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1. Introduction

Instances of one dimensional continua having geometries determined by minimization of a bend-
ing energy are ubiquitous in the mathematical, physical and biological sciences. These range from
models of elongated beams used in construction to the flagella of microorganisms. In our everyday
experience, we encounter a myriad of fibers, wires, cables, hoses and rods whose shapes are deter-
mined by this type of variational principle. One commonly encountered aspect in the study of these
continua, which we henceforth refer to as rods, is that the governing energy may be anisotropic, i.e.
it is dependent on the direction of the curve, as represented by the unit tangent vector T . Under-
standing the morphology of rods is essential since the geometry is a visual manifestation of the
physical properties acting on the rod.

In a recent paper, [5], we developed a methodology to study the equilibria arising from mini-
mizing a specific type of anisotropic bending energy in two and three dimensions. In this model,
the Young’s modulus, which measures the rod’s resistance to bending, is given by a continuous
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periodic function of the angle the tangent makes with a fixed direction. In the two dimensional case,
the equations for the extremals of this bending energy are easily integrated and all examples can be
explicitly found. We recall that in the isotropic case, this is usually achieved via elliptic functions
but our method does not rely on this tool.

In the isotropic case, the problem of determining the bending deformations of rods was first
formulated by J. Bernoulli in 1691. Later, D. Bernoulli, in a letter to L. Euler, suggested to study
elasticae as minimizers of the bending energy. Then, L. Euler, [1] (see also the translation [4]),
achieved a classification of planar elasticae into nine specific types, although some partial results
were already known to J. Bernoulli. For more details about the history of (isotropic) elasticae we
refer to [5] and references therein.

How is Euler’s classification affected if the rod’s energy is anisotropic? This is the principal
question we consider. The main result of the present paper is to show that for functionals possessing
an essential symmetry, all of the types in Euler’s classification are present although the order in
which they occur, in terms of a governing parameter, may be more complicated than in the isotropic
case. Also, in the anisotropic case, there is an additional degree of freedom arising from quasi-
rotations of each of the nine types.

The paper is organized as follows. In Section 2 we describe the materials and methods used for
the development of the paper. In Section 3.1, we formulate the definition of anisotropic elasticae
and discuss their properties. In particular, the representation formula is presented. Section 3.2 is
devoted to the classification of anisotropic elasticae into nine different types. Then, in Section 3.3,
we illustrate this classification for several choices of Wulff shapes. We finish with some conclusions
in Section 4.

2. Materials and Methods

As mentioned earlier, Euler’s classification of isotropic elasticae relied heavily on the use of elliptic
functions in order to represent his elasticae. In the anisotropic case, this tool is no longer applicable
however we had previously found a relevant representation formula which can be applied to rep-
resent the curves. Since our classification theory is centered around a particular type of curve, the
lemniscate, it was necessary to prove its existence. Because of the generality in the type of func-
tional we consider, these curves could not be parameterized exactly. Instead, we rely on standard
techniques of mathematical analysis to prove their existence.

Constantly, while conducting this research, it was necessary to employ computer graphics in
order to generate hypotheses about how the classification would proceed and to test them. Both
the Maple and Mathematica softwares were used for this purpose in an essential way. This went
substantially beyond there use to generate the graphics displayed in the article.

3. Results

3.1. Anisotropic Elasticae

Let γ : S1→ R+ denote a sufficiently smooth function satisfying the following convexity condition.
We require that if θ denotes the usual polar angle in the plane, then

1
µ

:= γθθ + γ > 0
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holds. The value γ(θ) represents the unit energy per unit length of a piece of an infinitesimal arc
having tangent vector which makes an angle θ with the positive horizontal axis. The function µ

represents the curvature of the plane curve given by

χ := θ 7→ (γθ − iγ)eiθ ,

where we have identified R2 with the complex plane C. The (convex) curve Ω defined by χ will be
referred to as the Wulff shape. It was first introduced by the Ukrainian crystallographer Georg Wulff
in order to model the equilibrium shape of a crystal [6]. Throughout this paper, we will say that the
Wulff shape is symmetric if its curvature, µ , verifies the following symmetric condition

µ

(
π

2
−θ

)
= µ

(
π

2
+θ

)
. (3.1)

