Shower-max Requirements and Status

Dustin McNulty Idaho State University Jefferson Lab MOLLER Design Review

December 12 - 13, 2019

Office of Science

Outline

- System motivation and requirements
- Design Concept and Status
- Acceptances and resolutions
- Prototyping and initial testbeam
- Summary

Shower-max: Motivation and Requirements

- Provides additional measurement of e-e ring integrated flux
- Weights flux by energy \Rightarrow less sensitive to low energy and hadronic backgrounds
- Will also operate in tracking mode to give additional handle on background pion identification – gives MIP-like signal
- Will have good resolution over full energy range (^σ/_{⟨n⟩} ≤ 30%), radiation hard with long term stability and good linearity

Shower-max: Design Status and ring geometry

Shower-max: Detector Concept and Materials

- Tungsten is high purity (99.95%) and quartz is optically polished Spectrosil 2000
- Light guides are aluminum specular reflectors (Miro-silver 27, Anolux, or aluminized mylar, ...)
- Total radiation length: 9.1 X_0 tungsten + 0.4 X_0 quartz = 9.5 X_0

Shower-max: Energy and rate acceptances

Shower-max: Resolutions

MOLLER Design Review, December 2019

Shower-max: Prototyping and testbeam

- First prototypes constructed: two different "stack" configs:
 8 mm thick tungsten and 10 mm thick or 6 mm thick quartz
 - 1st-pass engineered design concept vetted
 - Light guide construction techniques developed
- SLAC testbeam T-577 run: Dec 6 12, 2018
 - Exposed prototype to 3, 5.5, and 8 GeV electrons
 - Validated our optical Monte Carlo quartz and cathode properties and G4's EM showering processes (but not the light guide yet)
 - Stack design validated--number of layers/thicknesses; yields and resolutions match G4 predictions
 - Prototype beam performance sufficient for MOLLER and 2nd-pass mechanical design improvements underway

Summary

- Baseline design concept meets requirements:
 - -Proportional energy response and background suppression
 - -Large light yields and good resolution
 - -Radiation hard material construction
- 1st pass mechanical design validated through prototype construction: support frame design and light guide assembly
- Initial beamtest performance validated optical MC and stack design; baseline prototype (as is) is sufficient for MOLLER
- Future testbeam runs will be used to finalize the design mechanics and light guide

• Thank You

Shower-max: Back-up Slides

December 11, 2019

Benchmarking Testbeam stand CAD and MC Visualization (1B prototype)

Photo-Electron Distribution - simulated vs real data

JLab Hall A

1A and 1B Benchmarking single-quartz Testbeam

Photo-Electron Distribution - simulated vs real data

JLab Hall A

1A Benchmarking Results for stack-layer study

Dustin McNulty

Shower-max: Back-up Slides

Photo-electrons

Photo-electrons

11052

2019

10000

1911± 19.3

2487

2503 ± 13.65

Photo-electrons

Photo-electrons

893.1± 11.81

1242 ± 8.354

1B Benchmarking Results for stack-layer study

ShowerMax Benchmarking Prototype Testbeam Results (1B full stack response vs energy)

Counts Entries 8553 Entries 10713 Entries 3772 90 χ^2 / ndf 74.38 / 67 χ^2 / ndf 197.6 / 165 χ^2 / ndf 138.5 / 87 Prob Prob 0.2507 Prob 0.04243 0.0003738 80 25.18 ± 1.06 51.28 ± 0.97 $\textbf{28.3} \pm \textbf{1.0}$ Constant Constant Constant Mean 1879 ± 10.0 Mean 3289 ± 7.1 Mean 4664 ± 15.6 70 Sigma Sigma Sigma 284 ± 9.5 447.9 ± 6.5 515.1 ± 14.3 Sigma/Mean Sigma/Mean Sigma/Mean 0.136 0.151 0.110 60 Energy 50 8.0 GeV (900 Volts) 40 5.5 GeV (1000 Volts) 3.0 GeV (950 Volts) 30 20 10 0^C 8000 2000 4000 6000 10000 Photo-electrons

Benchmarking 1B: full stack

JLab Hall A

Full Scale 1A and 1B PE response Simulations

ShowerMax 1A PE Distribution

ShowerMax 1B PE Distribution

JLab Hall A

Simulated Yields from Photons (1A Full-scale)

ShowerMax 1A Photon Response あ000×10³ 日 山900日 Config 1A - Photon Beam hit n hist hit n hist hit n hist 20 Entries 5000000 Entries 5000000 Entries 5000000 Mean Mean 0.7633 ± 0.001109 Mean 5.9 ± 0.003426 Mean 13.36 ± 0.004886 18 3.6 Resolution RMS 2.481 ± 0.0007844 RMS 7.661 ± 0.002423 RMS 10.93 ± 0.003455 800 Integral 5e+06 Integra 5e+06 Integral 5e+06 16 3.2 RMS Mean = 3.3 RMS Mean RMS = 0.82= 1.3 700 14 2.8 Mean 600 12 2.4 DE Mean rms/mean 500 2 ShowerMax, config1A 400 photon beam, centered 1.6 8 100 MeV 50 MeV 300 1.2 6 10 MeV 200 0.8 4 100 2 0.4 mean = 0.14E - 0.99.... 0^E 0 0 20 30 10 40 50 60 70 90 100 80 10 20 30 40 50 60 70 80 90 100 Photo-electrons Energy (MeV)

JLab Hall A

Simulated Yields from Pions (1A & 1B Full-scale)

ShowerMax Pion Response

ShowerMax Pion Response

Simulated MIP signal for cosmic-ray tests

(Full-scale)

What is Resolution of Showermax (Open Septant) How well does the Showermax count electrons?

1,600 Open Region, Quartz Model: glisur ground hit n hist lish 0.981, 3 inches PMT R7723Q, Reflectivity: const. 60% 48218 PE Distribution: Showermax Open - 8mm W 4400 Shower-Max, 4 pieces, Open Region Moller E'vertex Distributions: Original Baseline Othickness 12.5mm, Wthickness 8mm 4.822 §1400 25000 1GeV) Analyzing Power Energy 100 4429.0, 0.30 ---- All 307.9 ± 0.3452 750.7 ± 0.6469 1172 ± 0.95 1200 Full Raster RMS 54.59 ± 0.2441 102.3 ± 0.4574 151.3 ± 0.676 2032.0, 0.23 + Open = 0.281200 GHz/0. Mean 0.25 - Transition Open RMS 80 1000 = 0.18 = 0.13 610.7, 0.20 + Closed Mean 1000 dqq 60 800 800 Max 4 nieces Onen Ber 40 600 5GeV electron beam GeV electron bear N. 400 20 200 200 1200 1600 E'vertex (GeV) Photo-electrons 1000 1500 2000 2500 Resolution vs. Energy 500 Photo-electrons data1
 cubic Open Normalized Energy Distribution and rms/mean 0.18 $y = -0.00035^{+}x^{3} + 0.0068^{+}x^{2} - 0.046^{+}x + 0.25$ 0.4 P(E)Open 0.175 Open Normalized Energy Distribution Fit rms/mean 0.17 0.35 Resolution = 0.146 0.165 0.3 0.16 $\left< \frac{RMS}{Mean} \right> = \int R(E) P(E) dE = 0.146$ 0.155 0.15 0.2 0.145 R(E)0.14 0.15 Individually, it counts electrons with 14.6% resolution on average. Using this 0.1 leads to: Excess Noise = $\sqrt{1 + \left\langle \frac{RMS}{Mean} \right\rangle^2} - \frac{1}{1} = 1.1^9$ 0.05 However collectively, it counts the group with $\sim 30\%$ resolution overall, 2 3 5 6 8 4 Q which leads to: Energy (GeV) Excess Noise = $\sqrt{1 + (\frac{RMS}{Mean})^2} - 1 = 4.4\%$

