π^0 Analysis Update

Dustin McNulty MIT/UMass mcnulty@jlab.org March 06, 2009

π^0 Analysis Update

Outline

- Recap: DataSets, General Cuts, Yields
- Yield Fits and Cross Sections
- Cross Section Comparisons with Ilya
- Modified Yield Fits (learning tool only)
- Fitting Ilya's Data (very preliminary)
- My Combined Yield Fits (very preliminary)
- Summary and Future Work

DataSets Analyzed

Target	Total Runs	Run Number Ranges
¹² C	160	4740 - 4768, 4976 - 5059; 5159 - 5242
²⁰⁸ Pb	76	4882 - 4913, 5083 - 5114, 5266 - 5330

Table 1: Run number ranges used in this analysis for ¹²C and ²⁰⁸Pb targets. Both sets consist of only radiator B runs. Note that bad runs in these ranges are removed.

General Cuts and Event Selection

- Accepted PbWO₄ hits only (excluding inner and outer-most layer)
- Standard skim cuts, minimum cluster energy: 0.1GeV, no kinematic constraints for $m_{\gamma\gamma}$, elasticity, or θ_{π^0} .
- Best timing candidate selection with tdiff cut: $\pm 4ns$

PrimEx Collaboration

Jefferson Lab Hall B

Jefferson Lab Hall B

PrimEx Collaboration

Sample Yield Fits (using $\psi = 0.25$, and Rinc)

Cross Sections (Compared with Ilya)

Zoom in: Cross Sections (Compared with Ilya)

unModified Yield Fits (My Yields)

Summary

- Bkgd $\omega \to \pi^0 \gamma$ production in ^{12}C and ^{208}Pb subtracted from yields
- Fits done with the theoretical predicted phase angle + global phase
- Latest theoretical shapes employed in fits–G coulomb and strong FF(with shadowing) and both G and R incoherent calc.
- 1st Modified yield fits show that fit follows cross section differences in the Primakoff region
- 2nd Modified yield fits show that fit widths are sensitive to the cross sections at larger angles and non-trivial parameter correlations
- Fit widths to Ilya's data agree for ${}^{12}C$: 7.65 eV (7.62 eV) [-0.4%]
- Fit widths to Ilya's data disagree for ²⁰⁸Pb: 7.64 eV (7.96 eV) [4.2%]
 implying a significant analysis difference for ²⁰⁸Pb.
- My prel. combined fit gives result $\Gamma_{\gamma\gamma} = 8.01 \pm 0.12 \text{ eV}$

Future Work

- More combined fits (matching phase and/or incoherent parm)
- Fit and make comparisons to Ilya's new data
- Compare Ilya's and my component cross sections (with and without experimental resolutions)
- Detailed evaluation of the empty target background and Veto Efficiency
- Finish and write-up systematic error evaluations
- Include a discussion of the fitting error matrix and the correlations