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ABSTRACT. We study the shape of an elastic rod subject to both bending and
twisting, when the rod’s resistance to bending depends on the direction of the
deformation. In this sense, we develop the theory of anisotropic rods in the
plane and in space.
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1. INTRODUCTION

The study of elasticae links two classical subjects; the theory of curves and the
mechanics of solids. They were studied by Galileo, the Bernoulli family, Euler,
Kirchhoff, Born and many others. Their study played an important part in the
development of elliptic functions and the calculus of variations. For a detailed
historical background, we refer the reader to [14]. We give some highlights below.

In 1691, the problem of determining the bending deformation of rods was first
formulated by J. Bernoulli (see, for instance, [14, 15, 18]). The simplest version
of this classical problem consists on determining the shape of an ideal elastic rod,
i.e. a thin elastic rod with circular cross sections and uniform density, naturally
straight and prismatic when unstressed and which is being held bent and twisted
by external forces and moments acting at its ends alone. Since then, if the rod’s
resistance to bending is independent of the direction, there have been many results
about this topic as well as some nice applications ([2, 6, 7, 8, 9, 11, 12, 13] to
mention some).

In particular, if there is no twist and the rod is bent in a plane, so that the center
line of the rod becomes a planar curve, we have the Euler-Bernoulli planar elas-
tica. As suggested by D. Bernoulli, nephew of J. Bernoulli, an elastic rod should
bend along the curve which minimizes the potential energy of the strain under suit-
able constraints. Therefore, in 1742, in a letter to L. Euler, he proposed to study
elasticae as minimizers of the bending energy.

Using this formulation of elastica as a variational problem, the possible qualita-
tive types for untwisted planar rod configurations were described by L. Euler in his
book of 1744, [4], although J. Bernoulli had already partially solved this problem
between 1692 and 1694, [1].

Much later, Kirchhoff modeled an elastic rod subject to both bending and twist-
ing, by coupling to a curve in 3-space, the center line, a frame in the orthogonal
space and adding the energy of this frame to the elastic energy. In this setting,
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J. Langer and D. Singer [12], formulated a variational problem for the center line
alone using an affine combination of the bending energy and the total torsion. In
fact, they proved that the center line of a Kirchhoff elastic rod in equilibrium is an
extremal curve for this combination of functionals.

However, if the rod’s resistance depends on the direction of the bending defor-
mation, less is known about their shape. This resistance, which is measured with
the Young’s modulus, is in this case anisotropic.

It is to be expected that rods which have some type of internal structures such
as fibers, grains or strata might exhibit this characteristic. It may also be the case
that this anisotropic response to bending may result from idealizing an object of
unequal dimensions, such as long rectangular plank, as a curve. Anisotropic resis-
tance to bending may also be the result of the rod being placed in an anisotropic
medium. In some sense, the classical version of the bending energy is already
anisotropic since the rod can only bend along or, in the case of the Kirchhoff rod,
twist around, its tangent direction. Here however we consider a type of ‘extrinsic’
anisotropy, where the resistance to bending is governed by the orientation of the
curve in the ambient space.

In this paper, we study the geometry of the rod when its resistance to bending
depends on the direction of the curves’s tangent. To do this, we adopt a device from
crystallography which is known as the Wulff construction, [19]. We begin with a
suitable positive function γ(·) on the Sn, (n = 1, 2). We regard γ(T) as measuring
the unit energy per unit length of a curve having unit tangent vector T . Thus, γ
defines a Minkowski-Finsler metric. The Wulff shape of γ is the set

W := ∂{~v ∈ Rn+1 |~v · T 6 γ(T), ∀T ∈ Sn} .

In this paper, the function γ is restricted by the condition that W, which is always
convex, is also smooth. For a sufficiently smooth curve C ∈ Rn+1, the Cahn-
Hoffman field ξ assigns to each point of C, the point ξ ∈W where the unit tangent
at C agrees with the unit normal to W. Our definition of this field is an adaption
to the theory of curves of a field introduced to study surfaces [3]. We then define
the anisotropic bending energy of C as the energy of the map ξ. In the isotropic
case (γ ≡ 1) this definition agrees with the usual one. The critical curves for
the anisotropic bending energy will be called anisotropic elastica or constrained
anisotropic elastica if the arc-length of the curve is constrained to be fixed. The
definition of the anisotropic bending energy allows us to generalize the definition
of the Kirchhoff rod to the anisotropic case.

There are certainly other models for anisotropic rods in the literature, which we
contrast with our’s below.

As expected, the equilibrium equations for the elastica and Kirchhoff rods lead
to non linear fourth order equations. Our main approach is to reduce the order
by studying the Cahn-Hoffman field. Solving for the elastica is basically reduced
to studying geodesics in W and solutions of the second order gradient flow for a
component of the Gauss map ofW, while for the Kirchhoff rod, an additional term
containing the geodesic curvature of the Cahn-Hoffman map must be included. We
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use this approach to prove the existence of a minimizer for the anisotropic bending
energy of a curve with clamped endpoints.

Despite the generality involved, these definitions lead to a surprisingly coherent
theory. For example, in the planar case, we are able to give integral formulas for
elastica. While in the three dimensional axially symmetric case, we can reduce the
construction of many anisotropic elasticae to quadratures.

The paper is organized as follows. In Chapter 2, we give a short derivation
of the anisotropic bending energy for planar curves. In Chapter 3, we study the
anisotropic energy of space curves. Chapter 4 discusses the anisotropic Kirchhoff
rod in three dimensional space. In Chapter 5, we discuss results for elastica in
three space by specializing the results of the previous chapter. Chapter 6 discusses
further specialization to the case of axially symmetric energies.

2. MOTIVATION

Let C denote a smooth, regular planar curve which we regard as representing a
bent rod having uniform cross sections. We consider the curve as lying in the xz
plane. At a point p on C, we consider an infinitesimal arc of length ds. To second
order, we can replace this arc by the corresponding arc of the osculating circle to
C at p; that is, the circle having the same curvature and tangent as C has at p.
We denote the radius of this circle (the radius of curvature of C) by R. Under a
displacement of the curve C, this radius undergoes a change R → R + x and the
arc-length undergoes a change ds = Rdθ→ ds ′ = (R+ x)dθ. It follows that the
strain is given by

ε :=
ds ′ − ds

ds
=
x

R
,

and the corresponding stress is

σ = Eε = E
x

R
,

where E denotes the Young’s modulus, which measures the rod’s resistance to bend-
ing. Letting S denote the cross-sectional surface of the rod, it then follows that the
contribution to the potential energy of the curve from the infinitesimal arc is given
by

dE =
1

2

E

R

(∫
S

x2 dS

)
ds =

1

2
Eκ2Iy ds,

where κ = 1/R is the curvature of C at p and Iy is the moment of inertia of S about
the y axis. (See [10] page 75 or Chapter 38 of [5] for details).

We now postulate that the Young’s modulus is anisotropic, i.e. that it depends
on the direction of the bending deformation. This means that the material of the
rod is more resistant to bending in some directions than in others. We also assume,
that this resistance to bending varies smoothly with the direction so that we can
represent the modulus as a smooth, positive function E(θ). We intend to represent
this function as the reciprocal of the square of the curvature of a convex curve Ω.
In fact, it is easy to see that the necessary and sufficient condition for the existence
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ofΩ is the mild condition

(1)
∫2π
0

eiθ
√
E(θ) dθ = 0 .

Proposition 2.1. Let E(θ) be a real valued continuous function on the circle S1

such that E has finite left and right hand derivatives at each point. Then if E
satisfies (1), there exists a twice differentiable solution of

(2) γθθ + γ =
√
E ,

on S1.
Any two such solutions differ by a homogeneous trigonometric polynomial of

degree 1.

Proof. Under the given hypothesis, we can express E as a Fourier series,√
E(θ) = (z0 + z̄0) +

∑
j>2

(zje
ijθ + z̄je

−ijθ) .

Define

γ(θ) := (z0 + z̄0) +
∑
j>2

(zje
ijθ + z̄je

−ijθ)

1− j2
.

Then γ ∈ C2(S1) and it is straightforward to see that γ satisfies (2).
The final statement in the theorem follows since cos θ and sin θ span the kernel

if γ 7→ γ ′′ + γ. q.e.d.

In particular, condition (1) will be satisfied, for example, if E is an even function
of θ. Setting µ(θ) equal to the curvature of Ω, we arrive at the potential energy
functional

E[C] = m

∫
C

(
κ(s)

µ(θ(s))

)2
ds ,

where θ(s) is the angle that the tangent to the curve C makes with the positive
horizontal axis andm is a positive constant.