Open ShowerMax Photo-Electron Distribution

Attempts to improve Showermax resolution

Radial view of various phi segmentation ideas

Rate and *A*^{PV}_{meas}*Rate – weighted Energy Acceptance

Original Baseline

half Open/ Full Closed

JLab Hall A

Transition ShowerMax Photo-Electron Distribution

Closed ShowerMax Photo-Electron Distribution

Shower-max: Back-up Slides

(2019Dec11-12) 14

Uniformity Studies: 1A PE means along ϕ and r

Dustin McNulty

Uniformity Studies: 1A Resolutions along ϕ and r

Prototype Designs for Testbeam

Dustin McNulty

Shower-max Benchmarking Prototype concept

- Concept allows stack to be assembled and beam-tested one piece at a time for detailed benchmarking study
- Fabricated with ABS plastic using 3D printer

Config #1 (original baseline) benchmarking Prototype

Benchmarking Stack Configurations

Highlighted columns show changes due to quartz thickness change: Examined 6 mm and 10 mm thick tiles

Config #	t _f (mm)	ta (mm)	t _w (mm)	b (mm)	a (mm)	X_0	R _{molier} (mm)
1A	8	10	8	64	44	9.5	11.0
2A	17	10	5	55	55	9.5	11.0
3A	14	10	6	58	52	9.5	11.0
4A	6	10	6	58	52	7.3	11.5

	Config #	t _f (mm)	ta (mm)	t _w (mm)	b (mm)	a (mm)	X_0	R _{molier} (mm)
\triangleleft	1B	8	6	8	48	61	9.5	11.0
	2B	17	6	5	39	67	9.5	11.0
	3B	14	6	6	42	65	9.5	11.0
	4B	6	6	6	42	65	7.3	11.5

Key benefit here is that the parameter "a" (the width of the benchmarking quartz tiles) can now be comfortably large to ensure negligible transverse shower leakage.

Design Review

JLab Hall A

Ionte Carlo (Cu)

Lateral size of EM Shower: Moliere Radius

- Lateral or transverse EM shower development and size dominated by multiple scattering
- One Moliere radius contains 90% of shower and characterizes width of shower; two Moliere radii contain ~95%
- For single material calorimeter:

Moliere Radius:
$$R_M = \frac{E_s}{E_c} X_0 \simeq 7 \frac{A}{Z} \left(\frac{g}{cm^2}\right)$$

--where $E_s = \sqrt{\frac{4\pi}{\alpha}} mc^2 = 21.2$ MeV (Multiple Scattering Energy for electrons)
 $E_s \simeq 610/(Z+1.2)$ MeV (Critical Energy)

• For a mixed, homogenous material calorimeter:

Moliere Radius⁻¹:
$$\frac{1}{R_M} = \sum_i \frac{w_i}{R_{Mi}} = \frac{1}{E_s} \sum_i \frac{E_{ci}}{X_{0i}}$$

-where w_i is the weight fraction of the ith material in the stack

Material	$\rho \cdot R_M$ (g/cm ²)	R_M (cm)	X ₀ (g/cm)	X_0/ρ (cm)	Ζ	$E_c(e)$ (MeV)
tungsten	18.00	0.933	6.76	0.35	74	8.0
Copper	14.05	1.57	12.9	1.44	29	20
SiO ₂	11.3	5.15	27.05	12.3	~11	57

• Also note for tungsten, at shower max: $\langle \theta_{SM} \rangle \simeq m_e/E_c \simeq 3.6^\circ$

Longitudinal Development of EM Shower

— 14,6,6,6 mm

17,5,5,5 mm

Longitudinal Development of Electromagnetic Showers in Tungsten

- Red and black lines indicate points of quartz sampling for Config #2 and #3 (see next slide)
- The shower maximum depth scales logarithmically with particle energy, while the peak # of particles scales linearly
- For pure tungsten, shower max occurs at ~24mm for 2 GeV and ~33mm for 8 GeV

--Baseline design uses 32mm of tungsten (and 50 mm of quartz)

LLER Design Review

JLab Hall A

IDAHO STATE

1A - 4A Mean PE and Resolution versus Energy

Simulation results for B configs (6mm quartz)

- The B configs have ~half the slope of the other configs 80
 PEs/GeV while maintaining good resolution and with lower light levels.
- The reduced slope means less variation in PE yields with energy--which will reduce the widths measured during helicity window (it seems a potential win win situation)
- Also interesting is that if you reduce the layers of tungsten to 4mm, the resolution worsens ~drastically (even with 10 mm quartz)

Prototype Construction and SLAC Testbeam Run

JLab Hall A

Updated Full-Scale Prototype (1A) for Testbeam

Dustin McNulty

1A Full-scale Stack Assembly at SBU, June 2018

Assembled 1A Full-scale ShowerMax Prototype

Testbeam and MC benchmarking strategy

- Engineer benchmarking prototype capable of operation with systematically more stack layers added and with no light guide
- Basic strategy outline:
 - First take data with only one piece of quartz
 - Then add the front tungsten plate and take data, then the next layer of tungsten and quartz, then next, then next
 - This will facilitate benchmarking of optical quartz properties and G4's showering process without light guide complication
- Also construct and test full scale prototypes (with same exact stack configuration as benchmarking prototype) and with full light guide; this will be constructed with machined aluminum

Benchmarking Prototype (1A) Expectations

Benchmark 1A: n=1

Mean

RMS

RMS

Mean

hit n hist

 1219 ± 3.441

544.1± 2.433

= 0.45

25e+04

Entries

Mean

BMS

RMS

Mean

hit n hist

25000

2.5e+04

 960.7 ± 2.753

 435.2 ± 1.946

= 0.45

Entries

Mean

RMS

Integral

RMS

Mean

hit n hist

25000

2.5e+04

= 0.47

575.7 ± 1.709

270.2 ± 1.208

LER

Design Review

\$400

1200

1000

•Benchmarking PE yields are incredibly high for n = 1 to 4

•Will use 3" ET PMTs: 9305QKB

Benchmark 1A: n=2

JLab Hall A

IDAHO STATE

Benchmark 1A: n=4

Dustin McNulty

Shower-max: Back-up Slides

(2019Dec11-12) 29

T-577: SLAC Testbeam, Dec 6 - 12, 2018

- Tested ShowerMax full-scale and benchmarking detectors and new ring5 thin detector designs
- Used 3, 5.5 and 8 GeV electrons with multiplicity of a Poisson distribution with $\mu \approx 1$
- Overall beam rate only 5 Hz (parasitic from LCLS beam) with $\sim 1/3$ of those being single e⁻

