π^0 Lifetime Extraction from ${}^{12}C$ and ${}^{208}Pb$

Dustin McNulty MIT/UMass mcnulty@jlab.org

June 2, 2009

1

π^0 Lifetime Extraction from ^{12}C and ^{208}Pb

- What's been done recently:
 - Evaluated possible background from non-target sources
 - Analyzed veto false signal occurance for both $^{12}\mathrm{C}$ and $^{208}\mathrm{Pb}$
 - Perf. simult. combined-parm fits for both targets in various ways
 - New systematic error table, near final
- Very recent Issues which need further considerstion:
 - Accidental contribution to veto false signal?

-What is the reason for shifted fit at large angles?

target	Γ _{γγ}	fit (stat) err	syst err	total err
¹² C:	7.979	0.149(1.87%)	0.174(2.18%)	0.229(2.87%)
²⁰⁸ Pb:	7.968	0.142(1.78%)	0.174(2.18%)	0.224(2.81%)
Average	7.97	0.146(1.83%)	0.174(2.18%)	0.227(2.84%)

Non-Target π^0 **Yield Bkgd** (Empty Target Data)

Veto Single γ **False Signal Rate**, ¹²**C and** ²⁰⁸**Pb**

Sample 6 parameter Combined Fits (Indep. $\Gamma_{\gamma\gamma}$)

Sample 5 parameter Combined Fits (Combined Width)

	$\Gamma_{\gamma\gamma} \pm \text{ fit err in eV (fit } \chi^2)$		
Target	4 Parm Fits	6 Parm Fits	5 ParmFits
¹² C	7.88±0.15 (1.27)	7.98±0.15 (1.26)	$7.93 \pm 0.11 \; (1.25)$
²⁰⁸ Pb	8.06±0.17 (0.96)	$7.97 \pm 0.14 \; (1.02)$	$7.93 \pm 0.11 \ (1.01)$
	$b_{NC} \pm fit err$		
¹² C	1.78 ± 0.037	1.82 ± 0.034	1.80 ± 0.034
²⁰⁸ Pb	1.20 ± 0.113	1.07 ± 0.063	1.07 ± 0.059
	$\phi \pm$ fit err in radians		
¹² C	0.99 ± 0.047	1.02 ± 0.041	1.02 ± 0.040
²⁰⁸ Pb	1.14 ± 0.080	1.02 ± 0.041	1.02 ± 0.040
	$b_{INC} \pm fit err$		
¹² C	0.47 ± 0.050	0.44 ± 0.046	0.44 ± 0.046
²⁰⁸ Pb	0.13 ± 0.122	0.44 ± 0.046	0.44 ± 0.046

Jefferson Lab Hall B

11

14

Systematic Error Table, part 1

Item	Error (%)
Photon Flux	±0.97
Target Thickness	±0.1
Branching Ratio ($\pi^0 \rightarrow \gamma \gamma$)	±0.03
γγ Inv. Mass Fits**	±1.39
Inelastic Bkgd Corr.	±1.10
Timing Accidental Bkgd Corr.	± 0.22
ω Bkgd Subtraction (±20%)	±0.26
Tagged Photon Energy	±0.1
Fiducial Acceptance	±0.30
Trigger Efficiency	± 0.1

Systematic Error Table, part 2

Item	Error (%)
Timing Cut	±0.30
Elasticity Cut	±0.25
Veto Cut	±0.17
Theory Parameters	±0.42
Incoherent Shape	± 0.28
Total Quadrature Sum (parts 1 & 2)	±2.18

Systematic Error: Inelastic Bkgd Correction $\pm 1.10\%$ – $7.79 eV < \Gamma_{\gamma\gamma} < 7.96 eV$

Summary and Future Work

- All past comments and requests have been addressed
- There is no quantifiable empty target π^0 yield for this analysis
- $\Gamma_{\gamma\gamma}$ fit results very stable under various yield Bkgd corrections and theoretical input shapes
- 4 parameter independent fits give ¹²C and ²⁰⁸Pb widths that differ by 2.25%
- However, 6 parameter fits give very consistent width results between two targets. Why? We think because φ is much better controlled for ²⁰⁸Pb fit here
- 5 parameter fits give Γ_{γγ}= 7.927±0.111eV. Howeve, it is not clear if we can simply combine the ¹²C and ²⁰⁸Pbstatistics to achieve this 1.4% statisticsl error

target	$\Gamma_{\gamma\gamma}$	fit (stat) err	syst err	total err
¹² C:	7.979	0.149(1.87%)	0.174(2.18%)	0.229(2.87%)
²⁰⁸ Pb:	7.968	0.142(1.78%)	0.174(2.18%)	0.224(2.81%)
Average	7.97	0.146(1.83%)	0.174(2.18%)	0.227(2.84%)

To make the final report we need to:

- Investigate issues—accidental contribution to veto false signal, and shifted fit ditributions
- Re-check our results and finish the write-up
- Address questions and issues brought up at this meeting as well as comments from analysis note reviewers

Extra Slides following this page...

DataSets Analyzed

Target	Total Runs	Run Number Ranges
¹² C	160	4740 - 4768, 4976 - 5059; 5159 - 5242
²⁰⁸ Pb	76	4882 - 4913, 5083 - 5114, 5266 - 5330

Table 1: Run number ranges used in this analysis for ¹²C and ²⁰⁸Pb targets. Both sets consist of only radiator B runs.

General Cuts and Event Selection

- Accepted PbWO₄ hits only (excluding inner and outer-most layer)
- Minimum cluster energy: 0.1GeV
- Best timing candidate selection with tdiff cut: $\pm 4ns$

Yields with Bkgds

Final Yields

The $\omega \to \pi^0 \gamma \, \text{Bkgd}$ Correction

- $d\sigma/d\theta_{\pi^0}$ for $\omega \to \pi^0 \gamma$ taken from T. Rodrigues and implemented in 2 ways
- 1st method: Add omega and incoherent cross sections and use this shape for fitting the data (instead of just incoherent term)
- 2nd method: Convert ω cross section into absolute yield and explicitly subtract it from experimental yield

Incoherent Cross Sections

Systematic Error: Timing Cut/Event Selection $\pm 0.30\%$

	BC Fit	NBC Fit	BC Selection	Corresponding
Target	Peak Cts:	Peak Cts:	Cut	Efficiency
Used	π^0 's	lost π^0 's	Efficiency	Losses (%)
¹² C	63924 ± 335	1574 ± 17	0.975 ± 0.0028	2.5 ± 0.3
²⁰⁸ Pb	9085 ± 107	105 ± 10	0.989 ± 0.0033	1.1 ± 0.3

Table 2: Summary of timing candidate selection efficiency for ${}^{12}C$ and ${}^{208}Pb$

Systematic Error: Elasticity Cut $\pm 0.25\%$

Elasticity	Events
Cut Range	Lost (%)
[0.876, 1.116]	1.07 ± 0.16
[0.886, 1.106]	1.22 ± 0.17
[0.896, 1.096]	1.42 ± 0.18
[0.906, 1.086]	1.69 ± 0.20
[0.916, 1.076]	2.07 ± 0.22
[0.926, 1.066]	2.63 ± 0.25
[0.936, 1.056]	3.52 ± 0.28
[0.946, 1.046]	5.07 ± 0.34

Table 3: Table of elasticity cut ranges and corresponding efficiency losses