π^0 Lifetime Analysis for ${}^{12}C$ and ${}^{208}Pb$

Dustin McNulty MIT/UMass mcnulty@jlab.org

March 21, 2008

π^0 Lifetime Analysis for ${}^{12}C$ and ${}^{208}Pb$

Outline

- DataSets and General Cuts
- Yield Extraction
- Cross Section Experimental Efficiencies Luminosity
- Yield Fit, $\Gamma_{\gamma\gamma}$ Extraction Procedures
 - Theory Input Shapes
 - MC Input Shape Generation
 - Sample Preliminary Results
- Preliminary Error Evaluation and Results Summary Systematic Errors
 - Model Errors
- Summary and Future Work

DataSets Analyzed

Target	Total Runs	Run Number Ranges	
¹² C	160	4740 - 4768, 4976 - 5059; 5159 - 5242	
²⁰⁸ Pb	76	4882 - 4913, 5083 - 5114, 5266 - 5330	

Table 1: Run number ranges used in this analysis for ¹²C and ²⁰⁸Pb targets. Both sets consist of only radiator B runs.

General Cuts and Event Selection

- Accepted PbWO₄ hits only (excluding inner and outer-most layer)
- Minimum cluster energy: 0.1GeV
- Best timing candidate selection with tdiff cut: $\pm 4ns$

PrimEx Collaboration

Analysis Details: π^0 Yield Extraction

• For each θ_{π^0} bin, apply elastic cut and form $m_{\gamma\gamma}$ distributions; perform fit and extract peak counts = uncorrected yield.

• Correct for inelastic bkgd by evaluating π^0 elasticity distribution explicitly for each θ_{π^0} ; evaluate inelastic bkgd under the elastic peak using fit and subtract from yield.

PrimEx Collaboration Jefferson Lab Hall B 208 Pb Yield

Experimental Efficiencies: ¹²C

	Losses (%)
Description	¹² C
Photon Absorption in Target	5.41 ± 0.02
Best (tdiff) Candidate selection	2.5 ± 0.3
Elasticity Cut: [0.906, 1.086]	1.7 ± 0.3
Veto Cut: all flags $(0, 1, 2, 3)$	1.97 ± 0.12
Branching Ratio $\pi^0 \not\rightarrow \gamma \gamma$	1.2 ± 0.03
Total	12.8 ± 0.5

Table 2: Summary of non-geometric losses.

7

PrimEx Collaboration

Experimental Efficiencies: ²⁰⁸**Pb**

	Losses (%)
Description	²⁰⁸ Pb
Photon Absorption in Target	5.92 ± 0.01
Best (tdiff) Candidate selection	1.1 ± 0.3
Elasticity Cut: [0.906, 1.086]	1.7 ± 0.3
Veto Cut: all flags $(0, 1, 2, 3)$	1.97 ± 0.12
Branching Ratio $\pi^0 \not\rightarrow \gamma \gamma$	1.2 ± 0.03
Total	11.9 ± 0.4

Table 3: Summary of non-geometric losses.

PrimEx Collaboration

PrimEx Collaboration

Yield Fit, $\Gamma_{\gamma\gamma}$ **Extraction: Procedure**

• Parameterize yield using sum of 4 theoretical shapes–smeared according to experimental resolutions.

 \rightarrow Calculate theory input shapes (cross sections) energy-weighted according to experimental flux.

 \rightarrow Create π^0 event generator based on above cross sections and run through Primsim Monte Carlo.

 \rightarrow Digitize simulated data and reconstruct events using same algorithms as for real data. Produce simulated yield distributions with built-in experimental resolutions.

• Freely vary amplitudes of 4 shapes and minimize χ^2 .

Yield Fit, $\Gamma_{\gamma\gamma}$ **Extraction: Theory Input Shapes**

- Primakoff shape variations: None. All calculations use Sergey's Coulomb form factor.
- Nuclear Coherent shape variations: Use Sergey's strong form factor calculation with and without 2-step contribution (F_I), and vary energy dependence k^{α} , where $\alpha = 1.0$, 2.0, and 2.9.
- Interference shape variations: Use standard fitting approach parameterize phase angle and apply value (φ) from fit to scale interference shape. Alternate "predicted phase" approach calculate φ(θ_{π⁰}) = |φ_c(θ_{π⁰}) φ_s(θ_{π⁰})| based on Sergey's form factors and apply to interference calculation → no free parameter (not ready yet).
- Nuclear Incoherent shape variations: Tulio's Cascade MC and Sergey's Glauber calculation (both from Fall 2007).