CAD of the SLAC testbeam setup

- Testbeam scheduled for Dec 5 10 (we may get more time)
- Setup allows testbeam to cover entire active area of full-scale prototypes

T-577: SLAC Testbeam Setup for Full-Scale ShowerMax

T-577: SLAC Testbeam Setup: Benchmarking ShowerMax

Beam Spot (5.5 GeV): ~1 cm by 2 cm

Det 2 XY hits

ShowerMax Benchmarking Prototype Testbeam Results (1B response vs. stack layers)

- Results are very reasonable—the means and relative widths behave as expected
- Simulations are underway for comparison and MC tuning/benchmarking

JLab Hall A

Monte Carlo tuning and Shower-max Simulations

Quartz optical G4 properties benchmarked at MAMI: Glisur ground polish parameter ~0.981

MAMI testbeam with PREX detector

- Stack configuration MC study:
- * Stack thicknesses all same $(7.2 X_0)$
- ✤ 2, 5, and 8 GeV incident electrons
- PE dists generated using tuned polish parameter and 60% LG reflectivity

Conclusion:

4-layer gives comparable performance to 10-layer (and is easier and cheaper to build)

Benchmarking 1A testbeam results compared with simulation (5.5 GeV electron response vs. stack layers)

Photo-Electron Distribution - simulated vs real data

Photo-Electron Distribution - simulated vs real data

- Single quartz data used to benchmark quartz optical polish parameter
- With quartz polish calibrated, simulations performed with successively more stack layers and compared with SLAC data

Benchmarking 1A testbeam results compared with simulation (5.5 GeV electron response vs. stack layers)

Photo-Electron Distribution - simulated vs real data

- Data and simulation agree well (at 10% level)
- Resolution of single electron photopeak goes from 27% to 18% (simulated)

Benchmarking 1A testbeam results compared with simulation (5.5 GeV electron response vs. stack layers)

Photo-Electron Distribution - simulated vs real data

 Resolution of single electron photopeak is 15% (simulated). Analysis of real data resolutions are on-going using GEM tracking data

Benchmarking 1A Golden Track, single e⁻ data compared with simulation (5.5 GeV electron response vs. stack layers)

Photo-Electron Distribution - simulated vs real data

Golden Track, Single electron PE Distribution 1A 1-Stack

- Note that polish parameter was decreased from 0.98 (PREX) to 0.94 (4% decrease)
- Simulation uses state of the art understanding of optical properties of active material including attenuation and dispersion inside quartz and pmt window, reflectivity at air-pmt window interface & photocathode, and factory QE of photocathode
- Note: All comparisons and polish benchmarking rely on knowing operational pmt gain (5 – 10% uncertainty (as well as QDC charge sensitivity))

Benchmarking 1A Golden Track, single e⁻ data compared with simulation (5.5 GeV electron response vs. stack layers)

- Data and simulations agree at 10% level
- Data shows larger high-light tails indicating potential mis-identified single e⁻ tracks
- Resolutions get steadily better and agree well with simulated distributions --This tells us there was good alignment and minimal lateral shower leakage

Summary and future work

- Showermax baseline prototypes constructed and tested
 - Analyses of testbeam data still ongoing but converging fast
 - Preliminary results for benchmarking prototypes in good agreement with simulations
 - Full-scale results and uniformity scans still in progress
- First results for full-scale tests show significant difference between data and sims-PE yields ~2.5x lower than expected; likely culprit is light guide but could also include broken TIR-due to excessive pressure on Kapton quartz wrapping

Light guide reflectivity measurements

• Measuring light guide (LG) reflectivity as function of angle $(10 - 90^{\circ})$ and λ (200 - 800nm); ongoing

- Light source: Ocean Optics DH2000: 200 800nm, 25W Deuterium bulb
- Spectrometer: Ocean Optics USB Flame, enhanced sensitivity, UV-VIS grating
- NIST specular calibration standard

Light guide materials tested:

Miro-silver 4270Miro-silver 27Anolux I and UVSAlzak-Al and Alzak-AgMiro 2000Ag (diffuse)1 mil, single-sided aluminized mylar

Reflectivity vs. λ for various materials at diff. angles

JLab Hall A

LG reflectivity radiation hardness study

Irradiated several light guide material samples over a 3 day period from Mar 22 - 24, 2016:

Miro-silver 4270 Anolux UVS Miro 2000Ag (diffuse) Miro-silver 27 (from Michael) Alzak-Al and Alzak-Ag (from KK) 1 mil, single-sided aluminized mylar

• Water-cooled (15° C) aluminum brick w/ 1.5 cm radius hole (for beam) more than adequate cooling.

Anolux UVS

0.80 C

1.60 C 1.80 C 2.00 C 2.20 C 2.40 C 2.60 C 3.80 C

800 Wavelength (nm)

Refle

Anolux UVS

2.00

3.40 3.80

280 300 Wavelength (nm)

Reflectivity (~90 deg) during exposure to 8 MeV e-beam

Reflectivity (~90 deg) during exposure to 8 MeV e-beam

Shower-max: Back-up Slides

220

240

200

Mon Apr 25 23:42:47 2016

Linearity Test Box And Integrating DAQ

Temp. Display DAQ and Other Settings

- Electronic Shutter has now been connected with a relay to turn it "ON" and "OFF" automatically at any interval with computer script
- Filter Wheel Computer Controlled Edmund Optics' Absorptive ND filters (400-700 nm) with 8 (100, 79, 63, 50, 40, 25, 10, 1)% transmission settings (~randomly ordered)
- Filter Wheel is now controlled automatically using a shell script
- UV Diffuser Edmund Optics' ground fused silica
- Different pre-Amp settings with different resistances and offsets tested (MAIN, LUMI, KDPA, and SNS)

	Devi L. Adhikari	PMT Non-Linearity Studies at ISU	February 25, 2018 5	
Dustin M	cNulty	Shower-max: Back-up Slides	(2019Dec11-12)	45