To obtain the energy functional given above in a more mathematical manner,
we need to begin by considering a first order anisotropic line energy defined for a
regular parameterized curve in the plane. We let γ : S1 → R+ denote a sufficiently
smooth function satisfying the following convexity condition. We require that if θ
denotes the usual polar angle in the plane, then

1

µ
:= γθθ + γ > 0

holds. The function µ represents the curvature of the plane curve given by

χ := θ 7→ (γθ − iγ)e
iθ ,

where we have identified R2 with the complex plane C. The (convex) curve Ω
defined by χ will be referred to as the Wulff shape. For purposes that will be clear
later, we introduce the curve Ω⊥ which is a clockwise rotation of Ω through an
angle π/2.
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For any smooth, regular curve C : I → R2, we denote by T its unit tangent
and byN its unit normal withN = JT where J is counter-clockwise rotation by an
angle π/2. We assume that s is the arc-length parameter along C. As above, we
represent T by eiθ and write γ(θ) as γ(T) when desired.

We define the energy of C by

F[C] =

∫
C

γ(T) ds .

In the integrand, the function γ should be considered as the unit energy per unit
length of an infinitesimal piece of the curve having tangent T and length ds. Note
that this is a special type of Finsler metric often referred to as a Minkowski-Finsler
functional.

To obtain the equilibrium conditions, we subject the curve C to a variation, i.e.
for small values of ε we consider a family of curves C(ε, s) := C(s) + ε(δC(s)),
where δC := φ(s)T + ζ(s)N. We do not impose any boundary conditions on the
variation yet. If κ denotes the curvature of C, then the anisotropic curvature is
defined by

(3) λ(s) :=
κ(s)

µ(θ(s))
.

The first variation of the functional F is then given by

δF[C] = −

∫
C

λN · δC ds+ (Jχ (θ(s)) · δC
∣∣L
0
,

where I = [0, L], L denoting the length of C.
If the endpoints are fixed, then equilibria must satisfy λ ≡ 0 so the equilibria

are just straight lines. If the curves are assumed to be closed and are constrained to
enclose a fixed area, then the critical points will satisfy λ ≡ constant. The (closed)
solutions of this problem are homothetic to Ω⊥. In fact, rescalings of Ω⊥ are the
absolute minimizers of F among all curves enclosing the same area. This result,
which is a special case of Wulff’s Theorem, is a generalization of the isoperimetric
problem in the plane.

As suggested before, we will consider the functionals

Eβ[C] :=

∫
C

(
λ2 + β

)
ds

The case β 6= 0 amounts to constraining the arc-length to be a fixed constant. The
case β = 0 will be called the unconstrained case. We regard β as a Lagrange
multiplier which fixes the length of the curve representing a flexible, inextensible
rod.

Note that if we define the map

ξ := χ ◦ T : C→ Ω ,

then

E0[C] =

∫
C

||dξ||2 ds ,
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which is the energy of the map ξ. We will call the map ξ : C → Ω the Cahn-
Hoffman field. Note that the Cahn-Hoffman field ofΩ⊥ is just a counter-clockwise
rotation through an angle π/2.

Since ξs = θsi(γθθ + γ)eiθ = λN, it follows that the normal line to C(s) and
the tangent line to Ω at ξ(s) are parallel. This means that the normal to Ω is the
tangent T = eiθ and

θs = κ , θσ = µ ,

at corresponding points, where σ denotes the arc-length along Ω. From this we
get dσ = λ ds . If ` denotes the length of Ω, we get using the Cauchy-Schwartz
inequality,

` 6
∫
C

|dσ| =

∫
C

|λ| ds 6

(∫
C

λ2 ds

)1/2(∫
C

ds

)1/2
,

and, therefore,
`2

L
6 E0 .

If instead, we use the inequality between the geometric and arithmetic means, we
get that for any a ∈ R∗

` 6
a2

2
(E0 +

1

a4
L) .

So if β > 0 holds, we take β = a−4 and get

2
√
β ` 6 Eβ.

Equality can only hold when λ ≡ constant, i.e. the curve C is a rescaling ofΩ⊥.
If the curve C is not closed, but the angle θi, i = 1, 2 that the tangent to the

curve makes with the horizontal direction at the endpoints are known, an a priori
lower bound for E0 can still be found. Since the map χ : S1 → Ω is a bijection, θi,
i = 1, 2 determine two arc of Ω which join the two points of Ω where the normal
toΩmakes the angle θi with the horizontal. We let σ(θ1, θ2) be the shorter of the
lengths of the two arcs. We can then use

σ(θ1, θ2) 6
∫
C

|dσ| =

∫
C

∣∣dσ
ds

∣∣ds = ∫
C

|λ|ds 6

(∫
C

λ2 ds

)1/2(∫
C

ds

)1/2
,

so that
(σ(θ1, θ2))

2

L
6 E0 .

Also, if β > 0 holds, then

(4) 2
√
β σ(θ1, θ2) 6 Eβ

is an a priori lower bound for the functional.
To obtain the first variation formula, we start by computing the pointwise first

variation of the anisotropic curvature with respect to the variation field δC =
φ(s)T + ζ(s)N. We get

δλ = ∂s

(
ζs

µ

)
+
κ2ζ

µ
+ φλs .
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From this and integrating by parts, we get

δEβ[C] =

∫
C

2λδλ+
(
λ2 + β

)
(−κζ+ φs) ds

=

∫
C

2λ

(
∂s

[
ζs

µ

]
+
κ2ζ

µ

)
−
(
λ2 + β

)
κζ ds+

([
λ2 + β

]
φ
∣∣L
0

=

∫
C

2ζ(∂s

[
λs

µ

]
+
1

2
κ[λ2 − β]) ds+ (2

ζsλ− ζλs
µ

+ [λ2 + β]φ
∣∣L
0
.

Regardless of the boundary conditions, an equilibrium curve must satisfy the
equation

(5) ∂s

(
λs

µ

)
+
1

2
κ
(
λ2 − β

)
= 0

in its interior. We will refer to such a curve as an anisotropic elastic curve for the
energy density γ. Note that for any γ, straight lines (λ = 0) are obvious examples.
A complete classification of anisotropic elastic curves for symmetric densities can
be found in [17].

Remark. Note that any rescaling ofΩ⊥ is a solution of (5). For rΩ⊥, 0 < r ∈ R,
we have λ ≡ 1/r so rΩ⊥ is a critical point for Er−2 . In addition, if C ⊂ rΩ⊥ is
the shorter of two arcs connecting distinct points in rΩ⊥, then C realizes the lower
bound (4).

Remark. AssumeΩ⊥ is invariant with respect to reflection across the vertical axis
and letW be the surface of revolution obtained by rotatingΩ⊥ about this axis. The
convex surface W is the Wulff shape for an anisotropic energy functional defined
for surfaces in R3. When β = 0 a cylinder over an anisotropic elastic curve will be
a critical point for the anisotropic Willmore energy corresponding to this functional
which is given by

S 7→
∫
S

Λ2 dS ,

where Λ is the anisotropic mean curvature. For details see [16].

Assume that λ is not constant. Multiplying by λs/µ we can see that equation (5)
possesses the first integral

(6)
(
λs

µ

)2
+

(λ2 − β)2

4
≡ constant =: p2 .

In fact, the case λ ≡constant can also be included considering that p may vanish.
That is, p = 0 corresponds to rescalings of Ω⊥. In this case C = rΩ⊥ and we
have that β = 1/(r2).

If p 6= 0 we can set

(7) λs/µ = p cos θ̂, (λ2 − β)/2 = p sin θ̂

for some function θ̂(s). Differentiating the second equation above, we get

θ̂sp cos θ̂ = θ̂sλs/µ = (p sin θ̂)s = λλs ,
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so on any interval where λ is not constant, we get θ̂s = λµ = κ = θs, i.e. θ̂ = θ+
constant=: θ+ θo, so we get from (7)

(8) λs/µ = p cos(θ+ θo),
λ2 − β

2
= p sin(θ+ θo)

Now, from the second equation in (8), we get

(9) λ =
θs

µ(θ)
= ±

√
2p sin(θ+ θo) + β .

so using that Cs = eiθ, we obtain

dC = Cs ds = ±
eiθ dθ

µ(θ)
√
2p sin(θ+ θo) + β

and so

(10) C = C(θ) = ±
∫θ eiθ̃

µ(θ̃)
√
2p sin(θ̃+ θo) + β

dθ̃ .

Note also that (9) also gives an expression for the arc-length of C

s = ±
∫θ1
θ0

dθ

µ(θ)
√
2p sin(θ+ θo) + β

.