PrimEx Collaboration Jefferson Lab Hall B MC Shape Generation: Exmpl. Thrown & Det. Spectra $\times 10^3$ Simulated θ_{π^0} Distribution (²⁰⁸Pb, Wonly) Simulated θ_{π^0} Distribution (¹²C, Wonly) <u>×10</u>³ Events (per 0.02[°]) 8 01 71 Events (per 0.02[°]) 05 09 02 mc_theta mc_theta Entries 2000000 Entries 1303717 2.662 Mean Mean 1.386 RMS 1.335 RMS 1.602 40 6 30 Δ 20 10 $\begin{array}{c|c} \mathbf{4} & \mathbf{5} & \mathbf{6} \\ \theta_{\pi^0}^{\text{thrown}} \text{ (degrees)} \end{array}$ 1 2 3 2 $\begin{array}{c} \mathbf{4} \quad \mathbf{5} \\ \theta_{\pi^0}^{\text{thrown}} \text{ (degrees)} \end{array}$ 'n 3

PrimEx Collaboration

MC Shape Generation: Reconstructed x and $m_{\gamma\gamma}$

Sample Yield Fit for ¹²C: SI (left) and TI (right)

Sample Yield Fit for ²⁰⁸Pb: SI (left) and TI (right)

Preliminary Systematic Error Table

Description	$\Gamma_{\gamma\gamma} \text{ dev } (\%)$
m _{γγ} fits + inelast bkgd corr.	±1.0
Inelastic bkgd shape uncert.	±0.75
Photon flux	±1.1
Experimental efficiencies	± 0.5
Fiducial Acceptance	±0.3
Event Selection	± 1.0
π^0 bkgd from ω and ρ decay	± 1.0
Target thickness	± 0.1
branch ratio	±0.03
Tagged Photon Energy	± 0.1
Total Systematic Error	±2.3%

Preliminary Theoretical Input (Model) Error Table

	$\Gamma_{\gamma\gamma} \text{ dev } (\%)$	
Description	¹² C	²⁰⁸ Pb
Incoherent XS shape uncert.	±1.35	±0.11
Nuclear coh. XS energy dep.	±0.16	± 0.06
F_{NC} intermediate state	± 0.02	±0.73
π -N cross section uncertainty		
Total Model Error	±1.38	±0.74

Preliminary Result Summary

target	$\Gamma_{\gamma\gamma}$	fi tting error	model error	total error
C-av	7.95	0.15(1.9%)	0.11(1.4%)	0.24(3.0%)
Pb-av	8.13	0.18(2.2%)	0.055(0.7%)	0.26(3.2%)
Pb+C av	8.06	0.14(1.8%)	0.12(1.6%)	0.22(2.7%)

Table 4: Values of the extracted value of $\Gamma(\pi^0 \to \gamma \gamma)$ and the errors in eV(%). The averages were taken over all of the fits including the variations in α . The total error adds in quadrature the fitting, model, and the systematic error assumed to be 2.3%.

Future Work

To finish the analysis and make a final report we need:

- Theoretical fit with the predicted phase angle
- Include the effect of the $\omega \to \pi^0 \gamma \, \text{production}$ in ^{12}C and ^{208}Pb
- Evaluate effect of varying the π N cross sections in F_{NC} (we anticipate that this should be a small effect)
- Finish and write-up systematic error evaluations
- Include a discussion of the fitting error matrix and the correlations

(Extra Slide) Target Thickness

Target	Density, p	Thickness, t	actual $N_t = \rho \times t$	"effective" N _t
	$(g/cm^3 \pm \% err)$	(mil±%err)	10^{23} atoms/cm ²	10^{23} atoms/cm ²
¹² C	2.1983 ± 0.009	380.31 ± 0.04	1.0648 ± 0.05	1.0655 ± 0.1
²⁰⁸ Pb	$\sim 11.39 \pm$	$\sim 12\pm 0.3$	$\sim 0.010079 \pm$	$\sim 0.010079 \pm$

Table 5: Summary of target density and thickness analyses. The "effective" value quoted in the last column factors in the effect of trace impurities in the target (0.19% Oxygen) which act to increase the number of ¹²C atoms/cm² due to their larger Z. There is assumed to be no impurities in the ²⁰⁸Pb target. Note that the overall precision of the measurement is roughly 10× better than was proposed.

(Extra Slide) Theory Input Shape: ¹²C Example

(Extra Slide) Theory Input Shape: ²⁰⁸Pb Example

PrimEx Collaboration

(Extra Slide) Yield Ratio ¹²C, ²⁰⁸Pb Comparison