JLab Hall A

				LL =	0.3 nA		LL = 6.0 nA	
				Run HV PreAm	p non-Lin Error $\chi^2/6df$	Run HV P	reAmp non-Lin Error	$\chi^2/6df$
				1896-1150 0.5	0.426 0.075 2.420	1843-860	0.1 0.904 0.227	16.77
				1897-1120 0.5	0.320 0.123 5.564	1844-840	0.1 0.869 0.251	25.18
				1898-1080 0.5	0.228 0.093 2.871	1845-820	0.1 1.269 0.346	26.10
				1899-1040 0.5	0.200 0.120 5.120	1846-800	0.1 0.848 0.295	29.19
				1905-1110 0.6	0.502 0.172 7.533	1847-800		15.99
				1907-1050 0.6	0.227 0 186 8 355	1849-820	0.1 0.492 0.194	17.84
				1908-1020 0.6	0.389 0.083 2.008	1850-800	0.1 1.211 0.541	98.22
				1901-1010 1.0	0.431 0.102 3.712	1834-720	0.3 -0.148 0.163	9.668
				1902 -980 1.0	0.182 0.193 16.58	1835-700	0.3 -0.179 0.229	9.338
					0.287 0.091 2.936	1837-075		13.89
				1904 -920 1.0	0.027 0.146 7.582	1830-650	0.5 -0.190 0.111	2,923
				1912 -870 2.0	0.159 0.116 3.802	1831-630	0.5 0.148 0.348	39.38
		nonLinearity ve UV for DMT#4		1913 -840 2.0	-0.154 0.160 4.930	1832-610	0.5 -0.268 0.213	9.548
		nonLinearity vs Hv for PMT#4	•			1833-595	0.5 -0.301 0.208	7.082
	2					1839-645	0.6 0.208 0.084	0.570
			∮ 0.3 nA LL	1910 -730 4.0	0 133 0 130 3 262	1841-610	0.6 -0.424 0.134	2.556
	F		↓ 0.5 nA LL	1918 -710 4.0	-0.130 0.117 3.480	1842-590	0.6 0.065 0.383	29.23
	15		UNTINEL	1920 -650 10.0	0.139 0.202 8.691	1826-570	1.0 -0.325 0.190	7.729
	'.•⊢		🛉 6 nA LL	1921 -630 10.0	0.071 0.150 4.912	1827 - 555	1.0 -0.397 0.228	9.533
			10 nA		0.256 0.144 2.719	1828-540		15.22
	_ ↓ ⊢		TOTALL	1923 - 590 10.0	0.225 0.195 0.154	1819-500	2.0 -0.428 0.166	5 703
	- 'F				0.5 nA	1820-490	2.0 -0.518 0.124	3.582
	E			Run HV PreAm	$p non-Lin Error \chi^2/6df $	1821-475	2.0 -0.301 0.159	4.882
	~ F -			1863-1040 0.5	0.393 0.039 0.7648	1822-460	2.0 -0.469 0.241	9.740
	0.5				0.289 0.108 4.324		LL = 10.0 nA	
	F	· · · · · · · · · · · · · · · · · · ·			0.360 0.202 19.54	Run HV P	reAmpnon-Lin Error	$\chi^2/$ 6df
	٩F	· · · · · · · · · · · · · · · · · · ·		1857-1000 0.6	0.393 0.064 1.595	1786-780	0 1 0 038 0 139	9 707
≥	0			1859 -970 0.6	0.354 0.095 3.488	1785-760	0.1 0.333 0.330	21.84
Ľ,	F					1782-740	0.1 -0.163 0.244	18.23
ê	E			1001 -920 0.0	0.297 0.142 5.495			11.51
.⊆.	-0.5 H			118681-9001 1.0	0.344 0.269 29.49	1783-720	0.1 -0.100 0.187	00 50
				1868 -900 1.0 1869 -880 1.0	0.344 0.269 29.49 0.170 0.184 11.66	1783-720 1787-780 1788-760	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22.53
_				1868 -900 1.0 1869 -880 1.0 1870 -850 1.0	0.344 0.269 29.49 0.170 0.184 11.66 0.331 0.062 0.7265	1783-720 1787-780 1788-760 1789-740	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.53 3.948 20.74
Ju N	F			1868 -900 1.0 1869 -880 1.0 1870 -850 1.0 1872 -830 1.0	0.344 0.269 29.49 0.170 0.184 11.66 0.331 0.062 0.7265 0.055 0.231 13.05	1783-720 1787-780 1788-760 1789-740 1790-720	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22.53 3.948 20.74 7.334
non	-1			1868 -900 1.0 1869 -880 1.0 1870 -850 1.0 1872 -830 1.0 1873 -800 2.0 1874 -780 2		1783-720 1787-780 1788-760 1789-740 1790-720 1791-660	$ \begin{array}{ccccc} 0.1 & -0.160 & 0.187 \\ 0.1 & 0.262 & 0.204 \\ 0.1 & -0.057 & 0.092 \\ 0.1 & -0.060 & 0.247 \\ 0.1 & -0.417 & 0.122 \\ 0.3 & -0.743 & 0.171 \\ \end{array} $	22.53 3.948 20.74 7.334 5.325
non	-1			1868 -900 1.0 1869 -880 1.0 1870 -850 1.0 1872 -830 2.0 1873 -800 2.0 1875 -760 2.0	0.344 0.269 29.49 0.170 0.184 11.66 0.331 0.062 0.7265 0.055 0.231 13.05 0.206 0.148 5.657 0.055 0.144 7.464 0.113 0.114 3.686	1783-720 1787-780 1788-760 1789-740 1790-720 1791-660 1792-640	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.53 3.948 20.74 7.334 5.325 12.76 22.75
non	-1	0.02010.120		1868 -900 1.0 1869 -880 1.0 1870 -850 1.0 1872 -830 1.0 1873 -800 2.0 1874 -780 2.0 1875 -760 2.0	0.344 0.269 29.49 0.170 0.184 11.66 0.331 0.062 0.7265 0.055 0.231 13.05 0.206 0.148 5.657 0.055 0.144 7.464 0.113 0.114 3.686 0.469 0.237 16.29	1783-720 1787-780 1788-760 1789-740 1790-720 1791-660 1792-640 1793-620 1794-600	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.53 3.948 20.74 7.334 5.325 12.76 23.75 35.99
luou	-1	0.038±0.139		1868 -900 1.0 1869 -880 1.0 1870 -850 1.0 1871 -830 2.0 1874 -780 2.0 1875 -760 2.0 1876 -740 2.0 1876 -760 4.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1783-720 1787-780 1788-760 1789-740 1790-720 1791-660 1792-640 1793-620 1794-600 1799-590	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.53 3.948 20.74 7.334 5.325 12.76 23.75 35.99 26.76
luou	-1	0.038±0.139		1868 -900 1.0 1869 -880 1.0 1870 -850 1.0 1872 -830 1.0 1873 -800 2.0 1874 -780 2.0 1875 -760 2.0 1876 -740 2.0 1877 -700 4.0 1878 -680 4.0	0.344 0.269 29.49 0.170 0.184 11.66 0.331 0.062 0.7265 0.205 0.231 13.05 0.206 0.148 5.657 0.055 0.144 7.464 0.113 0.114 3.686 0.469 0.237 16.29 0.095 0.157 6.243 0.097 0.114 2.977	1783-720 1787-780 1788-760 1789-740 1790-720 1791-660 1792-640 1793-620 1794-600 1799-590 1800-570	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.53 3.948 20.74 7.334 5.325 12.76 23.75 35.99 26.76 16.07
luou	-1	0.038±0.139 -0.019±0.120		1868 -900 1.0 1869 -880 1.0 1870 -850 1.0 1871 -850 1.0 1873 -800 2.0 1874 -780 2.0 1875 -760 2.0 1876 -740 2.0 1876 -880 4.0 1878 -680 4.0 1879 -660 4.0	0.344 0.269 29.49 0.170 0.184 11.66 0.331 0.062 0.7265 0.055 0.231 13.05 0.206 0.148 5.657 0.055 0.144 7.464 0.113 0.148 3.686 0.469 0.237 16.29 0.095 0.157 6.243 0.097 0.114 2.977 0.053 0.146 4.984 -0.120 0.166 8.138	1783-720 1787-780 1788-760 1789-740 1790-720 1791-660 1792-640 1793-620 1794-600 1799-590 1800-570 1800-570	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.53 3.948 20.74 7.334 5.325 12.76 23.75 35.99 26.76 16.07 33.61