Recall that λ = κ/µ = θs/µ so we obtain from the first equation of (8) that,

1

µ

(
θs

µ

)
s

= p cos(θ+ θo).

which is an anisotropic version of the pendulum equation. In particular, in the
isotropic case (µ ≡ 1), we recover, in our setting, Kirchhoff’s kinetic analogy,
which describes the relation between equilibrium equations and the motion of a
heavy body turning about a fixed point, i.e. a rigid pendulum [15].

Note that the formula (10) has an interesting linear structure. The only depen-
dency on the choice of γ comes from the appearance of the factor 1/µ. However,
by (3), this quantity depends linearly on γ. If γi, i = 1, 2 satisfy the smoothness
and convexity conditions that we have imposed then so will γ := a1γ1 + a2γ2
for suitable a1, a2 ≈ 0 and hence, by (10), the elasticae for γ will result from
taking the same linear combination of elasticae obtained from the individual γi’s.
Specifically, we take the linear combination of position vectors at points where the
oriented tangents of the elasticae agree. In particular, ifΩ is replaced by a suitable
parallel curve, i.e. γ is replaced by γ+ε with ε positive and small, then the result-
ing elasticae will add ε times an isotropic elastic curve to an elastica for γ. (See
Figure 6).

Below, we relate the arc-length of the curve C with that ofΩ.

Proposition 2.2. Let η(σ) be an arc-length parameterized arc of the Wulff shape
Ω. Let β ∈ R and A ∈ R2 be such that β + A · T > 0 holds along η. Define a
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reparameterization of η by setting

s :=

∫σ dσ√
β+A · T

.

Then, there exists an arc-length parameterized (constrained) anisotropic elastic
curve C(s) satisfying (

λs

µ

)2
+

(
λ2 − β

)2
4

=
1

4
‖A‖2 .

Proof. Notice that since σ is the arc-length parameter of the arc η ofΩ, we have
that

λ(s) =
ds

dσ
=
√
β+A · T(s)

using the reparameterization of the statement. Moreover, we also have

λs(s) = κ
A ·N(s)

2
√
β+A · T(s)

=
1

2
κ
A ·N(s)

λ(s)
.

Now, a planar curve is an anisotropic elastic curve if and only if it verifies (6).
In our setting, using above equations and (9), we conclude that(

λs

µ

)2
+

(
λ2 − β

)2
4

=
1

4

(
κ

µ

A ·N(s)

λ(s)

)2
+
1

4
(A · T(s))2 = 1

4
‖A‖2

holds. q.e.d.

Remark. The converse to the previous proposition also holds. It will be discussed
later in Section 5.1.

In order to obtain some explicit examples, we consider the densities

γn = γn(θ) = 1+
cos(nθ)
n2

.

Then

1

µ
= γθθ + γ = 1− (

n2 − 1

n2
) cos(nθ) .

We will refer to the Wulff shape for the density γn as Ωn. Some examples and
the corresponding elastic curves, produced using (10), are shown below. Figure 1
shows the Wulff shape for varying values of n. Figure 2 shows orbit like elastica.
These have positive curvature everywhere. Figure 3 shows orbit like elastica for
γ4 with varying values of β. Figure 4 shows elasticae with inflection points. Fi-
nally, Figure 5 shows anisotropic lemniscates. These are closed elasticae having
an inflection point at the double point.
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(A) n = 2 (B) n = 3 (C) n = 4

(D) n = 5

FIGURE 1. The Wulff shapesΩn.

(A) n = 2 (B) n = 3 (C) n = 4

(D) n = 5

FIGURE 2. Orbit like anisotropic elasticae forΩn.
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(A) β = 2 (B) β = 1.1 (C) β = 1.001

FIGURE 3. Orbit like anisotropic elasticae forΩ4 with θ0 = π/3
and different values of β.

(A) n = 3 (B) n = 4 (C) n = 5

FIGURE 4. Anisotropic elasticae containing inflection points.

3. ANISOTROPIC ENERGY IN 3-SPACE

In this section we are going to consider anisotropic energies of a curve C : I→
R3. The approach will differ substantially from the planar case since the Wulff
shape is now two dimensional. Our approach will be to express as much as we can
about the equilibrium curves using the Cahn-Hoffman field.

Let γ : S2 → R be a smooth, positive function. For each p ∈ S2, the set
of ~v ∈ R3 such that ~v · p 6 γ(p) is a half-space, so the intersection of these
half-spaces defines a convex body. The Wulff shape W of γ will be defined as the
boundary of this convex body:

W := ∂

 ⋂
p∈S2

{~v ∈ R3 |~v · p 6 γ(p)}

 .

We will assume in this paper that W is smooth. In this case, it is not hard to see
that the map

χ : S2 →W , p 7→ Dγ(p) + γ(p)p
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(A) n = 2
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(B) n = 3
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(D) n = 5

FIGURE 5. Anisotropic lemniscates.

(A) (B) (C) (D)

FIGURE 6. Elastica for a parallel Wulff shape: (A) shows a Wulff
shape for a function γ, (B) shows the parallel surface with γ re-
placed by γ + 0.7, (C) shows an elastica for the Wulff shape (A)
and (D) is an elastica for the Wulff shape (B).

is a smooth bijection, where Dγ denotes the gradient of γ on S2. Indeed, the map
χ is exactly the inverse of the Gauss map ν :W → S2, which is well defined since
W is convex.

Since W is convex, at each point p ∈ S2, we have a bijective, symmetric endo-
morphism field dχ|p given by

(11) dχ|p= D
2γ|p+γ(p)Id : TpS

2 → Tχ(p)W ,

where Id denotes the identity map and D2γ is the Hessian of γ on S2. Since
Tp(S

2) = Tχ(p)W, we can also consider dχ|p as an endomorphism field Tχ(p)W →
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Tχ(p)W. Its eigenvalues, denoted by 1/µi, i = 1, 2 are just the principal radii of
curvature of W. The orientation of W will always be chosen so that these are
positive.

Now, for a smooth curve C : I→ R3, we define an anisotropic energy by

F[C] :=

∫
C

γ(T) ds ,

where T denotes the unit tangent to C. We denote the usual Frenet frame along
C by {T,N, B} (if C is a geodesic, it should be understood that N and B are any
unit orthogonal constant vector fields of the normal bundle to C) and consider a
variation of C given by

(12) (s, ε) 7→ C(s) + εδC = C(s) + ε[φ(s)T + ζ(s)N+ψ(s)B] ,

where s represents the arc-length parameter ofC. We then obtain at (s, ε) = (0, 0),

(13) ∂s

TN
B

 =

 0 κ 0
−κ 0 τ
0 −τ 0

TN
B

 ,
which are precisely the usual Frenet equations involving the curvature, κ, and tor-
sion, τ, of the curve C(s). Moreover, we also obtain the variation of the Frenet
frame with respect to δC,

(14) ∂ε

TN
B

 =

 0 [φκ+ ζs −ψτ] [ψs + ζτ]
−[φκ+ ζs −ψτ] 0 ∗

−[ψs + ζτ] −∗ 0

TN
B

 .

For the sake of simplicity, we are not explicitly writing the terms ∂εN·B = −∂εB·
N since they are not used in the paper.

Using the formulas above, we can compute the variation of the measure along
the curve,

δ(ds) = (δC)s · T ds = [φs − ζκ] ds .

By using this and integrating by parts, we obtain

δF[C] =

∫
C

Dγ(T) · δT + γ[φs − ζκ] ds

=

∫
c

−∂s
[
Dγ(T) + γ(T)T

]
· δC ds+

(
Dγ(T) + γ(T)T

∣∣
∂C
.(15)

If we now define the Cahn-Hoffman field of C by ξ := χ ◦ T , we obtain that the
Euler-Lagrange equation for the functional F is ξs = 0. We therefore define the
anisotropic curvature vector by the equation

~λ := ξs .

Since ~λ ≡ 0 implies ξ is a constant vector along C, it follows easily that C
is a straight line. These are the geodesics in a particularly simple type of Finsler
manifold, i.e. one for which the Finsler metric only depends on the direction but
not on the position. Such a Finsler manifold is known as a Minkowski space.
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The Cahn-Hoffman field ξ = χ ◦ T : I → W can be understood as a curve in
the Wulff shape W. The parameter s need not be the arc-length parameterization
of the Cahn-Hoffman field, although this may occur in the special case that ξ(s)
is a geodesic in W. Indeed, throughout this paper we will denote the arc-length
parameter of a curve in W by σ, while reserving s for the arc-length of any curve
in R3. Therefore, for any curve C(s) in R3 we have an associated curve in the
Wulff shape, ξ(s). The converse also holds, although in this case the construction
is not independent of the parameterization of the initial curve. For a parameterized
curve inW, η(t), we define T(t) := χ−1 (η(t)) = ν (η(t)). Then,

(16) C(s) :=

∫s
T(t)dt

is an arc-length parameterized curve in R3 having T(s) as its unit tangent vector
field and χ(T(s)) as its Cahn-Hoffman field.

