ShowerMax Plans

Dustin E. McNulty Idaho State University mcnulty@jlab.org

(with help from Carlos Bula and Daniel Sluder) September 22, 2016

ShowerMax Plans

Outline

- What's been done
 - "Baseline" 4-layer sandwich stack G4 qsim
 - Engineered shop drawings: stack support frame and LG
- What's going on now
 - Yield optimization study of stack configuration qsim
 - Uniformity studies: PE yield vs. electron hit position qsim
 - Light Guide prototyping
- Plans for prototyping and SLAC testbeam
- Summary and Future Plans
- Workload distribution with SBU

Baseline Des: 4-layer Stack w/ uniform thicknesses; moderate \$

MOLLER Collaboration

Optimal Funnel angle and length study

Which layers give the most light?

Light exit study for optimizing No. of layers

12.5mm quartz, 6mm tungsten, n = 4 layers

Conclusion:

Most of light yield comes from middle pieces and less from outer pieces – make middle quartz thicker if want more light. (maybe could remove last layer (n=3))

Prototype stack support structure and LG

(CAD and renders by Daniel)

Engineered machine shop drawings in hand

(Drawings by Daniel)

• These are ready to go to the shop or can be modified if needed

What's going on now

- New grad student Daniel Sluder doing Master's Thesis on Showermax development
 - He's now running G4-qsim on local farm cluster
 - Automated LG code in qsim for variable stack configurations – allowing for optimization studies
- We are now studying effect of quartz thickness on yield. Specifically:
 - we use a 4-layer stack (n = 4) with 6mm thick tungsten and variable quartz thickness from 6mm to 15mm
 - Note that all 4 quartz pieces are identical for a given config
- Next we plan to fix the quartz thickness to 6mm and vary the tungsten thickness the goal here is to explore the cheapest and lowest acceptable PE yield options

MOLLER Collaboration

Optimization study1 (2 GeV):

6mm fixed tungsten, variable quartz

MOLLER Collaboration Optimization study1 (5 GeV):

6mm fixed tungsten, variable quartz

Photo-electron Mean vs. Quartz Thickness - 5 GeV

Mean 붭┉╞ 5 GeV electrons 900 800 700F 600 500 n = 4, $W_{thick} = 6mm$ 400 10 14 Quartz Thickness[mm] RMS/mean vs. guartz thickness 8.205 n = 4, $W_{thick} = 6mm$ S - 0.2 MS/mean 195 5 GeV electrons 0.19 0.185 0.18 0.175 0.17 10 12 14 Quartz Thickness[mm]

15mm quartz

JLab Hall A

Comments and plans for Simulation Studies

- 8GeV data is running now and will finish in a couple days
- Farming data is slow: 30 s/event for 2GeV; 120 s/event for 8GeV
 - 25k events take from 8 hrs (2GeV) to 32 hrs (8GeV) using twenty-five 1k-event jobs
 - At the moment we can only run 30 50 jobs at a time
- We have started preparing for the next study: variable tungsten and fixed quartz (6mm) thickness (still going with n = 4 layers for now). This is the *minimum* cost & PE yield design study
- Beyond this our plans are to explore the *maximum* PE yield (and cost) design which will potentially use different tungsten and quartz thicknesses for each of the different layers

Maximum PE yield proposed stack configuration

Plans for prototyping and SLAC testbeam

- Finalize prototype stack configuration by end of year and order quartz and tungsten typically 6 8 week lead-time
- Modify machine drawings for new stack and LG and send to shop typically 2 4 weeks
- Assemble prototype by mid March 2017
- SLAC testbeam: Many questions:
 - When?
 - DAQ/trigger and HV? Mounting? Need 3" PMT.
- Would like to build 2 prototypes? for cross-talk studies. I can try to scrounge up some funds to make this happen

Summary and Future Plans

- Need to decide which direction to pursue for stack configuration: Minimum, moderate, or max PE yield design?
 - Connected to this question is issue of unity gain operation during integration mode? This seems feasible – still looking into it
 - Do we want to consider having different stack designs for the three types of detectors: Open, closed, transition?
- Need to study PE yield uniformity across face of detector
- Need to incorporate LG reflectivity lookup tables (using 60%)
- Would like to sample realistic electron energy distributions for each region: Open, closed, and transition (instead of just 2, 5 and 8GeV) see next slide
- Incident angle dependence? Probably not much, but check.

Energy Dists for Open, Closed, and Transition

• Could be possible to use conventional 3" pmts with electronic switching between unity gain base (integrating mode) and high gain base (counting mode)

Workload distribution with SBU

- Showermax optical simulations are very time consuming
 - As simulation becomes more realistic (with proper energy and position sampling along with reflectivity lookup), it will take even longer to generate events
 - Need more powerful cluster and could use more manpower to farm and analyze the jobs SBU student
- Need to incorporate realistic energy, position, and reflectivity sampling into "qsim-stack" SBU student
- *SBU student* could also do optimal funnel angle and uniformity studies for chosen stack configurations
- In general, would be nice to have outside group look over and use our qsim stack code double check for bugs/problems and improve the code

Ring of staggered Open prototypes