luou	-1.5	0.038±0.139 -0.019±0.120		1868 -900 1.0 1869 -880 1.0 1870 -850 1.0 1871 -850 1.0 1872 -830 2.0 1873 -800 2.0 1875 -760 2.0 1876 -740 2.0 1877 -700 4.0 1878 -680 4.0 1879 -660 4.0 1883 -590 10.0	0.344 0.269 29.49 0.170 0.184 11.66 0.331 0.062 0.7265 0.055 0.231 13.05 0.206 0.148 5.657 0.055 0.144 7.464 0.113 0.114 3.686 0.469 0.237 16.29 0.995 0.157 6.243 0.997 0.114 2.977 0.053 0.146 4.984 -0.130 0.166 8.138 -0.266 0.130 3.322	1/83-720 1787-780 1788-760 1789-740 1790-720 1791-660 1792-640 1793-620 1794-600 1799-590 1800-570 1801-550 1802-530	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.53 3.948 20.74 7.334 5.325 12.76 23.75 35.99 26.76 16.07 33.61 14.08 10.40
luou	-1 -1.5 -2	0.038±0.139 -0.019±0.120 0:053±0.146		1868 -900 1.0 1869 -880 1.0 1870 -850 1.0 1872 -830 1.0 1873 -800 2.0 1874 -780 2.0 1875 -760 2.0 1876 -740 2.0 1876 -740 2.0 1877 -700 4.0 1878 -680 4.0 1879 -660 4.0 1881 -640 4.0 1881 -570 10.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/83-/20 1787-780 1788-760 1789-740 1790-720 1791-660 1792-640 1793-620 1794-600 1794-600 1794-50 1800-570 1801-550 1802-530 1795-575	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.53 3.948 20.74 7.334 5.325 12.76 23.75 35.99 26.76 16.07 33.61 14.08 10.40 5.487
luou	-1 -1.5 -2	0.038±0.139 -0.019±0.120 0:053±0.146		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/83-/20 1787-780 1788-760 1799-740 1791-660 1792-640 1793-620 1794-600 1794-600 1794-500 1800-570 1800-570 1802-530 1795-575 1796-555 1796-555	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 22.53\\ 3.948\\ 20.74\\ 7.334\\ 5.325\\ 12.76\\ 23.75\\ 35.99\\ 26.76\\ 16.07\\ 33.61\\ 14.08\\ 10.40\\ 5.487\\ 16.20\\ \end{array}$
luou	-1	0.038±0.139 -0.019±0.120 0:053±0.146 -0.079±0.157		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/83-/20 1787-780 1788-760 1789-740 1790-720 1791-660 1792-640 1793-620 1794-600 1799-590 1800-570 1800-570 1802-530 1795-575 1796-555 1796-555 1796-555	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.53 3.948 20.74 7.334 7.334 7.335 12.76 23.75 35.99 26.76 16.07 33.61 14.08 10.40 5.487 16.20 21.15
luou	-1 -1.5 -2 -2.5	0.038±0.139 -0.019±0.120 0.053±0.146 -0.079±0.157		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/83-/20 1787-780 1788-760 1789-740 1790-720 1791-660 1793-620 1794-660 1794-660 1799-590 1800-570 1801-550 1802-530 1802-530 1795-575 1796-555 1803-535 1798-520 1804-520	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 22.53\\ 3.948\\ 20.74\\ 5.325\\ 12.76\\ 23.75\\ 35.99\\ 26.76\\ 16.07\\ 33.61\\ 14.08\\ 10.40\\ 5.487\\ 16.20\\ 21.15\\ 29.96\\ 23.99\end{array}$
non	-1 -1.5 -2 -2.5	0.038±0.139 -0.019±0.120 0.053±0.146 -0.079±0.157		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/83-/20 1787-780 1788-760 1789-740 1790-720 1791-660 1792-640 1793-620 1794-600 1794-600 1799-590 1800-570 1801-550 1802-530 1795-575 1803-535 1796-555 1804-520 1804-520 1806-505	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 22.53\\ 3.948\\ 20.74\\ 7.334\\ 5.325\\ 12.76\\ 23.75\\ 35.99\\ 26.76\\ 16.07\\ 33.61\\ 14.08\\ 10.40\\ 5.487\\ 16.20\\ 21.15\\ 29.96\\ 23.99\\ 25.02\\ \end{array}$
non	-1 -1.5 -2 -2.5	0.038±0.139 -0.019±0.120 0:053±0.146 -0.079±0.157		1868 -900 1.0 1869 -880 1.0 1870 -850 1.0 1872 -830 1.0 1873 -800 2.0 1874 -780 2.0 1875 -760 2.0 1876 -740 2.0 1877 -700 4.0 1879 -660 4.0 1881 -640 4.0 1881 -500 10.0 1885 -550 10.0 1886 -500 10.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/83-/20 1/87-780 1787-780 1789-740 1790-720 1791-660 1792-640 1792-640 1794-600 1794-600 1794-500 1801-550 1802-530 1795-575 1796-555 1796-555 1798-520 1804-520 1805-505 1806-490 1807-480	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 22.53\\ 3.948\\ 20.74\\ 7.334\\ 5.325\\ 12.76\\ 33.599\\ 26.76\\ 16.07\\ 33.61\\ 14.08\\ 10.40\\ 5.487\\ 16.20\\ 21.15\\ 29.96\\ 23.99\\ 25.02\\ 53.54\\ \end{array}$
luou	-1 -1.5 -2 -2.5	0.038±0.139 -0.019±0.120 0:053±0.146 -0.079±0.157		1868 -900 1.0 1869 -880 1.0 1870 -850 1.0 1872 -830 1.0 1873 -800 2.0 1874 -780 2.0 1875 -760 2.0 1876 -740 2.0 1876 -740 2.0 1878 -680 4.0 1879 -660 4.0 1879 -560 4.0 1879 -550 10.0 1885 -550 10.0 1886 -530 10.0	0.344 0.269 29.49 0.170 0.184 11.66 0.331 0.062 0.7265 0.055 0.231 13.05 0.206 0.148 5.657 0.055 0.144 7.464 0.113 0.114 3.686 0.469 0.237 16.29 0.095 0.157 6.243 0.097 0.114 2.977 0.053 0.146 4.984 -0.266 0.130 3.332 0.166 0.124 3.616 0.237 0.186 6.346 -0.236 0.186 6.346 -0.237 0.186 6.346	1/83-/20 1/87-780 1787-780 1788-760 1789-740 1790-720 1791-660 1792-640 1793-620 1794-600 1799-590 1800-570 1800-570 1802-530 1795-575 1796-555 1796-555 1796-555 1803-535 1798-520 1804-520 1805-505 1806-490 1807-480 1808-4460	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 22.53\\ 3.948\\ 20.74\\ 7.334\\ 5.325\\ 12.76\\ 33.69\\ 16.07\\ 33.61\\ 14.08\\ 10.40\\ 5.487\\ 16.20\\ 21.15\\ 29.96\\ 23.99\\ 23.99\\ 25.02\\ 53.54\\ 12.60\\ \end{array}$
luou	-1.5 -2.5 -2.5 -120	0.038±0.139 -0.019±0.120 0.053±0.146 -0.079±0.157		1868 -900 1.0 1869 -880 1.0 1870 -850 1.0 1871 -850 1.0 1872 -830 1.0 1873 -850 1.0 1873 -800 2.0 1874 -780 2.0 1875 -760 2.0 1877 -700 4.0 1878 -680 4.0 1879 -660 4.0 1883 -590 10.0 1884 -570 10.0 1885 -550 10.0 1886 -530 10.0	0.344 0.269 29.49 0.170 0.184 11.66 0.331 0.062 0.7265 0.055 0.231 13.05 0.206 0.148 5.657 0.055 0.144 7.464 0.113 0.114 3.686 0.469 0.237 16.29 0.095 0.157 6.243 0.097 0.114 2.973 0.053 0.146 4.984 -0.130 0.166 8.138 -0.266 0.130 3.322 0.166 0.124 3.616 -0.237 0.186 6.346 -0.269 0.197 5.260	1/83-/20 1/87-780 1787-780 1789-740 1790-720 1791-660 1792-640 1793-620 1794-600 1794-600 1799-590 1800-570 1802-530 1802-535 1803-535 1805-505 1806-490 1807-480 1808-450 1808-450	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 22.53\\ 3.948\\ 20.74\\ 7.334\\ 5.325\\ 12.76\\ 23.75\\ 35.99\\ 26.76\\ 16.07\\ 33.61\\ 14.08\\ 10.40\\ 5.487\\ 16.20\\ 21.15\\ 29.96\\ 23.99\\ 25.02\\ 53.54\\ 12.60\\ 16.29\\ 26.60\\ 16.29\\ 26.69\\ 12.60\\ 16.29\\ 26.69\\ 12.60\\ 16.29\\ 26.69\\ 12.60\\ 16.29\\ 12.60\\ 10.29\\ 12.60\\ 10.29\\ 12.60\\ 10.29\\ 12.60\\ 10.29\\ 12.60\\ 10.29\\ 12.60\\ 10.29\\ 10.26\\ 10.29\\ 10.29\\ 10.26\\ 10.29\\ 10$