As it turns out, the length of the anisotropic curvature vector of C(s), con-
structed as above, is related with the choice of parameterization. In our case, since
σ represents the arc-length parameter of η, we have

‖~λ‖2 = ‖ξs‖2 = ‖ξσσs‖2 = σ2s‖ξσ‖2 = σ2s .

4. ANISOTROPIC KIRCHHOFF ELASTIC RODS

We will now consider a sufficiently smooth arc-length parameterized curveC(s)
in R3. The usual formulation of the variational problem for the Kirchhoff elastic
rod (KER), is to add to the elastic energy a second energy coming from an or-
thonormal framing of the normal bundle of the curve. This energy measures the
amount of twisting of the rod. Our treatment here follows closely that of [12],
which deals with the isotropic case.

If we denote the normal frame, referred to as the material frame, by {M1,M2}

and replace the usual elastic energy by an anisotropic one, we arrive at the func-
tional

(17) EK[C] :=

∫
C

(
||~λ||2 +$||∇⊥M1||

2
)
ds ,

for a suitable real constant $. We will consider this functional as defined on the
set of suitably smooth curves having prescribed C1 boundary conditions at their
endpoints.

At this point, we wish to briefly discuss another model for anisotropic rods
which appears in the literature (cf. [12] equation (2)). This is defined, relative
to an arbitrary framing of the ⊥ C, by defining Ts = k1M1 + k2M2 and using
the Lagrangian a1k21 + a2k

2
2 where ai, i = 1, 2 are coupling constants. This is

distinct, but related, to our model. If we chooseMi to be a field of eigendirections
for dχ|T , i.e. dχ|T (Mi) = µ

−1
i Mi, then

||~λ||2 = ||dχ|T (Ts)||
2 = ||dχ|T (k1M1 + k2M2)||

2 =
k21
µ21

+
k22
µ22
.
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The µi’s are, except in the isotropic case, never constant, but are functions of the
tangent direction.

We use the convention that when listing the vectors in any orthonormal frame
for ⊥ C the frame has the same orientation as the Frenet frame {N,B}. There is
another orthonormal frame of ⊥ C; the parallel frame {U1, U2}. The latter has
the property ∇⊥Ui ≡ 0, i = 1, 2. Let φ := ∠(N,U1). A simple calculation
shows that the parallel frame is determined, up to a constant rotation angle, by the
condition

φs = τ ,

where τ is the torsion of the curve C.
Letting θ := ∠(M1, U1), we find that ||∇⊥M1||

2 = (θs)
2. Since the frame

can be varied without changing the curve in (17), one easily obtains the condition
θss = 0must hold for an equilibrium of the functional, so that θs ≡ constant=: m.
We can then write (17) as

(18) EK[C] :=

∫
C

(
||~λ||2 +$m2

)
ds .

Again following [12], we make the assumption that, as the curve is traversed, the
material frame undergoes a fixed number of rotations relative to the Frenet frame.
This number q need not necessarily be an integer. This gives

2πq =

∫
C

(φ− θ)s ds =

∫
C

τ ds−mL ,

where again L denotes the length of C. If we now make a variation of both the
curve C and the frame, we arrive at

0 = δ

(∫
C

τ ds

)
+ (δm)L+mδL .

so

δm =
1

L
δ

(∫
C

τ ds

)
−m

δL

L
.

If we next take the first variation of the functional in (18) and use the previous
equation, we obtain

δEK[C] = δ

(∫
C

||~λ||2 ds

)
+ 2$m(δm)L+$m2δL

= δ

(∫
C

||~λ||2 ds+ 2$m0

∫
C

τ ds−$m20

∫
C

ds

)
,

where m0 denotes the value of m for an extremal configuration. This can be
interpreted as meaning that the curve C of an equilibrium configuration, known
as a center line, is an equilibrium for a functional of the form

(19) K[C] :=

∫
C

(
‖~λ‖2 + ατ+ β

)
ds ,

where α, β are two real constants.
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In what follows we will compute the first variation formula of K. By linearity,
it is clear that the first variation formula of K can be computed by parts, i.e.

δK[C] = δEo[C] + αδ

(∫
C

τds

)
+ βδ

(∫
C

ds

)
,

where Eo[C] denotes the unconstrained anisotropic elastic energy in R3.
We consider,

• The anisotropic elastic energy:
The first variation formula of the anisotropic elastic energy δEo[C] in terms
of an arbitrary parameterization of C can be computed as follows. Using
the variation (12),

Eo[C] =

∫
C

||ξt||
2

||Ct||2
||Ct|| dt =

∫
C

||ξt||
2

||Ct||
dt .

From this we easily obtain,

δEo[C] =

∫
C

2(δξ)s · ξs − (δC)s · T ||ξs||2 ds

=

∫
C

−2(δξ) · ξss + κζ|ξs||2 ds+ 2δξ · ξs
∣∣
∂C
.

Since ξ = χ(T), we get δξ = dχ|T (δT) which can be computed with the
aid of (14). Using this, (13) and integrating by parts we obtain

δEo[C] =

∫
C

∂s
(
2dχ|T (~λ

T
s ) + ||~λ||2T

)
· δC ds

+
(
2~λs · δξ−

[
2dχ|T (~λ

T
s ) + ||~λ||2T

]
· δC

)∣∣
∂C
.

• The total torsion:
For the first variation of the total torsion we first notice that (see formula
(26) in the Appendix of [12])

δτ =

(
1

κ
(δC)ss · B

)
s

+ (δC)s · (κB− τT) .

Then, by standard arguments involving integration by parts we conclude
that

δ

(∫
C

τds

)
=

∫
C

δτ+ τ (φs − κζ) ds = −

∫
C

(κB)s · δCds

+

(
1

κ
(δC)ss · B+ κB · δC

) ∣∣
∂C
.

• The length functional:
Finally, the variation of the length functional can be obtained using formula
(15) for γ = 1.
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Thus, combining the information above, we end up with the following first vari-
ation formula for the anisotropic energy K,

δK[C] =

∫
C

∂s

(
2dχ|T

(
~λTs

)
+
[
‖~λ‖2 − β

]
T − ακB

)
· δCds(

2~λs · δξ− (2dχ|T (~λ
T
s ) + [‖~λ‖2 − β]T − ακB) · δC

+
α

κ
(δC)ss · B

) ∣∣
∂C
.

As a consequence, anisotropic center lines of Kirchhoff elastic rods are de-
scribed by the conservation law

(20) 2dχ|T

(
~λTs

)
+
[
‖~λ‖2 − β

]
T − ακB ≡ constant =: A,

where A ∈ R3 is any constant vector.
Then, since bothB and dχ|T

(
~λTs

)
are orthogonal to T , by a simple manipulation

we get

(21) σ2s = ‖~λ‖2 = β+ T ·A = β+ ν ·A,

where for the last equality we are considering T as the unit normal toW, ν.
We point out that at any so ∈ I where σ2s(so) = ‖~λ(so)‖2 = 0 the change of

variable from s to σ fails to be bijective and, as a consequence, it does not define a
reparameterization. However, these points verify that

~λ(so) = ξs(so) = dχ|T (Ts(so)) = 0 .

Then, since dχ|T is an isomorphism we have that Ts(so) = κ(so)N(so) = 0,
concluding that the curvature of C, κ, at these points vanishes, i.e. they represent
the inflection points of the curve C(s).

Equivalently, looking at the Cahn-Hoffman field in W, ξ, we get that these
points are exactly the ones where ξ fails to be regular (ξs(so) = 0). In any case,
they are isolated points.

On the other hand, if we consider the normal component of (20), we have

2dχ|T

(
~λTs

)
− ακB = A− (A · T) T.

