzer)
- →Characterize collimator (A_T hole unblocked): Examine target positions and angles using LeRose reverse transport matrices ...see outline of collimator shape (some questions here)

VDC Efficiencies (2005 Lead Test, cold septum)

Dustin McNulty, Feb 20, 2010, PREx Collaboration Meeting, Jefferson Lab

- PREx Optics Tune Characterization (s0 trigs, low current/thin tgts)
 - →Examine VDC xy spectra at a few downstream z-transport locations – verify y-focusing effect and quantify xy size of elastic peak focus at primary quartz detector location (online macros in hand)

Jefferson Lab Hall A

Dustin McNulty, Feb 20, 2010, PREx Collaboration Meeting, Jefferson Lab

Jefferson Lab Hall A

Dustin McNulty, Feb 20, 2010, PREx Collaboration Meeting, Jefferson Lab

- Quartz Detector Checkout (s0 or s1m trigs, low current/thin tgts)
 - →Measure pulse height distributions, perhaps for both 6mm and 10mm thick detectors (online macros in hand): Use Gaussian-Landau convolution fit to quantify high-energy tail and error inflation due to RMS blowup
 - →Map shadows of quartz (both primarys and A_T detector) in VDCs (online macros in hand): Project VDC hit coords of full spectrum and quartz shadows (using ADC cuts obtained from PHDs) to detector locations – efficiency and alignment
 - →Calibrate detector x-y movers in VDC coordinates. Use above macro combined with short data runs interleaved with discrete detector moves in x and y separately. Maybe use white spectrum here?

Pulse Height Dists from Aug09 PREx Tests)

• A_T Hole Characterization (s0 or s1m triggers & quartz scalers)

→Determine optimal placement of A_T detectors:
Use low current/thin target; map out A_T hole peak using x-y movers and A_T det scaler rate readout (hole unblocked).
Repeat using thick Pb (very low current, no cooling yet!)

→Take 2 shift access to block A_T hole. Then: Map out thick Pb radiative tail in vacinity of A_T events using x-y movers and A_T det scaler rates – gives A_T det signal background needed for "sampling DAQ" FoM calculation (low currents, still no cooling)

 \rightarrow Decide if we will use A_T hole unblocked for the run. If so, use Monte Carlo to translate optimal A_T det position for thin target to that for thick Pb (they are slightly different)

Jefferson Lab Hall A

Dustin McNulty, Feb 20, 2010, PREx Collaboration Meeting, Jefferson Lab

Dustin McNulty, Feb 20, 2010, PREx Collaboration Meeting, Jefferson Lab

- Q² Measurements (Primary Quartz trigger, low current, prod tgt)
 - \rightarrow Establish Q² meas. procedure: (this is a major operation)
 - -Switch quartz detectors to HRS sampling DAQ (access)
 - -Set proper HVs in quartz dets, turn on HV in scints and VDCs
 - -Swing GEMs into place and set proper HV (LV, and gas?)
 - -Switch Cavities to low current operation
 - -Set trigger prescales, for example, set T2/PS2= 1.2 1.5 kHz -Take data
 - –With proper optics DB for GEM tracking to target coords recon, calibrated beam energy and HRS angles, and proper quartz ADC cuts, can use stadard analyzer plots for \sim online Q² determination