Summary for PMT#4

Devi L. Adhikari

PMT Non-Linearity Studies at ISU

Shower-max: Back-up Slides

18

Plans for MOLLER pmt Linearity Measurements

- Apparatus and technique validated for PREX pmts at 240 Hz ff
 - Conclusion: want pmt $I_C \lesssim 15 nA$ and $I_A \sim \! 20$ 30 μA
 - Anticipate < 0.5% non-linearity systematic for PREX-II and even better for CREX
 - Measurements routinely find HV and preamp settings with non-linearity deviations at 0.1 0.2% level
- While 30, 120, and 240 Hz ff data give very similar/same results, we see differences at 480 Hz ff–possibly a result of thermal or other instabilities in the flashing LED
- To address expected problems at 960 Hz ff, we plan to implement a chopper wheel setup with phase-locked controller to shutter the LED instead of flash it (M. Gericke's idea)

Plans for MOLLER pmt Linearity Measurements

- ISU group has two ET 9305KQB pmts with factory bases in hand to start testing this fall
 - Anticipated light levels or PE (I_C) currents for central-open ring5 pmts at ~ 16 nA (~ 4 GHz, ~ 25 PEs/e⁻)
 - Will require custom tuned base divider to achieve desired 0.1% non-linearity
 - M. Gericke and group will design bases for future tests; for now, two different factory bases were purchased: one standard circuit and one tapered (for high pulsed linearity)
- A non-trivial complication for precision measurements is calibrating the incident light level or photocathode current. We use special unity gain bases for PREX/CREX; need this for MOLLER

JLab Hall A

Baseline Design Stack and Light Guide Concepts

- Detector concept uses a layered "stack" of tungsten and fused silica (quartz) to induce EM showering and produce Cherenkov light
- "Baseline" design developed using GEANT4 optical MC simulation:
 - Current design uses a 4-layer stack with 8 mm tungsten and 10 mm quartz pieces
 - Cherenkov light directed to 3 inch PMT using air-core, aluminum light guide

- Tungsten is high purity (99.95%) and quartz is optically polished Spectrosil 2000
- Light guides are aluminum specular reflectors (Miro-silver 27, Anolux, or al. mylar, ...)
- Total radiation length: 9.1 X_0 tungsten + 0.4 X_0 quartz = 9.5 X_0

Quartz and Tungsten Ordered in Nov 2017

- For "benchmarking" prototype stack:
 - > Quartz: 6 mm (thick) by 86 mm (tall) by 40 mm (wide) --4 pieces ($\frac{975}{piece} = \frac{3.9k}{2}$)
 - > Quartz: 10 mm (thick) by 90 mm (tall) by 40 mm (wide) --4 pieces ($\frac{1005}{piece} = 4.0k$)
 - > Tungsten: 6 mm (thick) by 80 mm (tall) by 40 mm (wide) 4 pieces (\$85/piece = \$340)
 - Tungsten: 8 mm (thick) by 80 mm (tall) by 40 mm (wide) 4 pieces (110/piece = 440)
 - Tungsten: 2 mm (thick) by 80 mm (tall) by 40 mm (wide) 4 pieces ($\frac{25}{piece} = 100$)
- For "full-scale" prototype stack:
 - > Quartz: 6 mm (thick) by 111 mm (tall) by 246 mm (wide) -- 4 pieces (\sim \$1750/piece = \$7.0k)
 - Quartz: 10 mm (thick) by 115 mm (tall) by 246 mm (wide) -- 4 pieces (~\$1940/piece= \$7.8k)
 - Tungsten: 6 mm (thick) by 105 mm (tall) by 246 mm (wide) 4 pieces ($\frac{600}{piece} = 2.5k$)
 - > Tungsten: 8 mm (thick) by 105 mm (tall) by 246 mm (wide) 4 pieces (\$20/piece = \$3.2k)
 - Tungsten: 2 mm (thick) by 105 mm (tall) by 246 mm (wide) 4 pieces ($\frac{200}{piece} = \frac{0.8k}{200}$