Moreover, if we put κB = T×Ts and we compose with the differential of the Gauss
map ofW, dν = dχ−1, we can rewrite above equation in terms of operators inW
as

(22) 2∇Ws ξs − αdν (ν× νs) = ∇W (ν ·A)

since now T = ν, the unit normal vector field toW.
Let us now introduce the operator J = ν × · (which defines an almost-complex

structure on TW) and consider the well known formulas relating J, the Gauss map,
ν, the mean curvature ofW, HW , and the Gaussian curvature ofW, KW ,

2HWJ = −Jdν− dνJ

2HWdν = −dν2 − KWId .
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The previous formulae follows from the Cayley-Hamilton Theorem. Using these
equations and the definition of J, it is easy to see that the second term in (22)
becomes

dν (ν× νs) = dν (Jdν(ξs)) = 2HWdν (J(ξs)) − dν
2 (J(ξs))

= KW (J(ξs)) = KWν× ξs .
Thus, substituting above equality in (22), we conclude with the following equation
inW

(23) 2∇Ws ξs = ∇W (ν ·A) + αKWν× ξs .
This equation represents a perturbed second order gradient flow and, therefore,

it can be related with a functional inW.

Theorem 4.1. A smooth curve ξ : [0, L] → W is the Cahn-Hoffman field of an
arc-length anisotropic center line C(s) in R3 if and only if ξ is a critical point of a
functional of the form

ΨA,α[ξ] =

∫L
0

||ξs||
2 + ν(ξ(s)) ·A ds+ α

∫s=L
s=0

kg dσ ,

where ν is the Gauss map of W, κg denotes the geodesic curvature of ξ, σ is the
arc-length parameter of ξ and A ∈ R3, α ∈ R are constants.

Proof. Let C(s) be an arc-length parameterized center line. We wish to express
the functional K using only its Cahn-Hoffman field ξ(s) which requires us to in-
terpret the torsion τ of the curve C in terms of its Cahn-Hoffman field ξ(s). To do
this, we use (16) and the well known formula for the torsion of C,

τ =
det(Cs, Css, Csss)

||Cs × Css||2
,

to obtain, after some calculation,

(24) τ = κgσs + (arctan(
τg

κn
))s .

Here, the quantities τg and kn are, respectively, the geodesic torsion and normal
curvature of ξ(s) and σ is the arc-length parameter along ξ. It then follows that∫L

0

τ ds =

∫L
0

κg dσ+ (arctan(
τg

κn
)(σ(s)))|L0 .

Now, taking into account that the endpoints of the center line are fixed to first
order and the normal field ν(ξ(s)) is the unit tangent field to C, we must impose
the condition ∫L

0

ν(ξ(s)) ds ≡ constant.

This involves three scalar constraints which can be included by using a vector La-
grange multiplier A ∈ R3. We regard the constant β in (19) as a Lagrange multi-
plier which fixes the length of C. This corresponds to fixing the parameter domain
[0, L] in the functional ΨA,α. We then obtain that if C(s) is a critical point for (19),
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then ξ(s) is a critical point of a functional ΨA,α. In particular, the Euler-Lagrange
equation for δΨA,α is (23).

Conversely, if ξ(s) is a critical point for a functional ΨA,α, then we can define
the arc-length parameterized curve associated to ξ by (16). Then Cs(s) = T(s) =
ν(ξ(s)) holds and so ξ := χ ◦ T is the Cahn-Hoffman field of C. For a compactly
supported normal variation in W, δξ = ζ(s)n of ξ, n denoting the normal to ξ in
W, we get

(25) δ

(∫L
0

κg dσ

)
=

∫L
0

(ζσσ + KWζ) dσ =

∫L
0

KWζ dσ ,

and so taking the first variation of ΨA,α yields (23). But as we showed above,
(23) is equivalent to the conservation law (20) for the curve C. Since this equation
characterizes center lines, the result follows. q.e.d.

Notice that the first part of above result can also be proven by comparing the
Euler-Lagrange equation of ΨA,α with (23).

The following offers an intrinsic characterization of the Cahn-Hoffman fields of
Kirchhoff center lines, i.e. one that only uses the arc-length parameterization.

Theorem 4.2. Let A ∈ R3 and β ∈ R be constants and let η ⊂ W be a regular
curve inW. Assume also that β+A ·ν > 0 holds and β+A ·ν 6= 0 holds almost
everywhere on η. Then η is a critical point for the functional ΨA,α if and only if η
is a critical point for the functional

Φ[η] =

∫
η

√
β+ ν ·Adσ+

α

2

∫
η

κg dσ .

In the variational problem forΦ, only variations which preserve the non negativity
of β+A · ν near its zeros are allowed.

Proof. First assume that C(s) is an arc-length critical point of ΨA,α. We start
by writing equation (23) using the arc-length parameter of the curve ξ in W, σ.
Let n := ν × ξσ be the normal to ξ in W. First, notice that ∇W (ν ·A) can be
decomposed into its tangent and normal components to ξ as,

∇W (ν ·A) = (ν ·A)σ sσξs + (ν ·A)n n .

Then, by (21),

2∇Wσ ξσ = 2s2σ∇Ws ξs + 2sσσξs = s2σ
(
∇W(ν ·A) + αKWν× ξs

)
+ 2sσσξs = s

2
σ(ν ·A)nn+ αsσKWn

=

(
(ν ·A)n
β+ ν ·A

+ α
KW√
β+ ν ·A

)
n.(26)

That is, the geodesic curvature of the curve ξ in the Wulff shapeW, κg, is given
by

(27) κg = ∂n

(
log(

√
β+ ν ·A)

)
+
α

2

KW√
β+ ν ·A

.
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Then, for a non negative smooth function f on W, and a smooth compactly
supported variation δξ = ζ(σ)n, the following formula holds,

δ

(∫
fdσ

)
=

∫
(ζ∇f · n− fkgζ)dσ =

∫
ζf (∇ log f · n− kg)dσ.

At points where f = 0, it is understood that f∇ log f is replaced by∇f.
Therefore, if η is a critical point of ΨA,α, we take f :=

√
β+ ν ·A and using

(25), we get

δΦ = δ

(∫
η

√
β+ ν ·A dσ

)
+ δ

(
α

2

∫
η

κg dσ

)
=

∫
η

√
β+ ν ·Aζ

(
∇ log

√
β+ ν ·A · n− kg

)
dσ+

α

2

∫
η

KWζdσ

=

∫
η

√
β+ ν ·Aζ

(
∇ log

√
β+ ν ·A · n− kg +

α

2

KW√
β+ ν ·A

)
dσ

= 0

by (27).
Conversely, if δΦ = 0, replacing ζ→ ζ

√
β+ ν ·A, shows that (27) holds and,

in turn (26) holds too. On any arc of η where β+A ·ν > 0, define a new parameter
s by

ds :=
dσ√

β+ ·A · ν
and consider the associated curveC of ξ as defined in (16). Then, a straightforward
calculation using (26) shows that ξ(s) satisfies (23). q.e.d.

To finish up this section, we are going to use our previous findings to describe
the torsion of the curve C(s) in R3 in terms of operators inW.

In the proof of Theorem 4.1 we have related the torsion of the curve C(s) in R3
with the geodesic curvature, κg, of the Cahn-Hoffman field in W by the equation
τ = κgσs+∂s(arctan τgκn ). Moreover, now, we are going to see how equation (23)
can also be used to compute τ(s).

Using the decomposition of∇W (ν ·A) inW (see previous proof) and (23) we
have that

det (ν, ξs, ξss) = det
(
ν, ξs,∇Ws ξs

)
=
1

2

(
(ν ·A)n σs + αKWσ

2
s

)
,

where det stands for the determinant and where we have used that ‖ν × ξs‖ =
‖ν‖ · ‖ξs‖ = σs since ξs is tangent toW while ν is its unit normal.

Finally, taking into account the formula for the torsion, (24), and (27) we con-
clude that

(28) ‖~λ‖2τ = det (ν, ξs, ξss) + ‖~λ‖2∂s
(

arctan
τg

κn

)
.
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5. ANISOTROPIC ELASTIC CURVES

We now specialize our results about anisotropic Kirchhoff elastic rods to study
anisotropic elastic curves. If we considerα = 0 in K, (19), we obtain the anisotropic
elastic energy of a curve,

Eβ[C] :=

∫
C

(
||~λ||2 + β

)
ds .

Specializing (20), we get that the critical points of Eβ are characterized by the
conservation law

(29) 2dχ|T (~λ
T
s ) +

(
||~λ||2 − β

)
T ≡ constant =: A .

Note that T is orthogonal to the image of dχ|T so

(30) ||A||2 = ||2dχ|T (~λ
T
s )||

2 +
(
||~λ||2 − β

)2
≡ constant =: 4p2 .

Clearly p = 0 implies β = ||~λ||2 and, in particular, for β = 0, we get 0 = ~λ =
κdχ|TN, so C is a line since dχ|T is an isomorphism.