For purposes that will be clear later, we introduce the curve Ω⊥ which is a clockwise rotation of Ω

through an angle π/2.
For any smooth, regular (planar) curve C : I→ R2, we denote by T its unit tangent and by N its

unit normal with N = JT where J is counter-clockwise rotation by an angle π/2. We represent T
by eiθ and write γ(θ) as γ(T ) when desired. If κ denotes the curvature of C, then the anisotropic
curvature is defined by

λ (s) :=
κ(s)

µ (θ(s))
, (3.2)

where s represents the arc-length parameter of C.
As in [5], we define the anisotropic bending energy of C by

Eβ [C] :=
∫

C

(
λ

2 +β
)

ds (3.3)

where β ∈ R. We regard β as a Lagrange multiplier which fixes the length of the curve.
Regardless of the boundary conditions, any equilibrium curve of Eβ must satisfy its associ-

ated Euler-Lagrange equation. We will refer to such a curve as an anisotropic elastic curve for the
energy density γ . Critical points of Eβ , i.e. anisotropic elastic curves, are characterized in [5] by the
conservation law (

λs

µ

)2

+

(
λ 2−β

)2

4
= p2 (3.4)

with p ∈ R. If p = 0, we have that C is either a straight line or a rescaling of Ω⊥.
On the other hand, if p 6= 0, a representation formula for planar anisotropic elasticae was

obtained in [5] (see formula (10))

C =C(θ) =±
∫

θ eiθ̃

µ(θ̃)
√

2psin(θ̃ +θo)+β1

dθ̃ =± 1√
2p

∫
θ eiθ̃

µ(θ̃)
√

sin(θ̃ +θ0)+β

dθ̃ (3.5)

with β := β1/(2p). It will be useful to define an angle ω by

β =−sin
(

π

2
+ω

)
. (3.6)
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If we differentiate (3.5) with respect to θ , we see that eiθ is the unit tangent map of the curve into
S1. Clearly, θ is restricted by

π

2
−ω−θ0 ≤ θ ≤ π

2
+ω−θ0 ,

i.e. the parameter β controls the range of the tangent map in S1.
Notice that, after rescaling if necessary, the constant of integration p in (3.4) and (3.5), may be

assumed to be p = 1/2, as the following proposition shows.

Proposition 3.1. Let C be a critical curve of Eβ . Then, any rescaling of ratio r > 0, C→ C̃ = rC,
is a critical curve of Er−2β for p̃2 = r−4 p2.

Proof. Let C be a critical curve of Eβ for p 6= 0, then the anisotropic curvature of C, λ , verifies the
conservation law (3.4).
Now, if we apply a rescaling of ratio r > 0 to C, say C̃(rs) = rC(s), then its curvature κ̃ satisfies
κ(s) = rκ̃(rs), where κ denotes the curvature of C. Moreover, by the definition of the anisotropic
curvature (3.2), we get that λ (s) = rλ̃ (rs).
Thus, substituting this in equation (3.4) we obtain(

λs

µ

)2

+
1
4
(
λ

2−β
)2

= r4

( λ̃ ′

µ

)2

+
1
4

(
λ̃

2− r−2
β

)2

= r4 p̃2 = p2 ,

where we are denoting the derivative with respect to the arc-length parameter of C̃ by ()′. �

Moreover, if we apply a change of variable θ̂ = θ̃ +θ0 in the representation formula (3.5), we
obtain

C =C(θ) =±e−iθ0

√
2p

∫
θ−θ0 eiθ̂

µ
(
θ̂ −θ0

)√
β + sin(θ̂)

dθ̂ , (3.7)

This expression represents a quasi-rotation of an anisotropic planar elastica with θ0 = 0. In fact, if
we rotate the Wulff shape Ω by the replacement γ(θ)→ γ(θ −θ0), then the expression (3.7) above
is just the rotation of an anisotropic planar elastic curve for the rotated Wulff shape. The parameter
θ0 induces a transformation of the elasticae which is insignificant in the isotropic case.