Purchasing these pieces allows for Configs 1, 3, and 4 (A and B) to be tested

Total quartz: \$25k, total tungsten: \$7.5k: Total = \$32.5k

- This purchase enables construction of two benchmarking and two full-scale prototype sets
- Building two sets of prototypes will allow for more efficient testing during both SLAC testbeam and cosmic tests at SBU and ISU. We can each build a different configuration to test

MOLLER Task Tracking: ISU Tasks

Subsystem	Task	Description	Status	Owner	Relation to Director's Review Report	Estimated Completion Date
Detectors	Radiation hardness of detector components	Investigate which detector components need radiation testing and carry out 50 MRad test	Michael and Dustin devise a plan. Status: Initial list being established	Dustin	Page 12:``, all components in the scattered beam envelope should show negligible damage up to 50 MRad."	May 2019
Detectors	QC plan for main detector quartz	Devise plan to evaluate robustness of main detector quartz (Redundant with ``radiation hardness of detector components")	Michael and Dustin to devise a plan? Not yet started	Dustin	Page 12: Recommendation: ``Conduct radiation damage tests to at least 50 MRad to qualify fused silica for use in the thin detector	May 2019
Detectors	Shower-Max module mechanical assembly design	This task incorporates the physical design and prototyping of the showerMax detector, as well as the associated mechanical mounting structure	Advanced state of first prototype design, including mechanical assembly	Dustin	Not explicitly mentioned	May 2018

Radiation Hardness Test plan Update

•Radiation hardness testing of mechanical assembly materials and parts (ISU, UM)

- Irradiated several light-guide (LG) material samples over a 3 day test run from Mar 22 24, 2016 at the Idaho Accelerator Center (IAC) using 8 MeV, 65 mA I_{peak}, 4µs pulse width at 250 Hz reprate (dose exposure rate was calculated but too high to measure):
 - Measured LG specular reflectivity for 200 800 nm at 90, 60, 45, and 30 degrees.
 - No measurable change in reflectivity was detected for >>50 MRad exposure
- Other assembly materials to test could include Kapton and Tedlar (light tight wrappings) and possibly 3D-printed custom plastic assembly components (Nylon, ABS, PLA, ...) as well as high-density shielding plastics, epoxies, ...
- •Radiation hardness testing of electronic components: active bases, preamps, ...(ISU, UM)

•Main Detector Quartz Robustness (radiation hardness, QA, etc.) (ISU, UM)

- ✤ Apparatus developed to make relative transparency measurements between 200 800 nm
 - Uses Ocean Optics USB spectrometer, UV-Visible light source, custom holder/stand
- Energy deposition calculations (dE/dx and brem) underway for 8 MeV beam and 1.5 cm thick quartz—for heating and thermal expansion considerations (do not want to crack quartz)
- Developed plan to calibrate and monitor beam dose exposure during study
- Had a 1 day IAC test run on May 31, 2018; dose exposure rates calibrated; performed preliminary quartz irradiation test

Radiation Hardness QA for quartz and other components

25 MeV LINAC (Main Hall and Airport)

RF Frequency: 2856 MHz (S-Band)

Energy Range: ~4~25 MeV (current varies)

Pulse Width: ~50ns to 4 micro seconds

Repetition Rate: single pulse to 360 Hz

 $\underline{Ports:}$ 0 degree, 45 degree and 90 degree (Beam energy resolution \sim 1+/-15%)

		25B Energy vs Current	
	6	17	
Energy (MeV)	U port (mA)	45 port (mA)	an bout (www
23	55	55 @ 3.8uS	46@ 3.6uS
20	100	70 @ 4 uS	65 @ 4 uS
16	100	48 @ 3.6 uS	48@ 3.6uS
13	80	30 @ 3.3 uS	15 @ 3.345
10	60	18 @ 3 uS	7.5@3uS
9	110	30 @ 4uS	15@4uS
6	100	60 @ 4 uS	60 @ 4 uS
4	50	20 @ 4 uS	20 @ 4 uS

• The key issue is how well can we calibrate dose exposure?

daho ccelerato

> Performed a 1 day engineering run this past spring to address this question as well as perform preliminary radiation hardness QA quartz studies

Dustin McNulty

Radiation Hardness QA for quartz and other components

•Performed 1 day irradiation study on Spectrosil 2000 quartz and 3D printed ABS plastic samples

- •Tests performed on May 31, 2018 at the Idaho Accelerator Center (IAC) using 8 GeV electrons
- •Dose exposure rates calibrated using thermographic film dosimetry measurements
- •Quartz transparency measurements taken at 10, 30, and 60 MRad exposure levels
- $\bullet Plastic \ dog bones \ radiated \ at \ similar \ levels \ and \ tensile \ strength \ (stretching) \ measurements \ made$

ergy Range: Ise Width: /	_~4~25 MeV(~50ns to 4 mic <u>e:</u> single pulse	(current varies) cro seconds				
se Width:	~50ns to 4 mic	cro seconds				
etition Rat	e: single pulse	aro seconos				
etition Rat	e: single pulse					
		e to 360 Hz				
ter 0 do are	AE dogroo	and 00 degrees (Ream or	aray recolution	1+/-		7
(a)	e, 45 degree a	and so degree (Beam en	lergy resolution /	14/-		
.,						
		25B Energy vs Current		Street of the local division in the local di		
		25B Energy vs Current				Tin part
nergy (MeV) 🔻	0 port (mA)	25B Energy vs Current 45 port (mA)	90 port (mA)		A. N.	
nergy (MeV) -	0 port (mA) 55	25B Energy vs Current 45 port (mA) 55 @ 3 & 6	90 port (mA) 46 @ 3.6 uS	A MARK		
nergy (MeV) = 23 20	0 port (mA) 55 100	25B Energy vs Current 45 port (mA) 55 @ 3.8.6 70 @ 4 us	90 port (m A) 46 @ 3.6 u5 65 @ 4 u5			
nergy (MeV) - 23 20 16	0 port (mA) 55 100 100	25B Energy vs Current 45 port(mA) 55 @ 3.845 70 @ 4 45 48 @ 3.645	90 port (mA) 46 @ 3.6 u5 65 @ 4 u5 48 @ 3.6 u5			
nergy (MeV) 23 20 16 13	0 port (m A) 55 100 100 80	25B Energy vs Current 45 port (mA) 55 @ 3.8.6 70 @ 4 u5 48 @ 3.6.u5 30 @ 3.3.u5	90 port (mA) 46 @ 3.6 u5 65 @ 4 u5 48 @ 3.6 u5 15 @ 3.3u5			
nergy (MeV) - 23 20 16 13 10	0 port (mA) 55 100 100 80 60	25B Energy vs Current 45 port(mA) 55 @ 3.8.6 70@ 4 u5 48 @ 3.6.05 30 @ 3.3.05 18 @ 3.05	90 port (mA) 46 @ 3.6 u5 65 @ 4 u5 48 @ 3.6 u5 15 @ 3.3u5 7.5 @ 3 u5		Co I	
nergy (MeV) - 23 20 16 13 10	0 port (mA) 55 100 100 80 60	25B Energy vs Current 45 port(mA) 55 @ 3 845 70@ 4 45 48 @ 3.645 30 @ 3.345 18 @ 3.45	90 port (mA) 46 @ 3.6 uS 65 @ 4 uS 48 @ 3.6 uS 15 @ 3.3 uS 7.5 @ 3 uS		Color	
nergy (MeV) - 23 20 16 13 10 9	0 port(m.A) 55 100 100 80 60 110	25B Energy vs Current 45 port(mA) 55 @ 3.8u5 70 @ 4 u5 48 @ 3.6u5 30 @ 3.3u5 18 @ 3u5 30 @ 4.6	90 port (mA) 46 @ 3.6 u5 65 @ 4 u5 48 @ 3.6 u5 15 @ 3.3 u5 7.5 @ 3 u5 15 @ 4 u5			

