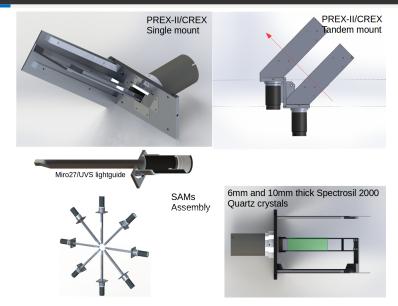
PREX-II/CREX DETECTORS & SAMS

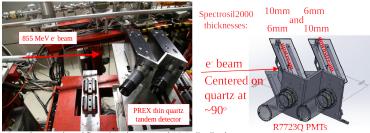
TEST BEAM AND SIMULATION BENCHMARKING

by Carlos Bula


Updated: 2017/09/30 presentationOct2017

- 1. PREX-II/CREX prototypes and Hall A's SAMs
- 2. 2015 and 2016 Mainz beam tests
- 3. Geant4 and QSIM
- 4. Benchmarked Parameters and Procedure
- 5. Comparison of Data and Simulation
- 6. Conclusions
- 7. Future Work Slide 1

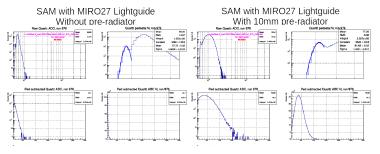
PREX-II/CREX prototypes and Hall A's SAMs


2015 and 2016 Mainz beam tests

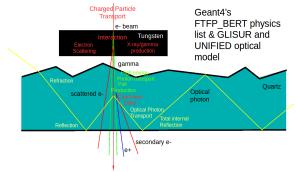
- 855MeV MAMI electron testbeam (pinpoint).
- 2015 testbeam: PREX-II/CREX single thin quartz mount without wrapping, angle scan.
- 2016 testbeam: PREX-II/CREX tandem mount with Al. mylar wrapped quartz, 16cm separation between quartz pieces. SAM with wrapping, UVS and MIRO 27 lightguides, and with and without 10mm tungsten pre-radiator.

PREX-II/CREX Tandem Mount Test

Raw data, pedestal fit and ped-corrected ADC distributions.


SAM Test with MIRO27 Lightguide

- Final SAM detector PE yield studies:
 - MiroSilver27 and UVS lightguides
 - With and without 1cm tungsten pre-radiator


Raw data, pedestal fit, and ped-corrected ADC distributions.

Geant4 and QSIM

GLISUR (quartz polish and reflectance) and **UNIFIED** (lightguide, dielectric-metal interface) optical models.

- QSIM uses the GLISUR model for the quartz pieces. A single *ground polish parameter* models the surface roughness.
- QSIM uses UNIFIED model for the SAM light-guide materials. The lightguides and the wrapping have a metal-dielectric interface with a given *reflectivity*.

Apart of the geometry, the PE yield depends on certain parameters that need to be benchmarked with real data.

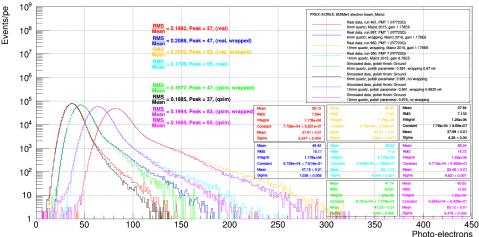
QSIM'S PARAMETERS TO BE BENCHMARKED IN THIS STUDY

- Quartz polish.
- Aluminized mylar reflectivity.
- SAM lightguide reflectivity as a function of photon wavelength.

Photocathode reflectivity and attenuation is not yet considered in the study.

- PREX-II/CREX data without wrapping is used to benchmark the quartz polish.
- With the benchmarked polish value, PREX-II/CREX data with wrapping is used to benchmark reflectivity.
- With benchmarked polish, and wrapping reflectivity, SAM lightguide reflectivity is bechmarked. There is a complication: lightguide reflectivity is not only function of photon wavelengths but function of incident angle.

