Shower-max Requirements and Status

Dustin McNulty Idaho State University
 December 12 - 13, 2019

Jefferson Lab MOLLER Design Review

Outline

- System motivation and requirements
- Design Concept and Status
- Acceptances and resolutions
- Prototyping and initial testbeam
- Summary

Shower-max: Motivation and Requirements

- Provides additional measurement of e-e ring integrated flux
- Weights flux by energy \Rightarrow less sensitive to low energy and hadronic backgrounds
- Will also operate in tracking mode to give additional handle on background pion identification – gives MIP-like signal
- Will have good resolution over full energy range ($\frac{\sigma}{\langle n \rangle} \lesssim 30\%$), radiation hard with long term stability and good linearity

Shower-max: Design Status and ring geometry

Shower-max: Detector Concept and Materials

- Tungsten is high purity (99.95%) and quartz is optically polished Spectrosil 2000
- Light guides are aluminum specular reflectors (Miro-silver 27, Anolux, or aluminized mylar, …)
- Total radiation length: 9.1 X_0 tungsten + 0.4 X_0 quartz = 9.5 X_0

Shower-max: Energy and rate acceptances

Shower-max: Resolutions

MOLLER Design Review, December 2019 7

Shower-max: Prototyping and testbeam

- First prototypes constructed: two different "stack" configs: 8 mm thick tungsten and 10 mm thick or 6 mm thick quartz
	- 1st-pass engineered design concept vetted
	- Light guide construction techniques developed
- SLAC testbeam T-577 run: Dec 6 12, 2018
	- Exposed prototype to 3, 5.5, and 8 GeV electrons
	- Validated our optical Monte Carlo quartz and cathode properties and G4's EM showering processes (but not the light guide yet)
	- Stack design validated--number of layers/thicknesses; yields and resolutions match G4 predictions
	- Prototype beam performance sufficient for MOLLER and 2nd-pass mechanical design improvements underway

Summary

- Baseline design concept meets requirements:
	- Proportional energy response and background suppression
	- Large light yields and good resolution
	- Radiation hard material construction
- 1st pass mechanical design validated through prototype construction: support frame design and light guide assembly
- Initial beamtest performance validated optical MC and stack design; baseline prototype (as is) is sufficient for MOLLER
- Future testbeam runs will be used to finalize the design mechanics and light guide

• Thank You

Shower-max: Back-up Slides

December 11, 2019

.

Benchmarking Testbeam stand CAD and MC Visualization (1B prototype)

.

IDAHO
SIMANE

1A and 1B Benchmarking single-quartz Testbeam

5000

O

10000

15000

1A Benchmarking Results for stack-layer study

Dustin McNulty Shower-max: Back-up Slides (2019Dec11-12) 3

 Ω

20000

Photo-electrons

5000

10000

20000

Photo-electrons

15000

11052

2019

10000

1682⁻

2467

1911± 19.3

 2503 ± 13.65

893.1± 11.81

1242 ± 8.354

1B Benchmarking Results for stack-layer study $1B$ above-Electron Distribution - simulated vs real data

ShowerMax Benchmarking Prototype Testbeam Results (1B full stack response vs energy)

Counts **Entries** 8553 **Entries** 10713 Entries 3772 90 χ^2 / ndf 74.38 / 67 χ^2 / ndf 197.6 / 165 χ^2 / ndf 138.5/87 Prob Prob 0.2507 Prob 0.04243 0.0003738 80 25.18 ± 1.06 51.28 ± 0.97 28.3 ± 1.0 Constant Constant Constant 1879 ± 10.0 3289 ± 7.1 **Mean** Mean Mean 4664 ± 15.6 70 **Sigma** Sigma Sigma 284 ± 9.5 447.9 ± 6.5 515.1 ± 14.3 Sigma/Mean Sigma/Mean Sigma/Mean 0.136 0.151 0.110 60 Energy 50 8.0 GeV (900 Volts) 40 5.5 GeV (1000 Volts) 3.0 GeV (950 Volts) 30 20 10 0_0^{\square} 2000 8000 4000 6000 10000 Photo-electrons

Benchmarking 1B: full stack

.

IDAHO
STATE

Full Scale 1A and 1B PE response Simulations

ShowerMax 1A PE Distribution

ShowerMax 1B PE Distribution

IDAHO
STATE

Simulated Yields from Photons (1A Full-scale)

.

