High Flux Parity Experiments at JLab: PREX, CREX and MOLLER

Dustin E. McNulty Idaho State University *mcnulty@jlab.org*

(for the PREX/CREX and MOLLER Collaborations) August 1, 2016

PREX, CREX and MOLLER

Outline

- Introduction to Parity-Violating Electron Scattering
	- **–** Why PVES?
	- **–** Experiment blueprint, "how-to", and technical progress
- PREX-II/CREX at Jefferson Laboratory
	- **–** Experimental Concept and techniques
	- **–** PREX-I result
- MOLLER at Jefferson Laboratory
	- **–** Møller *AP V* measurement
	- **–** MOLLER motivation and "reach"
	- **–** Apparatus overview
- Summary and Future Plans

Why Parity-Violating Electron Scattering?

Provides model-independent determinations of nuclear and fundamental-particle weak-charge form factors and couplings with widespread implications for:

- Understanding nuclear and nucleon structure
	- **–** Strange quark content of nucleon
	- **–** Neutron radii of heavy nuclei −→ density dependence of Symmetry Energy and EOS of nuclear matter; neutron stars; calibrate hadronic probe reactions on radioactive beams
- Search for physics Beyond the Standard Model (BSM)
	- $-$ Indirect searches using low energy $(Q^2 \ll M_Z^2)$ precision electroweak tests at high intensity or precision frontier
	- **–** complements direct searches at high energy frontier

JLab PVES Programs: HAPPEX, G0, PVDIS, PREX, Qweak, CREX MOLLER, SoLID

Parity-Violating Electron Scattering

.

Blueprint of a PVES Experiment (E122 at SLAC)

Anatomy of a PVES Experiment (E122 at SLAC) .

.

How to do a Parity Experiment

3 Decades of Technical Progress

photocathodes, polarimetry, high power cryotargets, nanometer beam stability, precision beam diagnostics, low noise electronics, rad-hard dets **PVeS Experiment Summary**

1st generation 2nd generation 3rd generation 4th generation

 $E122 - 1$ st PVES Expt (late 70's at SLAC) Mainz & MIT-Bates in mid 80's JLab program launched in mid 90's E158 at SLAC meas PV Møller scattering

• Parity-violating electron scattering has become a precision tool

PREX/CREX Concept

(Probing the Weak Charge Distribution of N-rich Nuclei) .

- Neutron distribution not accessible to \bullet the charge-sensitive photon
- Z⁰ couples primarily to neutron \bullet

Present knowledge of neutron distributions comes primarily from hadron scattering \rightarrow model-dependent interpretation, large and uncontrolled uncertainties

❖ Parity violation can measure neutron and weak-charge form factors model-independently with statistics-dominated uncertainty

 $M_{EM} = \frac{4\pi\alpha}{\sigma^2} F_p(Q^2)$ (EM amplitude accesses charge)
or proton form factor $M_{Weak}^{NC} = \frac{G_F}{\sqrt{2}} [(1 - 4\sin^2{\theta_W}) F_p(Q^2) - F_n(Q^2)]$ $Q^n_{W} \simeq -1$ $Q^p{}_{W} \sim 0$

$$
A_{PV} \approx \frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \frac{F_n(Q^2)}{F_p(Q^2)}
$$

 $F_{n,p}(Q^2) = \frac{1}{4\pi} \int d^3r \ j_0(qr) \ \rho_{n,p}(r)$

$$
r
$$
 clean neutron
$$
r
$$

$$
T^0
$$
 208pb

. **PREX/CREX Concept**

. **PREX/CREX Overview**

PREX/PREX-II:

1 GeV electron beam, 50-70 µA

0.5 mm thick ²⁰⁸Pb target

5° scattered electrons

 Q^2 =0.0088 GeV²/c², A_{pv}~0.5ppm 680 hours, ~35M pairs δA_{PV} ~ 15 ppb (3%)

high polarization, ~89% new thin quartz detectors

CREX:

2.2 GeV electron beam, 150 µA

5 mm thick ⁴⁸Ca target

4° scattered electrons

 Q^2 =0.022 GeV²/c², A_{py}~2ppm 840 hours, ~43M pairs

 $\delta A_{\rm PV} \sim 48 \text{ ppb}$ (2.4%)

• helicity reversal at 120 Hz

Jefferson Lab, Newport News, Virginia

D

Source

"Parity Quality" Beam Moniroring

(normalization and false-asymmetry systematics control) .