In this setting, specializing the result of Theorem 4.1 we have,

Theorem 5.1. An arc-length parameterized non-linear curve C(s) in R3 is an
anisotropic constrained elastic curve if an only if there is a constant vectorA ∈ R3
such that the Cahn-Hoffman field ξ(s) is a (non constant) critical point of the
functional

ΨA[ξ] =

∫L
0

(
||ξs||

2 + ν(ξ(s)) ·A
)
ds

for all compactly supported variations of the curve ξ(s) inW. The Euler-Lagrange
equation for Ψ is the second order gradient flow

(31) 2∇Ws ξs = ∇W(ν ·A)

and ξ(s) is a reparametrized geodesic inW if and only if∇W(ν ·A) is tangent to
ξ(s).

Proof. First assume that ξ(s) is a a critical point of ΨA and so (31) holds. Then
there holds

(32) ||ξs||
2 ≡ ν ·A+ β ,

for a constantβ. Define the associated arc-length curve of ξ by (16). ThenCs(s) =
T(s) = ν(ξ(s)) holds and so ξ := χ ◦ ν is the Cahn-Hoffman field of C. The
equation (31) can be written 2∇Ws ξs = dν(A− (ν ·A)ν) and, since dχ = dν−1,
we get

2dχ|T
(
∇Ws ξs

)
+ (ν ·A)ν ≡ A .

Using (32) and the fact T = ν, we obtain

2dχ|T
(
∇Ws ξs

)
+ (||ξs||

2 − β)T ≡ A ,

so by (29), C(s) is an anisotropic elastic curve.
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For the converse, just note that, by reversing the steps above, (29) can be ex-
pressed as (31) and so ξ(s) is a critical point of ΨA. q.e.d.

Recall that ~λ = ξs, so a special case of (29) occurs when the Cahn-Hoffman
field is a geodesic parameterized by a constant multiple of arc-length. In this case,
we have~λTs = ∇Ws ξs = 0 and ||~λ||2 − β = ||ξs||

2 − β ≡ 0.
In this special case, we have the following,

Theorem 5.2. Let η(σ) be a minimizing arc-length parameterized geodesic con-
necting distinct points η(0) and η(L) inW. Then, the associated curve C(s) in R3
constructed as in (16) satisfies

(33) 2dist(η(0), η(L)) = E1[C] =

∫
C

(
||~λ||2 + 1

)
ds 6 E1[Ĉ]

for all curves Ĉ in R3 having the same tangent vectors as C at their endpoints.
(The position vectors of the comparison curve Ĉ do not have to agree with those of
C at the endpoints. Here dist denotes geodesic distance inW.)

Conversely, if C is a curve in R3 satisfying the first equality in (33), then C is
obtained from the construction given above.

Proof. Let ι(σ), 0 6 σ 6 ` be any curve inW with ι(0) = η(0) and ι(`) = η(`).
(σ is not necessarily the arc-length parameter of ι). Then

(34) 2dist(η(0), η(L)) 6
∫
ι

||ισ|| dσ 6
∫
ι

(
||ισ||

2 + 1
)
dσ .

Now let Ĉ(σ), 0 6 σ 6 ` be any arc-length curve in R3 such that Ĉ ′(0) = C ′(0)

and Ĉ ′(`) = C ′(L). Let ξ̂(σ) be its Cahn-Hoffman field. Then we can apply (34)
with ι = ξ̂ to get

2dist(η(0), η(L)) 6 E1[Ĉ] .

Note Cs = T(s), in particular, s is the arc-length parameter along C. Also, ξ(s) =
χ(T(s)) = η(s), and~λ(s) = ξs(s) = ηs(s). In particular, ||~λ||2 ≡ 1. So for C, we
have

E1[C] = 2dist(η(0), η(L)) 6 E1[Ĉ] .

For the converse, observe that C(s) is an arc-length parameterized curve re-
alizing the equality 2dist(η(0), η(L)) = E1[C], then applying (34) to its Cahn-
Hoffman field ξ(s), we get that ξ(s) is a minimizing geodesic connecting η(0) and
η(L) and from the second inequality, we get that ||ξs||2 ≡ 1 holds, so s is also the
arc-length parameter of ξ. Since ξ(s) = χ(Cs(s)), the result follows. q.e.d.

For values of β, 1 6= β > 0, we have the following.

Corollary 5.1. A curve C is the minimizer of E1 among all curves having the same
tangents as C at their endpoints if and only if for all r > 0 the curve r−1C is the
minimizer of

Er2 [Ĉ] :=

∫
Ĉ

(
||~λ||2 + r2

)
ds
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in the same class of curves.
Furthermore, if p1 and p2 are distinct points in W, then the minimum value

of Er2 among all curves having tangents χ−1(pi), i = 1, 2 at their endpoints is
2r−1dist(p1, p2).

Proof. Note that under rescaling

E1[rC] =

∫
C

(
r−1||~λ||2 + r

)
ds = rEr2 [C] ,

and equivalently
E1[C] = rEr2 [r

−1C] ,

From this and the previous theorem, the result follows. q.e.d.

Remark. Because of the rescaling, the functionals Er[·] for r < 0 have no absolute
minimum among curves having the same tangents at their endpoints.

An obvious corollary of the previous theorem is the following.

Corollary 5.2. Let η(σ) be an arc-length parameterized geodesic in the Wulff
shapeW. Then, the associated curve C(s) in R3 given by (16) is a critical point of

E1[C] =

∫
C

(
||~λ||2 + 1

)
ds

for all variations of C fixing the endpoints of the curve to first order. (If C is closed,
the restriction on the variations is to be omitted).

Proof. Just note that every geodesic inW is locally minimizing. Since the Euler-
Lagrange equation for E1 is local, the result follows. q.e.d.

As an illustration of this result let us consider that the Wulff shapeW is defined
by the following superellipsoid

W := {(x, y, z) ∈ R3
∣∣ xq
a2

+
yq

b2
+
zq

c2
= 1} ,

where a, b, c are positive constants and q is a positive even integer. The reflection
(x, y, z) across a coordinate plane is an involutive isometry of R3 which induces
an isometry ofW onto itself. It is well known that the the fixed point set of such an
isometry is totally geodesic, so the sets of points inW where one of the coordinates
vanishes give three geodesics in W. Note that the map χ−1 : W → S2 is just the
Gauss map ofW. Since the normal to the level set of a function f(x, y, z) is given,
at non critical points of f, by its normalized gradient, we obtain that, the image of
each of these geodesics under χ−1 is just a great circle in S2 which lies in one of the
coordinate planes. Integrating each of these circles as explained in (16) produces a
curve C which is again a circle of radius one in one of the coordinate planes. By
the theorem, these circles are critical points for the anisotropic energy functional
E1 corresponding to the superellipsoid Wulff shapeW.

We will next use the Cahn-Hoffman map to prove the existence of solutions of
the C1 boundary value problem for the anisotropic bending energy.
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Theorem 5.3. Let pi,i = 1, 2 be distinct points in any Wulff shapeW. Let ν denote
the Gauss map of W and S denote the class of smooth curves ξ : [0, L]→W such
that ξ(0) = p1, ξ(L) = p2

(35)
∫L
0

ν(ξ(s)) ds = Y,

where Y is a fixed vector in R3. Then, if S is not empty, there exists an arc-length
anisotropic elastic curve C(s) in R3 with endpoints 0 and Y and having tangent
vector ν(p1) at 0 and ν(p2) at Y.

Proof. We consider the functional assigning to any curve ξ(s) ∈ S its energy

Ψ[ξ] =

∫L
0

||ξs(s)||
2 ds .

Choose a sequence {ξn(s)} such that Ψ[ξn] converges to the infimum of the energy
over S. By the Arzela-Ascoli Theorem, it can be assumed, by passing to a subse-
quence if necessary, that ξn converges uniformly on [0, L] to a continuous curve
ξ∗(s). Since ν :W → S2 is smooth, it is clear that ξ∗ satisfies the condition (35).

Also, by applying the Banach-Alaoglu Theorem, we can also assume that ξn
converges weakly inH1[0, L] to ξ∗, whereH1[0, L] denotes the first Sobolev space.
We now want to assert that for a fixed vector Λ ∈ R3, which serves as a Lagrange
multiplier, ξ∗ is a weak solution of the variational problem (see Corollary 5.1)

δ

(∫L
0

||ξs(s)||
2 +Λ · ν(ξ(s)) ds

)
= 0 .