IDAHO
STATE

Simulated Yields from Pions (1A & 1B Full-scale)

ShowerMax Pion Response

ShowerMax Pion Response

Simulated MIP signal for cosmic-ray tests

(Full-scale) .

Open ShowerMax Photo-Electron Distribution

What is Resolution of Showermax (Open Septant) .

How well does the Showermax count electrons?

Attempts to improve Showermax resolution

Radial view of various phi segmentation ideas

IDAHO
STATE

half Open/Full Closed

Rate and A^{PV} _{meas}*Rate – weighted Energy Acceptance

Original Baseline

Transition ShowerMax Photo-Electron Distribution

Baseline PE distributions weighted by A^{meas} _{PV}

Closed ShowerMax Photo-Electron Distribution

Uniformity Studies: 1A PE means along ϕ and r

Uniformity Studies: 1A Resolutions along ϕ and r

Prototype Designs for Testbeam

.

. **Shower-max Benchmarking Prototype concept**

- Concept allows stack to be assembled and beam-tested one piece at a time for detailed benchmarking study
- Fabricated with ABS plastic using 3D printer

Config #1 (original baseline) benchmarking Prototype

.

Benchmarking Stack Configurations

Highlighted columns show changes due to quartz thickness change: Examined 6 mm and 10 mm thick tiles

* Key benefit here is that the parameter "a" (the width of the benchmarking quartz tiles) can now be comfortably large to ensure negligible transverse shower leakage.

Design Review JLab Hall A

Lateral size of EM Shower: Moliere Radius

- Lateral or transverse EM shower development and size dominated by multiple scattering
- One Moliere radius contains 90% of shower and characterizes width of shower; two Moliere radii contain \sim 95%
- For single material calorimeter:

Moliere Radius:
$$
R_M = \frac{E_s}{E_c} X_0 \approx 7\frac{A}{Z} \left(\frac{g}{cm^2}\right)
$$

\n–where $E_s = \sqrt{\frac{4\pi}{\alpha}} mc^2 = 21.2 \text{ MeV}$ (Multiple Scattering Energy for electrons)

\n $E_s \approx 610/(Z+1.2) \text{ MeV}$ (Critical Energy)

• For a mixed, homogenous material calorimeter:

Moliere Radius⁻¹:
$$
\frac{1}{R_M}
$$
 = $\sum_i \frac{w_i}{R_{Mi}}$ = $\frac{1}{E_s} \sum_i \frac{E_{ci}}{X_{0i}}$

 $-\text{where } w_i$ is the weight fraction of the ith material in the stack

Also note for tungsten, at shower max: $\langle \theta_{SM} \rangle \simeq m_e/E_c \simeq 3.6^\circ$

Longitudinal Development of EM Shower .

14,6,6,6 mm

17,5,5,5 mm

Longitudinal Development of Electromagnetic Showers in Tungsten

- Red and black lines indicate \bullet points of quartz sampling for Config $#2$ and $#3$ (see next slide)
- The shower maximum depth \bullet scales logarithmically with particle energy, while the peak # of particles scales linearly
- For pure tungsten, shower \bullet max occurs at \sim 24mm for 2 GeV and \sim 33mm for 8 GeV

--Baseline design uses 32mm of tungsten (and 50 mm of quartz)

IDAHO
STATE

1A - 4A Mean PE and Resolution versus Energy .

Simulation results for B configs (6mm quartz)

- The B configs have \sim half the slope of the other configs 80 PEs/GeV - while maintaining good resolution and with lower light levels.
- The reduced slope means less variation in PE yields with energy--which will reduce the widths measured during helicity window (it seems a potential win win win situation)
- Also interesting is that if you reduce the layers of tungsten to 4mm, the resolution worsens ~drastically (even with 10 mm quartz)

Prototype Construction and SLAC Testbeam Run

.