3.2. Classification Results

In this section, we will classify planar anisotropic elasticae modulo rescaling and quasi-rotation for
symmetric Wulff shapes. Therefore, as mentioned above, we can assume that p = 1/2 and θ0 = 0,
so that the representation formula for anisotropic planar elasticae (3.5) now reads

C(θ) :=±
∫

θ eiθ

µ(θ)
√

β + sinθ
dθ . (3.8)

The constant β is restricted by β > −1. For these values of β , there may be isolated points where
(see [5])

λ
2 = β + sinθ = 0 . (3.9)
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At these points, the curvature of C, κ , also vanishes and, therefore, they represent inflection points
of the curve C(s).

A particular type of lemniscate appears in Euler’s classification of isotropic elastic curves given
in [1]. This curve is the only closed elastica with non-constant curvature.

We begin our classification by proving the existence of an anisotropic analogue for this curve in
the case that the functional possesses a symmetric Wulff shape. These examples appear whenever
the inflection points of C(s) happen to be double points. In the anisotropic case, however, this
lemniscate may not be unique. An example is given below of a functional having three distinct
anisotropic lemniscates.

We will need the following technical lemma.

Lemma 3.1. Let µ be any positive function. Then, the function Ψ̃ : (0,π)→ R defined by

Ψ̃(ω) :=
∫ π

2 +ω

π

2−ω

sinθ

µ (θ)
√

sinθ − sin(π/2+ω)
dθ

is continuous. Moreover, it has at least one zero in the interval (π/2,π).

Proof. We begin by proving that the function Ψ̃ is continuous in (0,π). For this purpose, we first
choose an ε > 0 such that ω + ε < π . Then, after decomposing the domain in three different parts,
we have that

Ψ̃(ω + ε)− Ψ̃(ω) := I1 + I2 + I3 ,

where

I1 =
∫ π

2−ω

π

2−(ω+ε)

sinθ

µ(θ)
√

sinθ − sin(π/2+ω + ε)
dθ ,

I2 =
∫ π

2 +ω+ε

π

2 +ω

sinθ

µ(θ)
√

sinθ − sin(π/2+ω + ε)
dθ ,

and

I3 =
∫ π

2 +ω

π

2−ω

sinθ

µ(θ)

(
1√

sinθ − sin(π/2+ω + ε)
− 1√

sinθ − sin(π/2+ω)

)
dθ . (3.10)

Consider the limit of the third integral, I3, when ε ↘ 0. Note that

|I3| ≤ c3

∫ π

2 +ω

π

2−ω

(
1√

sinθ − sin(ω + ε +π/2)
− 1√

sinθ − sin(ω +π/2)

)
dθ

≤ c3

∫ π

2 +ω

π

2−ω

1√
sinθ − sin(ω + ε +π/2)

dθ < ∞ ,

where c3 is a suitable constant. Then, since the integrand is non negative, we can apply the Domi-
nated Convergence Theorem to obtain that I3→ 0 as ε ↘ 0.
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For the second integral, I2, we make the change of variable θ = π/2+ω + t to obtain

|I2| ≤ c2

∫ π

2 +ω+ε

π

2 +ω

1√
sinθ − sin(π/2+ω + ε)

dθ

= c2

∫
ε

0

1√
sin(π/2+ω + t)− sin(π/2+ω + ε)

dt = c2

∫
ε

0

1√
cos(ω + t)− cos(ω + ε)

dt ,

where c2 is a constant. We then use the Taylor expansion of cos(ω + t) centered at t = ε ,

cos(ω + t) = cos(ω + ε)+ sin(ω + ε)(ε− t)+O
(
[ε− t]2

)
,

to get

1√
cos(ω + t)− cos(ω + ε)

≤ c̃2
1√

ε− t

for another constant c̃2. Hence,

|I2| ≤ c2c̃2

∫
ε

0

1√
ε− t

dt = ĉ2
√

ε → 0 ,

as ε ↘ 0, for a suitable constant ĉ2.
Moreover, a similar argument works for the first integral I1 and, therefore,

|Ψ̃(ω + ε)− Ψ̃(ω)| ≤ |I1|+ |I2|+ |I3| −→ 0

as ε↘ 0. Finally, note that the case ε < 0 can be treated similarly to the case ε > 0. This proves the
continuity.
Now, we just need to check that in the interval (π/2,π) there is a change of sign, so that there exists
a zero of Ψ̃. First, we have that at ω = π/2, the integral Ψ̃(π/2) simplifies to