Precision source-laser alignment \bullet

PREX-I Systematic Errors .

PREX goal for \sim 2% total systematic error achieved!

Crucial normalizations:

PREX-I Final Result .

First electroweak indication of a neutron skin of a heavy nucleus (CL \sim 90–95%)

Møller Scattering A_{PV} **Measurement**

- MOLLER aimed at precision measurement of parity-violating asymmetry A_{PV} in polarized electron-electron scattering.
- Standard Model gives precise prediction for Møller A_{PV} –which can be measured as a test.

 γ - Z mixing diagrams and W loops. "Hard" radiative corrections involving the massive vector bosons—modify the tree level prediction significantly.

The MOLLER A_{PV} Measurement

- At proposed kinematics: 11GeV $e_{\text{beam}}^ (75 \mu \text{A}, 80\% \ P_e)$, and $5mrad < \theta_{lab} < 20mrad$: \rightarrow Predicted $\langle A_{PV} \rangle$ =36ppb at $\langle Q^2 \rangle$ =0.0056 (GeV/c)² • For 49 (PAC) week run: $\delta A_{PV} = 0.74$ ppb:
	- $\rightarrow \delta Q_W^e/Q_W^e = \pm 2.1\% (\rm stat) \pm 1.0\% (\rm syst)$
	- $\rightarrow \delta\theta_W = \pm 0.00026(\text{stat}) \pm 0.00012(\text{syst}) \sim 0.1\%$ precision!

Challenging 4th generation measurement requiring:

- Unprecedented precision matching of electron beam characteristics for Left versus Right helicity states
- Precision non-invasive, redundant continuous beam polarimetry
- Precision knowledge of luminosity, spectrometer acceptance $(Q²)$ and backgrounds

. **MOLLER Reach**

Weak charge measurement from purely-leptonic neutral current amplitudes

$$
|A_{\gamma} + A_{Z} + A_{new}|^{2} \longrightarrow A_{\gamma} \left[1 + 2 \left(\frac{A_{Z}}{A_{\gamma}} \right) + 2 \left(\frac{A_{new}}{A_{\gamma}} \right) \right]
$$

Other complementary semi-leptonic measurements:

- $\delta [Q_W({}^{133}Cs)/A] \sim 0.6\% \implies A_{new} \sim 0.0033 \cdot G_F$
- Jlab Qweak: $\delta [Q_W^{\rm p}] \sim 4 \% \implies A_{new} \sim 0.003 G_F$ \bullet

•
$$
\delta[2C_{2u} - C_{2d}] \sim 5\% \implies A_{new} \sim 0.004 \cdot G_F
$$

 $A_{new} \sim 10^{-3}$ $\cdot G_{E}$ **Unprecedented sensitivity!**

APV Future Cs meas. *See Victor Flambaum's talk Tuesday at 4:00 PM

Future Mainz P2: Improve by 2x

SOLID: unique sensitivity To axial quark couplings

*See Seamus Riordan's talk today after lunch

. **MOLLER Reach**

Search for Flavor-conserving BSM Neutral Currents

❖ Many new physics models require new neutral current interactions

MOLLER searches for possible new interactions using purely leptonic PVES with \sim no theoretical uncertainties

Constraints on new 4-fermion contact interactions obtained using effective field theory dimension-6 operators arXiv:1511.07434 (2015) MOLLER sensitive to 4-fermion operators: $[O_{ee}]_{1111}$ and $[O_{ee}]_{1111}$

In this way, new physics can reveal itself through interference with SM physics (as long as $Q^2 \ll M_Z^2$ so that A_z not imaginary)

$$
|A_Z + A_{new}|^2 \longrightarrow A_z \left[1 + 2 \left(\frac{A_{new}}{A_z} \right) \right]
$$

Where the new 4-fermion vector bosons incorporated into vertex corrections of SM interactions