. **Updated Full-Scale Prototype (1A) for Testbeam**

1A Full-scale Stack Assembly at SBU, June 2018

Assembled 1A Full-scale ShowerMax Prototype

Testbeam and MC benchmarking strategy

- Engineer benchmarking prototype capable of operation with systematically more stack layers added and with no light guide
- Basic strategy outline:
	- **–** First take data with only one piece of quartz
	- **–** Then add the front tungsten plate and take data, then the next layer of tungsten and quartz, then next, then next
	- **–** This will facilitate benchmarking of optical quartz properties and G4's showering process without light guide complication
- *•* Also construct and test full scale prototypes (with same exact stack configuration as benchmarking prototype) and with full light guide; this will be constructed with machined aluminum

LER **Design Review** JLab Hall A

≝
∯400
⊡

1200

IDAHO
STATLE

. **Benchmarking Prototype (1A) Expectations**

hit n hist

25000

2.5n+04

 960.7 ± 2.753

 435.2 ± 1.946

 $= 0.45$

Entries

Mean

RMS

Integral

RMS

hit n hist

25000

 $2.5e + 04$

 $= 0.47$

 575.7 ± 1.709

 $270.2 + 1.208$

Benchmark 1A: n=1

Mean

RMS

RMS

Mean

25000

 1219 ± 3.441

 544.1 ± 2.433

 $= 0.45$

2.56+04

hit n hist

Entries

Mean

RMS

RMS

•Benchmarking PE yields are incredibly high for $n = 1$ to 4

 \cdot Will use 3" ET PMTs: 9305OKB

Benchmark 1A: n=2

Benchmark 1A: n=4

T-577: SLAC Testbeam, Dec $6 - 12$, 2018

- Tested ShowerMax full-scale and benchmarking detectors and new ring5 thin detector designs
- Used 3, 5.5 and 8 GeV electrons with multiplicity of a Poisson distribution with $\mu \approx 1$
- Overall beam rate only 5 Hz (parasitic from LCLS beam) with \sim 1/3 of those being single e⁻

CAD of the SLAC testbeam setup

- Testbeam scheduled for Dec $5 10$ (we may get more time) \bullet
- Setup allows testbeam to cover entire active area of full-scale prototypes ٠

T-577: SLAC Testbeam Setup for Full-Scale ShowerMax

T-577: SLAC Testbeam Setup: Benchmarking ShowerMax

Beam Spot (5.5 GeV) : ~1 cm by 2 cm

Det 2 XY hits

ShowerMax Benchmarking Prototype Testbeam Results (1B response vs. stack layers)

- Results are very reasonable—the means and relative widths behave as expected
- Simulations are underway for comparison and MC tuning/benchmarking

Monte Carlo tuning and Shower-max Simulations .

Quartz optical G4 properties benchmarked at MAMI: Glisur ground polish parameter ~0.981 Photo-Electron Distribution - Prototype B Detector

MAMI testbeam with PREX detector

- Stack configuration MC study:
- Stack thicknesses all same (7.2 X_0) ❖
- \div 2, 5, and 8 GeV incident electrons
- ❖ PE dists generated using tuned polish parameter and 60% LG reflectivity

Conclusion:

4-layer gives comparable performance to 10-layer (and is easier and cheaper to build)

Benchmarking 1A testbeam results compared with simulation (5.5 GeV electron response vs. stack layers)

Photo-Electron Distribution - simulated vs real data

Photo-Electron Distribution - simulated vs real data

- Single quartz data used to benchmark quartz optical polish parameter
- With quartz polish calibrated, simulations performed with successively more stack layers and compared with SLAC data

Photo-Electron Distribution - simulated vs real data

Benchmarking 1A testbeam results compared with simulation (5.5 GeV electron response vs. stack layers)

Photo-Electron Distribution - simulated vs real data

- Data and simulation agree well (at 10% level)
- Resolution of single electron photopeak goes from 27% to 18% (simulated)

Benchmarking 1A testbeam results compared with simulation (5.5 GeV electron response vs. stack layers)

Photo-Electron Distribution - simulated vs real data

Resolution of single electron photopeak is 15% (simulated). Analysis of real data resolutions are on-going using GEM tracking data

Benchmarking 1A Golden Track, single e data compared with simulation (5.5 GeV electron response vs. stack layers)

Photo-Electron Distribution - simulated vs real data

Golden Track, Single electron PE Distribution 1A 1-Stack

- Note that polish parameter was decreased from 0.98 (PREX) to 0.94 (4% decrease)
- Simulation uses state of the art understanding of optical properties of active material ٠ including attenuation and dispersion inside quartz and pmt window, reflectivity at air-pmt window interface $\&$ photocathode, and factory QE of photocathode
- Note: All comparisons and polish benchmarking rely on knowing operational pmt ٠ gain $(5 - 10\%$ uncertainty (as well as QDC charge sensitivity))