Ψ̃

(
π

2

)
=
∫

π

0

√
sinθ

µ(θ)
dθ

which is clearly positive.
Now take a δ > 0, such that δ < π/2, then at ω = π−δ we have

Ψ̃(π−δ ) =
∫ 3π

2 −δ

− π

2 +δ

sinθ

µ(θ)
√

sinθ − sin(3π/2−δ )
dθ

which can be bounded as follows. First, notice that, after suitable change of variable

Ψ̃(π−δ ) = 2
∫ 0

− π

2 +δ

sinθ

µ(θ)
√

sinθ − sin(3π/2−δ )
dθ +

∫
π

0

sinθ

µ(θ)
√

sinθ − sin(3π/2−δ )
dθ

= J1 + J2 .

Then, taking the limit as δ ↘ 0, we have that the second integral above, J2, converges to a positive
number which is independent of δ , but the first one goes to −∞. This follows from the fact that for
θ ∈ (−π/2+δ ,0), sinθ is always negative and

sin(θ)− sin(3π/2−δ ) = sin(θ)− sin(−π/2+δ )≈ (θ − [−π/2+δ ])cos(−π/2+δ )

for θ ≈−π/2. Combining this with the fact that 0 << µ << ∞, the result follows. �
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We deduce from this the following existence result.

Theorem 3.1. For any symmetric Wulff shape Ω, there exists a constant βl ∈ (0,1) such that the
critical curve of Eβl with non-constant anisotropic curvature, λ , is closed.

Proof. Let 0 < β < 1 and denote by C(s) any critical curve of Eβ with non-constant anisotropic
curvature. The inflection points of C(s) are given by the solutions of equation (3.9). By (3.6), these
points are, precisely, θ = π/2±ω depending on the value of ω ∈ (π/2,π).
As noticed above, we have that the closed critical curve appears whenever the inflection points are
precisely the double points of the curve C. This means that C(π/2+ω) =C(π/2−ω).
Define the (a priori complex-valued) function

Ψ(ω) =−i
[
C
(

π

2
+ω

)
−C

(
π

2
−ω

)]
. (3.11)

The result follows by checking that there exists a value ωl such that Ψ(ωl) = 0, since this ωl would
give rise to a value βl (see (3.6)) whose associated critical curve is closed.
Note that Ψ takes only real values. In fact, by using the representation formula for C, (3.8), we have
that for any ω ∈ (π/2,π),

Ψ(ω) =
∫ π

2 +ω

π

2−ω

−ieiθ

µ (θ)
√

β + sinθ
dθ =

∫ π

2 +ω

π

2−ω

sinθ

µ (θ)
√

β + sinθ
dθ ∈ R (3.12)

where the second equality is obtained since cos(π/2− t) = −cos(π/2+ t) and sin(π/2− t) =
sin(π/2+ t) for any value of t and applying the symmetric condition on the function µ , (3.1).
Then, it is clear that Ψ(ω) = Ψ̃(ω) and, therefore, we can apply Lemma 3.1 to get that Ψ(ω) has a
zero in (π/2,π), as desired. �

Up to quasi-rotations and rescalings there is at least one anisotropic elastica with non-constant
anisotropic curvature associated to βl ∈ (0,1) which we will refer to as an anisotropic elastic lem-
niscate. (For some illustrations, see Figure 7).

Now, we are in conditions to prove the classification of planar anisotropic elasticae.

Theorem 3.2. Let C be a planar anisotropic elastica for a symmetric Wulff shape Ω, i.e. a critical
curve of Eβ . If the anisotropic curvature of C, λ , is constant, then C is either a straight line (λ = 0)
or a rescaling of Ω⊥ (λ 2 = β ).
If λ is non constant, we have the following families depending on the parameter β >−1:

1. Orbit-like anisotropic elasticae, if β > 1.
2. Borderline anisotropic elasticae, if β = 1.
3. Wave-like anisotropic elasticae, if −1 < β < 1. In this case, we have the following sub-

cases:

(i) Multiloop anisotropic elasticae, if 0< β =−sin(π/2+ω)< 1 and Ψ(ω)< 0, (3.12).
(ii) Lemniscate anisotropic elasticae, if 0 < β = βl < 1.