For Example:
\n
$$
\mathcal{L}_{e_1 e_2}^{PV} = \mathcal{L}_{SM}^{PV} + \mathcal{L}_{new}^{PV}
$$
\n
$$
\mathcal{L}_{new}^{PV} = \sum_{i,j=L,R} \frac{g_{ij}^2}{2\Lambda_{ij}^2} \overline{e_i} \gamma_i e_i \overline{e_j} \gamma^j e_j
$$
\nEichten, Lane and Peskin, PRL50 (1983)
\nCouplings: $g_{ij} = e_{L,R} = \frac{1}{2} (1 \mp \gamma_5) \psi_e$

$$
\frac{A}{\sqrt{|g^2_{RR} - g^2_{LL}|}} \sim 7.5 \text{ TeV}
$$

 Λ is the scale for new physics that sets the EFT expansion

MOLLER gives best contact interaction reach for leptons at low OR high energy! (Need new lepton collider to do better!)

MOLLER Motivations .

Dustin E. McNulty **PREX/CREX** and MOLLER Trento, Italy 19

MOLLER Apparatus

(major new installation experiment for Hall A) .

Optimized Spectrometer (∼ **100% Acceptance)**

• The combination of a toroidal magnetic system with an odd number of coils together with the symmetric, identical particle scattering nature of the Møller process allows for $\sim 100\%$ azimuthal acceptance

Toroid Design Concept

clar (ausuit, with blacky)

Projected radial coordinate of scattered Møller electron trajectories. Colors represent θ_{lab} (rad). Magnet coils (grey) and collimators (black) are overlaid.

Single Hybrid coil shown with 1/10 scale in z direction. Note the 4 current returns give successively higher downstream fields.

*See Juliette Mammei's

- Spectrometer employs two back-to-back toroid magnets and precision collimation:
	- **–** Upstream toroid has conventional geometry
	- **–** Downstream "hybrid" toroid novel design inspired by the need to focus Møller electrons with a wide momentum range while separating them from e-p (Mott) scattering background

R₆

▒ Moller

Elasticep Inelastic ep

Detector Plane Radial Distributions

R₅

1

 1.1

 1.2

1.3
r (m)

 $R4$

 0.9

R1 R2

 0.7

 0.8

 $R₃$

MOLLER Integrating Detector Layout and Rates

- Spectrometer separates signal from bkgd and radially focuses at detector plane
- Rates for 11 GeV/75 μ A (80% pol.) beam, $\frac{5}{8}$ ⁸ 1.5m liquid hydrogen target. See fig. \longrightarrow
- Six radial rings, 28 phi segments per ring[∗]
- Ring 5 intercepts Moller peak (∼150 GHz), Ring 2 intercepts bkgd "ep" peaks
- 250 quartz tiles: allow full characterization $\frac{1}{26}$ and deconvolution of bkgd and signal processes

New Challenges

- 150GHz total detected Moller event rate
	- → Must flip pockels cell at ∼2kHz
	- \rightarrow 80ppm pulse-to-pulse statistical fluctuations
		- Electronic noise and density fluctuations *<* 10−⁵
		- Pulse-to-pulse beam monitoring res. a few microns at 1kHz
- 0.5nm/0.05nrad control of beam on target \rightarrow Requires improvement on control of pol. src. laser transport \rightarrow Improved methods of "slow helicity reversal" (double wien)
- Target requires ∼5kW of cooling power at 85µA I_{beam}
- Full azimuthal acceptance with θ_{lab} between 5 and 20mrad \rightarrow Aggressive spectrometer design
	- \rightarrow Complex collimation and shielding issues
- Robust and redundant 0.4% beam polarimetry \rightarrow Plan to pursue both Compton and atomic Hydrogen techniques

Summary and Future Plans

• PVES is a precision tool for measuring weak-charge distributions with implications for nuclear structure and BSM discovery

PREX/CREX:

- PREX achieved systematic error goal and PREX-II poised to reach full precision
- Latest Schedule: PREX-II and CREX to run concurrently in 2018 (at the earliest)

MOLLER

- JLab director's review at the end of the year
- Project cost estimated at ∼\$25M
- We are assuming to enter the CD process in FY 2017
- Construct experiment in 2018 2020