Benchmarking 1A Golden Track, single e data compared with simulation (5.5 GeV electron response vs. stack layers)

- Data and simulations agree at 10% level
- Data shows larger high-light tails indicating potential mis-identified single e-tracks
- Resolutions get steadily better and agree well with simulated distributions --This tells us there was good alignment and minimal lateral shower leakage

Summary and future work

- Showermax baseline prototypes constructed and tested
	- **–** Analyses of testbeam data still ongoing but converging fast
	- **–** Preliminary results for benchmarking prototypes in good agreement with simulations
	- **–** Full-scale results and uniformity scans still in progress
- First results for full-scale tests show significant difference between data and sims–PE yields \sim 2.5x lower than expected; likely culprit is light guide but could also include broken TIR–due to excessive pressure on Kapton quartz wrapping

. **Light guide reflectivity measurements**

Measuring light guide (LG) reflectivity as function \bullet of angle $(10-90^{\circ})$ and λ (200 – 800nm); ongoing

- Light source: Ocean Optics DH2000: 200 800nm, 25W Deuterium bulb
- Spectrometer: Ocean Optics USB Flame, enhanced sensitivity, UV-VIS grating
- NIST specular calibration standard

Light guide materials tested:

Miro-silver 4270 Miro-silver 27 Alzak-Al and Alzak-Ag Anolux I and UVS Miro 2000Ag (diffuse) 1 mil, single-sided aluminized mylar

Reflectivity vs. λ for various materials at diff. angles

IDAHO
STATLE

LG reflectivity radiation hardness study .

• Used 8 MeV e beam, 65 -110mA I_{peak} 4us pulse width at 250 Hz, $310 - 880$ W

Reflectivit

 0.8

 0.6

 0.4

 0.2

pr 25 23:46:36 2016

Mon Apr 25 23:42:47 2016

• Water-cooled $(15^{\circ} C)$ aluminum brick $w/1.5$ cm radius hole (for beam) more than adequate cooling.

Anolux UVS

 $0.80C$

 1.60 C
 1.80 C
 2.00 C
 2.20 C
 2.40 C

 $3.00 \, \text{C}$ 3.40 C
3.80 C

 $\frac{2.00}{2.20}$

 3.40 3.80

280 300
Wavelength (nm)

800
Wavelength (nm)

Anolux UVS

Rad. Exposed Reflectivities (90 degree)

Rad. Exposed Reflectivities (90 degree)

Reflectivity (~90 deg) during exposure to 8 MeV e-beam

Reflectivity (~90 deg) during exposure to 8 MeV e-beam

Irradiated several light guide material samples over a 3 day period from Mar 22 - 24, 2016:

Miro-silver 4270 Anolux UVS Miro 2000Ag (diffuse) Miro-silver 27 (from Michael) Alzak-Al and Alzak-Ag (from KK) 1 mil, single-sided aluminized mylar

Dustin McNulty Shower-max: Back-up Slides (2019Dec11-12) 44

 220

 200

Linearity Test Box And Integrating DAQ

Temp. Display DAQ and Other Settings

- \cdot LED Holder \longrightarrow holds two LEDs, each with 2 mm diameter collimation
- Electronic Shutter \longrightarrow has now been connected with a relay to turn it "ON" and "OFF" automatically at any interval with computer script
- Filter Wheel \longrightarrow Computer Controlled Edmund Optics' Absorptive ND filters (400-700 nm) with 8 (100, 79, 63, 50, 40, 25, 10, 1)% transmission settings (\sim randomly ordered)
- Filter Wheel is now controlled automatically using a shell script
- UV Diffuser Edmund Optics' ground fused silica
- PMT Holder \longrightarrow 2" PMT with modified base for improved linearity
- Different pre-Amp settings with different resistances and offsets tested (MAIN, LUMI, KDPA, and SNS)