(iii) Deep waves, if 0 < β =−sin(π/2+ω)< 1 and Ψ(ω)> 0, (3.12).
(iv) Rectangular anisotropic elasticae, if β = 0.
(v) Shallow waves, if −1 < β < 0.

Proof. Let C be a critical curve of Eβ for a fixed β . The case λ constant has been explained before,
giving rise to either straight lines or rescalings of Ω⊥ (see Figure 3). Thus, from now on, we assume
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that λ is not constant. We recall that θ represents the angle that the tangent to C makes with the
horizontal axis. The proof is going to be divided in terms of the different possible values for β .
We begin by considering β > 1 (see Figure 4). In this case, equation (3.9) tells us that λ never
vanishes, i.e., there are no inflection points on the anisotropic elastica C and, as a consequence, θ

varies in the whole real line. Thus, we have orbit-like anisotropic elasticae.
If−1 < β ≤ 1, from (3.9) it is clear that at any interval of length 2π where θ varies there are exactly
two inflection points. Therefore, θ is only defined in an open interval of length smaller or equal 2π

starting at one inflection point, and finishing at the other one. This means that if we consider our
anisotropic curve C to start at one of those inflection points, θ varies until reaching the following
inflection point, then, θ goes back again.
Take now β = 1 (see Figure 5). In this particular case, the domain of definition for θ can be con-
sidered to be (−π/2,3π/2). Now, since limθ→−π/2 λ = limθ→3π/2 λ = 0, we have that the curve C
tends to a straight line at the end points. Moreover, the tangent at the end points tends to make an
angle of−π/2 (3π/2, respectively) with the horizontal axis, i.e. C tends to a vertical line. This case
gives rise to a single loop and, hence, it corresponds with borderline anisotropic elasticae.
Assume 0 < β < 1. For a fixed β , we define the function

Ψ̂(t) =
∫ π

2 +t

π

2−t

sin θ̂

µ
(
θ̂
)√

β + sin θ̂

dθ̂ .

By a similar argument as in Lemma 3.1, we have that above function is continuous for t ∈ (0,ω).
Recall that ω is defined by (3.6) in terms of β , hence, it is a fixed value, ω ∈ (π/2,π). The limit of
Ψ̂(t) when t→ 0 is, clearly, zero; while Ψ̂(t)→Ψ(ω), (3.12), as t→ ω . Moreover, we also have

dΨ̂

dt
(t) =

2cos t

µ (π/2+ t)
√

β + cos t

due to the symmetric condition (3.1). This means that Ψ̂ increases as t varies from 0 to π/2. Then,
it decreases until t = ω . Thus, depending on the sign of Ψ(ω), we have different sub-cases:

• Sub-case 0 < β < 1 and Ψ(ω)< 0 (see Figure 6). In this case, the function Ψ̂(t) has exactly
one change of sign which means that, between any two consecutive inflection points, there
is a double point, i.e. we have multiloop anisotropic elasticae.
• Sub-case 0 < β < 1 and Ψ(ω) = 0 (see Figure 7). This case occurs when β = βl and the

associated anisotropic elastica is a lemniscate. The existence is guaranteed in Theorem 3.1.
• Sub-case 0 < β < 1 and Ψ(ω)> 0 (see Figure 8). Contrary to the multiloop case, here, we

have that Ψ̂ is always positive and, thus, there are no self-intersections between consecutive
inflection points. This gives rise to deep waves.

Now for β = 0 (see Figure 9), the domain of the tangent map on S1 is a semicircle, since θ ∈
(0,π). Hence, this corresponds with the rectangular anisotropic elasticae. Note that in this case, the
anisotropic elastica cuts the vertical axis orthogonally.
Finally, for the case −1 < β < 0 (see Figure 10), the arc-length of the domain of the tangent map is
smaller than π , producing shallow waves. This finishes the proof. �

For many choices of γ , the types of elasticae vary ‘monotonically’ as β decreases. However
for others, we observed that this is not the case due to some oscillation in the sign of Ψ(ω). In
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particular, Figure 1 shows three distinct lemniscates which occur for the functional having density
γ16 := 1+cos(16θ)/(16)2. The Wulff shape for this functional is a smoothed 16-gon. (See Section
3.3 for more details.)