In order to assert this, it is necessary to show that S has the right “manifold” prop-
erty that for any ξ(s) ∈ S and any “tangent vector” ξ̇ which is a smooth section of
the bundle ξ∗(TW), vanishing at 0 and L and satisfying the linearized condition

(36) δ

(∫L
0

ν(ξ(s)) ds

)
=

∫L
0

dνξ(s)(ξ̇(s)) ds = 0 ,

there exists a smooth curve ξ(s, ε) = ξ(s) + εξ̇(s) + O(ε2) in S.
Instead of working with the curve ξ(s) in W, we will work with its image

ν(s) := ν(ξ(s)) in S2. Set ν̇(s) := dνξ(s)(ξ̇(s)) which is a section of ν∗(TS2).
The condition (36) is then just ∫L

0

ν̇ ds = 0 .

We claim that there exist fields ηi(s) ∈ ν∗(TS2) which vanish at 0 and L such
that the matrix (∫L

0

η1(s) ds

∫L
0

η2(s) ds

∫L
0

η2(s) ds

)
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is invertible. Let ET1 = E1 − ν1ν denote the tangential part of E1. Then

∫L
0

ET1 ds =

L−
∫L
0 ν

2
1 ds

−
∫L
0 ν1ν2 ds

−
∫L
0 ν1ν3 ds

 6= ~0

since the first component is non zero. Multiplying by a suitable function ζ(s)
which vanishes at 0 and L, we define η1 := ζ

~V1 :=

∫L
0

η1(s) ds 6= ~0 .

Note that ν× ~V1 is a section of ν∗(TS2) and lies in the plane perpendicular to ~V1.
For a suitable function ζ1(s), we have∫L

0

ζ1ν× η1 ds 6= ~0

and we define η2 = ζ1ν× η1 and

~V2 :=

∫L
0

η2(s) ds .

Note ~V2 is orthogonal to ~V1. Let ~V := ~V1 × ~V2. On any arc ι of ν(s), there is a
section of η of ν∗(TS2) with 0 6= η · ~V > 0. Let ζ2 be a non negative function
with compact support in ι. Then defining η3 := ζ2η shows that the claim holds.

We now apply an argument due to Bolza. Form the variation

ν̃(ε, ε1, ε2, ε3) := expS
2

ν(s)

(
εν̇+

3∑
i=1

εiηi

)
and consider the map F : R4 → R defined by

(ε, ε1, ε2, ε3) 7→
∫L
0

ν̃ ds .

Then ,(
∂ε1F, ∂ε2F, ∂ε3F

) ∣∣
(0,0,0,0)

=

(∫L
0

η1(s) ds

∫L
0

η2(s) ds

∫L
0

η2(s) ds

)
,

which is non singular. By the Implicit Function Theorem, it is possible to solve
ηi = ηi(ε), i = 1, 2, 3 such that∫L

0

ν̃(ε, ε1(ε), ε2(ε), ε3(ε)) ds ≡ Y .

We can now assert that ξ∗ is a weak solution of an equation

2∇Ws ξ∗s = ∇Wν(ξ∗(s)) ·Λ ,
i.e. ∫L

0

(
2ξ∗s · ξ̇s + ξ̇ · ∇Wν(ξ∗(s)) ·Λ

)
ds = 0
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for variations ξ̇(s) vanishing at 0 and L. Note that∇Wν(ξ∗(s)) ·Λ is a continuous
vector field on W from which it follows that ξ∗ is equivalent to a classical C2

solution.
Define the associated arc-length curve of ξ by (16). Then by Theorem 5.1 , C(s)

is an anisotropic elastic curve. q.e.d.

Remark. There is, in general, no uniqueness of the solution. Even in the planar,
isotropic case, there are examples of C1 initial data for which up to four distinct
solutions are known.

5.1. Planar Curves. The results above may be specialized to study curves in R2.
Then, we should recover the results of Section 2. Any one dimensional Wulff
shape, denoted throughout the paper by Ω, can always be realized as the in-
tersection of a bidimensional Wulff shape, W, with a suitable plane. Precisely,
Ω = W ∩ π where π is the affine plane passing through the point ν(s) and with
directions T(s) and dχ|T (N), where N denotes the normal to the curve. Then, we
can compute the anisotropic curvature vector, obtaining

~λ = ξs = dχ|T (Ts) = κdχ|T (N).

Recall that from (11), at each T ∈ S2 we have
~λ = κ

(
D2γ|T+γ(T)Id

)
N = κ ([γ|T ]θθ + γ|T )N ,

where θ is the angle that the tangent forms with the positive part of the horizontal
axis.

Now, since C(s) is a planar curve, T ∈ S1 ⊂ S2 and, therefore, γ|T : S1 → R+.
Thus, defining the function µ by 1/µ := [γ|T ]θθ + γ|T and using (9) we conclude
that

~λ =
κ

µ
N = λN ,

where λ is the (scalar) anisotropic curvature of the plane curve C(s).
Finally, from above equation it is clear that ~λ⊥s = λsN. Then, substituting in

(30) we get

‖A‖2 = 4‖dχ|T (λsN)‖2 +
(
λ2 − β

)2
= 4

(
λs

µ

)2
+
(
λ2 − β

)2
= 4p2 .

That is, we recover equation (6) of Section 2, as desired.

6. ROTATIONALLY SYMMETRIC WULFF SHAPE

Throughout this section, we consider a rotationally symmetric Wulff shape,
W ⊂ R3. In this case, the eigendirections of dχ|T are given by the vectors ET3
with eigenvalue 1/µ1 and T × ET3 , × denoting the cross product, with eigenvalue
1/µ2. Both eigenvalues depend only on T3 = ν3.

Moreover, these eigenvalues can be computed from the density function that
definesW, γ, obtaining

(37)
1

µ1
=
(
1− ν23

)
γ ′′(ν3) +

1

µ2
,

1

µ2
= γ(ν3) − ν3γ

′(ν3) .



ANISOTROPIC BENDING ENERGIES OF CURVES 27

Locally, we are going to choose spherical coordinates in R3, so that the unit
normal toW can be written as

ν = (sinϕ cos ϑ, sinϕ sin ϑ, cosϕ) ,

for ϑ ∈ (0, 2π) and ϕ ∈ (0, π). Notice that, ν3 = cosϕ, so in these coordinates
the principal curvatures ofW only depend on the parameter ϕ.

With respect to the local parameterization of W defined by above expression of
ν, one can obtain all the geometric information of the Wulff shapeW. In particular,
we have that the Gauss-Codazzi equations ofW reduce to just

(38)
cosϕ
µ1

=

(
sinϕ
µ2

)
ϕ

,

which allows us to compute the derivative of µ2 in terms of well known quantities
onW.

Now, let ξ : I → W ⊂ R3 be a smooth curve in W locally parameterized as
ξ(s) = (ϕ(s), ϑ(s)). Then, we have the sufficient and necessary conditions for
ξ(s) to be the Cahn-Hoffman field of an anisotropic center line.

Proposition 6.1. The curve ξ(s) = (ϕ(s), ϑ(s)) in W is the Cahn-Hoffman field
of an arc-length anisotropic center line in R3 for a constant vector A in (20), if
and only if, the following equations are verified(

ϕs

µ1

)
s

−
ϑ2s
µ2

sinϕ cosϕ−
µ1
2

(νϕ ·A− αϑs sinϕ) = 0(
ϑs

µ2

)
s

sin2ϕ+ 2
HW
KW

ϑsϕs sinϕ cosϕ−
µ2
2

(νϑ ·A+ αϕs sinϕ) = 0,

where KW and HW are the Gaussian and mean curvatures ofW, respectively.

Proof. Let ξ(s) = (ϕ(s), ϑ(s)) be a parameterized regular curve in a rotation-
ally symmetric Wulff shape,W. Then, by the linearity of dχ|T , we have that

ξs = dχ|T (νs) = dχ|T (νϕϕs + νϑϑs) =
ϕs

µ1
νϕ +

ϑs

µ2
νϑ ,

since νϕ and νϑ are the corresponding eigendirections of dχ|T .
Now, recall that from Theorem 4.1, ξ(s) is the Cahn-Hoffman field of an arc-

length parameterized anisotropic center line C(s) in R3 if and only if ξ is a critical
point of ΨA,α. That is, if and only if ξ verifies its corresponding Euler-Lagrange
equation, (23).

Therefore, in terms of the local parameterization ξ(s) = (ϕ(s), ϑ(s)) we have

2∇Ws ξs = 2
(
ϕs

µ1

)
s

νϕ + 2

(
ϑs

µ2

)
s

νϑ + 2
ϕs

µ1
∇Ws νϕ + 2

ϑs

µ2
∇Ws νϑ .
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Then, since (νϕ)s = −ϕsν+ϑs
cosϕ
sinϕνϑ and (νϑ)s = −ϑs sin2ϕνϕ+ϕs cosϕ

sinϕνϑ,
considering the tangent components toW, we conclude that

2∇Ws ξs =

[
2

(
ϕs

µ1

)
s

− 2
ϑ2s
µ2

sinϕ cosϕ
]
νϕ

+

[
2

(
ϑs

µ2

)
s

+ 4
HW
KW

ϑsϕs
cosϕ
sinϕ

]
νϑ .