Dustin McNulty

Shower-max: Back-up Slides

daho

JLab Hall A

Beam Dose Exposure Rate Calibrations (May 2018)

Optically Stimulated Luminescence (OSL) dosimeter (~ 7 mm by 7 mm square)

Glass slide for spot profile measurements

ISU MS degree student Connor Harper's thesis based on this work: https://www2.cose.isu.edu/~mcnudust/ publication/studentWork/connorHarper Thesis.pdf

OSL arrays for dose profile measurements

Dustin McNulty

Shower-max: Back-up Slides

(2019Dec11-12) 56

Quartz Transparency Measurements

• Could be possible to use conventional 3" pmts with electronic switching between unity gain base (integrating mode) and high gain base (counting mode)

ShowerMax Prototype Construction Timeline

- <u>Feb Mar 2018</u>: Benchmarking prototype frames fabricated with 3Dprinter using ABS plastic (configs 1A and 1B)
- <u>April 2018</u>: Full-scale aluminum frame and light guide cut-outs fabricated at machine shop
- <u>May 2018</u>: Light guide bending and frame assembly at ISU for fullscale configs 1A and 1B
- June 2018: Config 1A full-scale and benchmarking prototype frames and LG delivered to SBU for stack assembly and installation

14

Teatbeam Apparatus under construction

- Testbeam stand under construction
- Motion control system in place
- GEM system is operational, analysis software under development

ISU Cosmic stand with 4 GEM chambers

M Design Review

JLab Hall A

Candidate Design for Stack Prototype: Config #2

Config #	t _f (mm)	to (mm)	tw (mm)	b (mm)	a (mm)	\mathbf{X}_{0}	R _{mol} (mm)	Leakage (%) 2, 5, 8 GeV from G4 MC	1mm offset Leakage (%)	2mm offset Leakage (%)	Bench. Mean PEs	Bench. RMS / Mean	full- scale Mean PEs	full-scale RMS / Mean
2	17	12.5	5	65	43.2	9.5	11.0	~0 ~0	~0 ~0	~0 ~0	2412 4994	0.19 0.15	382 1075 1772	0.26 0.18 0.16

JLab Hall A

Candidate Design for Stack Prototype: Config #3

Config #	t _f (mm)	to (mm)	t _w (mm)	b (mm)	a (mm)	X ₀	R _{mol} (mm)	Leakage (%) 2, 5, 8 GeV from G4 MC	1mm offset Leakage (%)	2mm offset Leakage (%)	Bench. Mean PEs	Bench. RMS / Mean	full- scale Mean PEs	full-scale RMS / Mean
3	14	12.5	6	68	38.2	9.5	11.0	0.5 0.3	0.6 0.4	0.8 0.5	2412 5113	0.19 0.13	393 1052 1696	0.22 0.17 0.15

JLab Hall A

Candidate Design for Stack Prototype: Config #4

Config #	t _f (mm)	ta (mm)	t⊮ (mm)	b (mm)	a (mm)	X ₀	R _{mol} (mm)	Leakage (%) 2, 5, 8 GeV from G4 MC	1mm offset Leakage (%)	2mm offset Leakage (%)	Bench. Mean PEs	Bench. RMS / Mean	full- scale Mean PEs	full-scale RMS / Mean
4	6	12.5	6	68	38.2	7.3	11.0	~0 ~0	~0 ~0	~0 ~0	5171	0.17	469 1067 1603	0.21 0.20 0.20

Simulation Results for new Stack Configs

					Max		Tungsten	Quartz	Total	Moliere
Config #	t_f (mm)	t_q (mm)	t_w (mm)	b (mm)	A (mm)	Х	Weight (N)	Weight (N)	Weight (N)	R_m (mm)
1A	8	10	8	64	44.59	9.46	156.09	35.57	191.66	11.00
1B	8	6	8	48	61.48	9.33	156.09	35.57	191.66	11.00
4A	6	10	8	64	44.59	8.89	146.33	35.57	181.91	11.11
4B	6	6	6	42	65.73	7.04	117.07	35.57	152.64	11.53

	Benchmark - 2GeV						
Config #	RMS/Mean	Leakage (%)	Leakage 2mm offset (%)	Leakage 2° angle (%)			
1A	0.17	0	0	-0.1			
1B	0.19	0	0	0.2			
4A	0.19	0	0	-			
4B	0.21	0	0	-			

	Benchmark - 5GeV						
		Leakage					
Config #	RMS/Mean	Leakage (%)	2mm offset (%)	2° angle (%)			
1A	0.13	0.04	0.09	-0.4			
1B	0.14	0	0	0.2			
4A	0.17	0.06	0.3	-			
4B	0.19	0	0	-			

	Benchmark – 8GeV						
			Leakage	Leakage			
Config #	RMS/Mean	Leakage (%)	2mm offset (%)	2° angle (%)			
1A	0.12	0	0	-			
1B	0.13	0	0	-			
4A*	0.18	0	0	-			
4B	0.19	0	0	-			

	Full Scale ShowerMax – 2GeV					
Config #	RMS	Mean	RMS/Mean			
1A	63.36	315.9	0.20			
1B	45.46	197.7	0.23			
4A**	60.16	300.2	0.20			
4B**	39.67	179.3	0.22			

	Full Scale ShowerMax – 5GeV					
Config #	DMS	Moon	DMS/Moon			
Coning #	RIVIS	wear	RIVIS/IVIEAI			
1A	123.7	768.5	0.16			
1B	87.82	473.6	0.19			
4A**	126.8	677.4	0.19			
4B**	80.61	397.4	0.20			

	Full Sc	Full Scale ShowerMax – 8GeV					
Config #	DMS	Moon	DMS/Moon				
Conlig #	RIVIS	Mean	RMS/Mean				
1A	183.2	1197	0.15				
1B	129.1	732.3	0.18				
4A**	187.9	1012	0.19				
4B**	118.8	591.3	0.20				

Dustin McNulty

Shower-max: Back-up Slides