IDAHO
SIATE

Devi L. Adhikari

PMT Non-Linearity Studies at ISU

Dustin McNulty Shower-max: Back-up Slides (2019Dec11-12) 46

18

Plans for MOLLER pmt Linearity Measurements

- Apparatus and technique validated for PREX pmts at 240 Hz ff
	- Conclusion: want pmt $I_C \lesssim 15$ nA and $I_A \sim 20$ 30 μ A
	- **–** Anticipate *<* 0*.*5% non-linearity systematic for PREX-II and even better for CREX
	- **–** Measurements routinely find HV and preamp settings with non-linearity deviations at 0.1 - 0.2% level
- While 30, 120, and 240 Hz ff data give very similar/same results, we see differences at 480 Hz ff-possibly a result of thermal or other instabilities in the flashing LED
- To address expected problems at 960 Hz ff, we plan to implement a chopper wheel setup with phase-locked controller to shutter the LED instead of flash it (M. Gericke's idea)

Plans for MOLLER pmt Linearity Measurements

- ISU group has two ET 9305KQB pmts with factory bases in hand to start testing this fall
	- **–** Anticipated light levels or PE (IC) currents for central-open ring5 pmts at \sim 16 nA (\sim 4 GHz, \sim 25 PEs/e⁻)
	- **–** Will require custom tuned base divider to achieve desired 0.1% non-linearity
	- **–** M. Gericke and group will design bases for future tests; for now, two different factory bases were purchased: one standard circuit and one tapered (for high pulsed linearity)
- *•* A non-trivial complication for precision measurements is calibrating the incident light level or photocathode current. We use special unity gain bases for PREX/CREX; need this for MOLLER

.**Baseline Design Stack and Light Guide Concepts**

- Detector concept uses a layered "stack" of tungsten and fused silica (quartz) to induce EM showering and produce Cherenkov light
- "Baseline" design developed using GEANT4 optical MC simulation:
	- \triangleright Current design uses a 4-layer stack with 8 mm tungsten and 10 mm quartz pieces
	- \triangleright Cherenkov light directed to 3 inch PMT using air-core, aluminum light guide

- Tungsten is high purity (99.95%) and quartz is optically polished Spectrosil 2000
- Light guides are aluminum specular reflectors (Miro-silver 27, Anolux, or al. mylar, ...)
- Total radiation length: 9.1 X_0 tungsten + 0.4 X_0 quartz = 9.5 X_0

.

Quartz and Tungsten Ordered in Nov 2017

- For "benchmarking" prototype stack:
	- \triangleright Quartz: 6 mm (thick) by 86 mm (tall) by 40 mm (wide) --4 pieces (\$975/piece = \$3.9k)
	- Quartz: 10 mm (thick) by 90 mm (tall) by 40 mm (wide) --4 pieces $(\$1005/piece = \$4.0k)$ ➤
	- Tungsten: 6 mm (thick) by 80 mm (tall) by 40 mm (wide) 4 pieces $(\$85/piece = \$340)$ ➤
	- Tungsten: 8 mm (thick) by 80 mm (tall) by 40 mm (wide) 4 pieces $(\$110/piece = \$440)$ ➤
	- Tungsten: 2 mm (thick) by 80 mm (tall) by 40 mm (wide) 4 pieces $(\$25/piece = \$100)$
- For "full-scale" prototype stack:
	- \triangleright Quartz: 6 mm (thick) by 111 mm (tall) by 246 mm (wide) -- 4 pieces (~\$1750/piece = \$7.0k)
	- Quartz: 10 mm (thick) by 115 mm (tall) by 246 mm (wide) -- 4 pieces $(\sim $1940/piece = $7.8k)$ ➤
	- Tungsten: 6 mm (thick) by 105 mm (tall) by 246 mm (wide) 4 pieces $(\$600/piece = \$2.5k)$ ➤
	- Tungsten: 8 mm (thick) by 105 mm (tall) by 246 mm (wide) 4 pieces $(\$820/piece = \$3.2k)$ ➤
	- Tungsten: 2 mm (thick) by 105 mm (tall) by 246 mm (wide) 4 pieces $(\$200/piece = \$0.8k)$ ➤

Purchasing these pieces allows for Configs 1, 3, and 4 (A and B) to be tested

Total quartz: $$25k$, total tungsten: $$7.5k$: Total = $$32.5k$

- This purchase enables construction of two benchmarking and two full-scale prototype sets ٠
- Building two sets of prototypes will allow for more efficient testing during both SLAC testbeam ٠ and cosmic tests at SBU and ISU. We can each build a different configuration to test

MOLLER Task Tracking: ISU Tasks

Radiation Hardness Test plan Update

•Radiation hardness testing of mechanical assembly materials and parts (ISU, UM)