On the other hand, we get that

∇W (ν ·A) = νϕ ·Aξϕ + νϑ · ξϑ = µ1νϕ ·Aνϕ + µ2νϑ · νϑ .

Finally, it is a straightforward computation to check that sinϕν × νϕ = νϑ and
ν× νϑ = − sinϕνϕ, where again × denotes the cross product in R3. Therefore,
using these relations we obtain,

ν× ξs =
ϕs

µ1
ν× νϕ +

ϑs

µ2
ν× νϑ =

ϕs

µ1 sinϕ
νϑ −

ϑs sinϕ
µ2

νϕ .

That is, after combining everything, we see that equation (23) is equivalent to the
system of equations of the statement, since they are precisely the νϕ and νϑ com-
ponents, up to a constant. This finishes the proof. q.e.d.

In particular, above result is quite illuminating when A = rE3, for some real
constant r ∈ R.

Corollary 6.1. Assume that A = rE3 in (20) for some r ∈ R. Then, ξ(s) =
(ϕ(s), ϑ(s)) is the Cahn-Hoffman field of an arc-length anisotropic center line in
R3 for the constant vector A, if and only if, the following equations are verified(

ϕs

µ1

)
s

−
ϑ2s
µ2

sinϕ cosϕ+
µ1
2

(r+ αϑs) sinϕ = 0(
ϑs

µ2

)
s

sin2ϕ+

(
1

µ1
+
1

µ2

)
ϑsϕs sinϕ cosϕ−

α

2
µ2ϕs sinϕ = 0.

Proof. In this case, since A = rE3, we have that

∇W (ν ·A) = r∇W (ν3) = r∇W (cosϕ) = −r sinϕξϕ = −rµ1 sinϕνϕ .

That is, νϕ · A = −r sinϕ and νϑ · A = 0. Then, substituting it in the system of
equations of previous proposition we finish the proof. q.e.d.

Under the assumptions of this last result we are in conditions to obtain another
constant of motion for center lines.

Proposition 6.2. Consider that the constant of motion (20) verifies that A = rE3
for some r ∈ R. Then, an arc-length parameterized center line C(s) in R3 also
admits the following constant of motion

det (ν, ξs, ξss)
KW

−
α

4
‖~λ‖2 ≡ constant.
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Proof. Let us begin by recalling that, in general, the torsion of an arc-length pa-
rameterized center line in R3 is related with its Cahn-Hoffman field and operators
in W, as proven in (28). Therefore, using the local parameterization of ξ given by
ξ(s) = (ϕ(s), ϑ(s)) and computations of previous proof we have that

det (ν, ξs, ξss) = (ν× ξs) · ξss = (ν× ξs) · ∇Ws ξs

=
µ1 (r+ αϑs)

2µ2
ϑs sin2ϕ+ α

µ2
2µ1

ϕ2s

= KW

(
r
ϑs sin2ϕ
2µ22

+
α

2
‖ξs‖2

)
.

As a consequence, using that~λ = ξs,

det (ν, ξs, ξss)
KW

−
α

4
‖~λ‖2 = rϑs sin2ϕ

2µ22
+
α

4
‖ξs‖2 .

By linearity, we can differentiate each term independently with respect to s. On
one hand, (

‖ξs‖2
)
s
= 2ξs · ξss = 2ξs · ∇Ws ξs = −rϕs sinϕ ,

where both equations of Corollary 6.1 have been used to simplify the result.
On the other hand, taking into account the Codazzi equation of the Wulff shape

W, (38), we prove that(
1

µ2

)
s

=

(
1

µ2

)
ϕ

ϕs =

(
1

µ1
−
1

µ2

)
ϕs

cosϕ
sinϕ

,

and, therefore(
ϑs sin2ϕ
µ22

)
s

=

(
ϑs

µ2

)
s

sin2ϕ
µ2

+ 2
ϕsϑs

µ22
sinϕ cosϕ+

ϑs sin2ϕ
µ2

(
1

µ2

)
s

=
1

µ2

[(
ϑs

µ2

)
s

sin2ϕ+

(
1

µ1
+
1

µ2

)
ϕsϑs sinϕ cosϕ

]
=

α

2
ϕs sinϕ ,

where in the last equality we have used the second equation of Corollary 6.1.
Finally, combining both equalities we get that the derivative is zero, so the con-

stant of motion is verified. q.e.d.

Notice that with the aid of the constants of motion, the system of equations of
Corollary 6.1 can be integrated once. Indeed, in next proposition we describe the
first integrals.

Proposition 6.3. The curve ξ(s) = (ϕ(s), ϑ(s)) is the Cahn-Hoffman field of an
arc-length anisotropic center line in R3 for the constant vector A = rE3, if and
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only if, the following equations are verified

ϕ2s
µ21

+
ϑ2s
µ22

sin2ϕ− r cosϕ = constant =: β(39)

ϑs sin2ϕ
µ22

+
α

2
cosϕ ≡ constant =: b .(40)

Proof. For any anisotropic center line in R3 we have that the following quantity
must be constant (see equation (21))

‖~λ‖2 − ν ·A = β ,

where β ∈ R denotes the constant appearing in (19).
Thus, in our rotationally symmetric setting, for A = rE3 we get

ϕ2s
µ21

+
ϑ2s
µ22

sin2ϕ− r cosϕ = β ,

as desired.
Now, for the second equation we consider the result of previous proposition

det (ν, ξs, ξss)
KW

−
α

4
‖~λ‖2 = rϑs sin2ϕ

2µ22
+
α

4
‖~λ‖2 ≡ constant .

By a simple manipulation, one can see that this yields to (40), proving the result.
In fact, as a remark, notice that differentiating both equations, (39) and (40), we

obtain the system of Corollary 6.1. This is a straightforward way of proving the
statement. q.e.d.

We will now use (39)-(40) to give quadrature formulas for constructing certain
anisotropic elasticae. We represent the Wulff shapeW in the form

χ = (ueıϑ, V) ,

where we have identified the horizontal plane with the complex plane C. We work
in the part of W where V = V(u) holds. Then, when α = 0 holds, the equations
(39)-(40) are equivalent to

(41)
(
1+ V2u

)
u2s + u

2ϑ2s −
r√

1+ V2u
≡ β , ϑsu

2 ≡ b .

Using the second equation to solve for sϑ, we get after some manipulation(
1+ V2u

)
u2θ + u

2 =

(
β+

r√
1+ V2u

)
s2ϑ =

(
β+

r√
1+ V2u

)
u4

b2
.

This leads to a quadrature formula for ϑ.

(42) ± dϑ =

√
1+ V2u du

u

√[
β+ r√

1+V2u

]
u2

b2
− 1

Once ϑ has been found, we obtain an integral formula for the curve C
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C =

∫
dC =

∫
ν ds =

∫ (
−Vue

iϑ, 1
)√

1+ V2u
sϑϑu du

=

∫ (
−Vue

iϑ, 1
)√[

β+ r√
1+V2u

]
u2

b2
− 1

u

b
du ,

Finally, in order to obtain some explicit examples, we take a Wulff shape which
is the surfaceW obtained by taking γ := ν−13 −ν3, for ν3 > 0. This results in the
paraboloid given by

x3 = −
x21 + x

2
2

4
.

Although this surface is not closed, any compact piece of an anisotropic centerline
(or, in particular, an anisotropic elastica) for this Wulff shape lies in a compact
domain of W which can be realized as a domain in a closed Wulff shape obtained
by attaching a cap to the compact domain, denoted again by W. This choice of a
Wulff shape lends itself to simplified calculation.

In this case, it is easy to check, using (37), that the principal curvatures are

µ1 (ϕ) = cos3ϕ/2 , µ2 (ϕ) = cosϕ/2 .

Then, solving the system of equations (39)-(40) and taking into account the con-
struction of the associated curve in R3, (16), we can get some examples. For
instance, in Figure 7 we illustrate some anisotropic elastic curves where the asso-
ciated Cahn-Hoffman field is a geodesic in the Wulff shape, i.e. for the constant of
motion A = rE3 = 0. Moreover, in Figure 8 we plot an anisotropic elastica for
A = rE3 with r = 2.
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(A) b = 3

(B) b = 30

FIGURE 7. Anisotropic elastic curves for the paraboloid as Wulff
shape. Here, β = 1 and α = r = 0.
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