QSIM Visualization



$$\label{eq:2.1} \begin{split} \#PEs \times (1.602 \times 10^{-4} fC) \times Gain &= \#ADC \times 200 fC/Ch \\ Gain(PMT1) &= 1.24 \times 10^6 \pm 5\% \\ Gain(PMT2) &= 1.10 \times 10^6 \pm 5\% \end{split}$$

 $#PEs = 1.068 \times #ADC(PMT1)$

 $\#PEs = 1.134 \times \#ADC(PMT2)$

2015 & 2016 (upstream) PREX-II/CREX's PE distributions

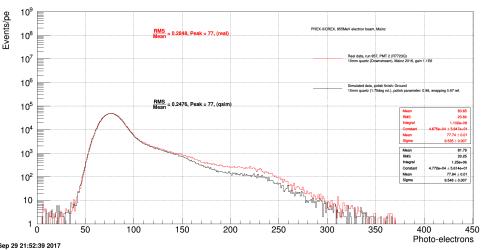


Photo-Electron Distribution - simulated vs real data

Sep 19 17:18:33 2017

2016 (downstream) PREX-II/CREX's PE distributions

Photo-Electron Distribution - simulated vs real data

2016 SAMs' PE distributions, UVS lightguide

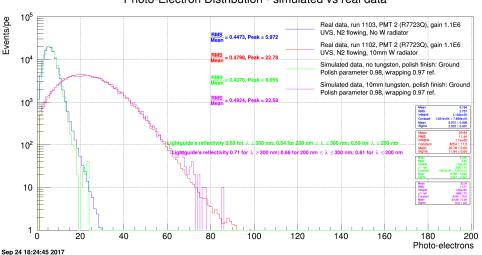
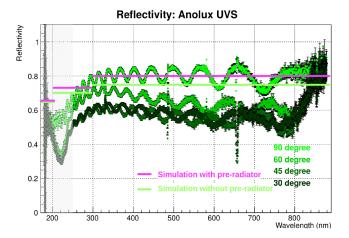



Photo-Electron Distribution - simulated vs real data

UVS reflectivity

2016 SAMs' PE distributions, MIRO27 lightguide

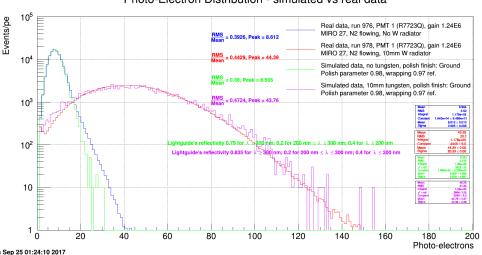
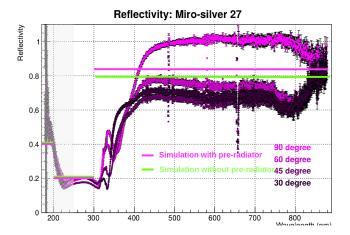



Photo-Electron Distribution - simulated vs real data

Slide 15

511de 15

MIRO27 reflectivity

Thickness [mm]	Polish Parameter	wrapping ref.	PEs (peak)	RMS/Mean
6	0.981	n/a (2015)	37	0.1885
6	0.981	0.97 (2016)	47	0.1977
10	0.978	n/a (2015)	65	0.1665
10	0.981	0.97 (2016)	83	0.1944

PREX-II/CREX Prototype Benchmarked Parameters

SAMs' Benchmarked Parameters, UVS Lightguide

Thickness [mm] Quartz/Tungsten	Polish Parameter	wrapping ref.	$\lambda > 300 nm$	Mirror's ref. $200nm \le \lambda \le 300nm$	$\lambda < 200 nm$	PEs (peak)	RMS/Mean
13/-	0.98	0.97	0.69	0.59	0.49	6	0.4076
13/10	0.98	0.97	0.71	0.66	0.61	22	0.4924

SAMs' Benchmarked Parameters, MIRO27 Lightguide

Thickness [mm]	Polish	wrapping	Mirror's ref.			PEs	RMS/Mean
Quartz/Tungsten	Parameter	ref.	$\lambda > 300 nm$	$200nm \leq \lambda \leq 300nm$	$\lambda < 200 nm$	(peak)	
13/-	0.98	0.97	0.79	0.2	0.4	9	0.36
13/10	0.98	0.97	0.835	0.2	0.4	44	0.4724

- $\odot\,$ Successful testing of PREX-II/CREX during 2015 & 2016.
- The simulation benchmarking is a difficult puzzle in which many pieces have to fit together consistently. We are making steady progress.
- QSIM works fine for thin quartz detectors like PREX-II/CREX in the PE peak region.
- QSIM simulation benchmarked parameters: 0.98 for GLISUR polish parameter and 0.97 for wrapping reflectivity.
- The lightguide reflectivity has yet to be understood.

- Add MAMI beam exit window to simulation to help improve agreement in the tail region.
- Investigate the specular and diffuse reflectivity parameters in the UNIFIED optical model.
- Redo reflectivity measurements (include more angles and improve calibration).