- * Irradiated several light-guide (LG) material samples over a 3 day test run from Mar 22 24, 2016 at the Idaho Accelerator Center (IAC) using 8 MeV, 65 mA I_{peak}, 4µs pulse width at 250 Hz reprate (dose exposure rate was calculated but too high to measure):
	- Measured LG specular reflectivity for $200 800$ nm at 90, 60, 45, and 30 degrees.
	- No measurable change in reflectivity was detected for >>50 MRad exposure
- ❖ Other assembly materials to test could include Kapton and Tedlar (light tight wrappings) and possibly 3D-printed custom plastic assembly components (Nylon, ABS, PLA, ...) as well as high-density shielding plastics, epoxies, ...
- •Radiation hardness testing of electronic components: active bases, preamps, ...(ISU, UM)

• Main Detector Quartz Robustness (radiation hardness, QA, etc.) (ISU, UM)

- \triangle Apparatus developed to make relative transparency measurements between 200 800 nm
	- Uses Ocean Optics USB spectrometer, UV-Visible light source, custom holder/stand
- \div Energy deposition calculations (dE/dx and brem) underway for 8 MeV beam and 1.5 cm thick quartz—for heating and thermal expansion considerations (do not want to crack quartz)
- ❖ Developed plan to calibrate and monitor beam dose exposure during study
- ◆ Had a 1 day IAC test run on May 31, 2018; dose exposure rates calibrated; performed preliminary quartz irradiation test

Radiation Hardness QA for quartz and other components

25 MeV LINAC (Main Hall and Airport)

RF Frequency: 2856 MHz (S-Band)

Energy Range: ~4~25 MeV (current varies)

Pulse Width: ~50ns to 4 micro seconds

Repetition Rate: single pulse to 360 Hz

Ports: 0 degree, 45 degree and 90 degree (Beam energy resolution $\sim 1+/-$ 15%)

The key issue is how well can we calibrate dose exposure?

daho

Performed a 1 day engineering run this past spring to address this question as well as perform preliminary radiation hardness QA quartz studies

Radiation Hardness QA for quartz and other components

•Performed 1 day irradiation study on Spectrosil 2000 quartz and 3D printed ABS plastic samples

- •Tests performed on May 31, 2018 at the Idaho Accelerator Center (IAC) using 8 GeV electrons •Dose exposure rates calibrated using thermographic film dosimetry measurements
- •Quartz transparency measurements taken at 10, 30, and 60 MRad exposure levels
- •Plastic dogbones radiated at similar levels and tensile strength (stretching) measurements made

Dustin McNulty Shower-max: Back-up Slides (2019Dec11-12) 54

daho
ccelerator

Beam Dose Exposure Rate Calibrations (May 2018)

Optically Stimulated Luminescence (OSL) dosimeter (\sim 7 mm by 7 mm square)

Glass slide for spot profile measurements

ISU MS degree student Connor Harper's thesis based on this work: https://www2.cose.isu.edu/~mcnudust/ publication/studentWork/connorHarper Thesis.pdf

OSL arrays for dose profile measurements

Quartz Transparency Measurements

Could be possible to use conventional 3" pmts with electronic switching between unity gain base (integrating mode) and high gain base (counting mode)

.

ShowerMax Prototype Construction Timeline

- Feb Mar 2018: Benchmarking prototype frames fabricated with 3Dprinter using ABS plastic (configs 1A and 1B)
- April 2018: Full-scale aluminum frame and light guide cut-outs fabricated at machine shop
- May 2018: Light guide bending and frame assembly at ISU for fullscale configs 1A and 1B
- June 2018: Config 1A full-scale and benchmarking prototype frames and LG delivered to SBU for stack assembly and installation

14

. **Teatbeam Apparatus under construction**

- Testbeam stand under construction
- Motion control system in place
- GEM system is operational, analysis software under development

ISU Cosmic stand with 4 GEM chambers

LER **Design Review** JLab Hall A

IDAHO
STATE

Candidate Design for Stack Prototype: Config $#2$

IDAHO
STATE

Candidate Design for Stack Prototype: Config $\#3$

IDAHO
STATE

Candidate Design for Stack Prototype: Config $#4$

. **Simulation Results for new Stack Configs**

Dustin McNulty Shower-max: Back-up Slides (2019Dec11-12) 64