Fig. 1. The function Ψ(ω) for the density γ16 (Left); and, the three distinct lemniscates (Right). (Dash↔ ω ≈ 177π

256 , dot
dash↔ ω ≈ 189π

256 , solid↔ ω ≈ 397π

512 .)

As a final remark, observe that the existence of anisotropic elastic lemniscate is not guaranteed
if the Wulff shape does not verify the symmetry condition (3.1), since, in this case, Ψ(ω) /∈ R
(see (3.11)) and therefore the analysis made in Lemma 3.1 is not applicable. Indeed, consider the
non-symmetric Wulff shape Ω̂ defined by the following function µ

1
µ

:= 1− 15
16

sin(4θ) .

Then, as suggested in Figure 2 there are no anisotropic lemniscates for this Wulff shape Ω̂. However,
the other eight types of elasticae in the classification are present in this case.

Fig. 2. Evolution of anisotropic elasticae for Ω̂ from multiloop (Left) to deep wave (Right). The intermediate step (Center)
is not an anisotropic elastic lemniscate.
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3.3. Illustrations

In order to obtain some illustrations of above classification, we consider the following densities. If
n is an even positive integer, we define

γn = γn(θ) := 1+
cos(nθ)

n2 .

Then,

1
µ
= γθθ + γ = 1−

(
n2−1

n2

)
cos(nθ) .

On the other hand, if n is an odd positive integer, γn is going to be

γn = γn(θ) := 1+
sin(nθ)

n2 .

In these cases,

1
µ
= γθθ + γ = 1−

(
n2−1

n2

)
sin(nθ) .

We will refer to the Wulff shape for the density γn as Ωn. The distinction between the odd and even
cases is done so that the function µ verifies the symmetric condition (3.1). Several illustrations of
these Wulff shapes and the different types of associated anisotropic elasticae, produced using (3.8),
are shown below in Figures 3 to 10.

To obtain a greater variety of Wulff shapes, we will use the following construction. Take the
polar coordinates (r,θ), where the radial function r = r(θ) is given by

r(θ) =

∣∣∣∣∣∣
cos
(

maθ

4

)
a

∣∣∣∣∣∣
na

+

∣∣∣∣∣∣
sin
(

mbθ

4

)
b

∣∣∣∣∣∣
nb−1/n

for real constants a, b, ma, mb, na, nb and n. This formula known as the superformula was introduced
by Johan Gielis to study naturally occurring shapes [2,3]. In particular, for some choices of specific
values of the constants, the corresponding curve is convex, so that it can be used to generate different
Wulff shapes.

We are going to choose the following constants b= 1, a=ma =mb = na = nb = n= 4 and denote
by Ω̃ the corresponding Wulff shape. From Figure 11 it is clear that Ω̃ is convex and possesses the
correct symmetry. We can compute its curvature, µ , using the standard formula

µ (θ) =
2 [r′ (θ)]2 + r2 (θ)− r (θ)r′′ (θ)(

[r′ (θ)]2 + r2 (θ)
)3/2 .

The rotated Wulff shape together with its associated anisotropic elasticae are shown in Figure
11. As before, these anisotropic elasticae are obtained using the integral expression (3.8).

4. Conclusions

We have shown that, assuming the Wulff shape of the functional has the right symmetry, all types
of elasticae found by Euler have an analogue in the anisotropic case. In addition, images of these
curves are easily accessible via computer graphics.
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Fig. 3. The Wulff shapes Ωn, for n = 2, 3, 4 and 6. Recall that the critical points with λ 2 = β correspond to Ω⊥n .

Fig. 4. Orbit-like anisotropic elasticae (β > 1).

Fig. 5. Borderline anisotropic elasticae (β = 1).

Fig. 6. Multiloop anisotropic elasticae (0 < β < 1 and Ψ(ω)< 0).
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Fig. 7. Lemniscate elasticae (0 < βl = β < 1).

Fig. 8. Deep waves (0 < β < 1 and Ψ(ω)> 0).

Fig. 9. Rectangular anisotropic elasticae (β = 0).

Fig. 10. Shallow waves (−1 < β < 0).
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Fig. 11. Anisotropic elasticae for the Wulff Shape, Ω̃, as the parameter β decreases. The first figure represents the rotated
Wulff shape, Ω̃⊥.
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