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Abstract

We study the third and fourth variation of area for a compact domain in
a constant mean curvature surface when there is a Killing field on R3 whose
normal component vanishes on the boundary. Examples are given to show
that, in the presence of a zero eigenvalue, the non negativity of the second
variation has no implications for the local area minimization of the surface.

1 Introduction

Many mathematical and physical problems involve the determination of the absolute
local or global minimizer for a given variational problem. Once an equilibrium
(critical point) has been found, the second variation (hessian) is a proven tool to
test if minimization has been achieved. In some cases however, the second variation
formula may not be sufficient to determine if an equilibrium is even a weak local
minimum of a variational problem. This is, of course, already evident in finite
dimensional problems in the case where the second derivative is degenerate. It is
this issue which we address here for the constrained variational problem in the three-
dimensional euclidean space R3 which gives rise to constant mean curvature (CMC)
surfaces.

We will consider a compact CMC surface represented by an immersion X : Σ→
R3, where Σ is an oriented smooth two dimensional manifold with smooth boundary
∂Σ. We will assume that X is critical. By this we mean that the second eigenvalue
of the Jacobi operator is zero. In addition, we assume that the Jacobi field(s) for
which this minimum achieved, is induced by a one parameter group of isometries of
R3. We call such a field a Killing-Jacobi field and the critical immersion will then
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be called Killing critical. Our analysis then consists of deriving third and fourth
order variational formulas to determine if minimization has taken place.

We apply these formulas to study Killing critical domains in unduloids and
nodoids. CMC surfaces of revolution is called Delaunay surfaces. Among them,
unduloids are periodic surfaces without self intersections, and nodoids are periodic
surfaces with self intersections. In particular, we produce examples which show that
when the second variation of area is non negative for all volume preserving variations
of the surface, the surface may locally minimize area but need not do so.

This paper is organized as follows. Section 2 contains preliminaries about the
second variation of area for CMC surfaces. In particular, we give definitions of
weak stability, strict stability and instability for CMC surfaces (Definition 2.1), and
also we give criteria of stability (Theorem 2.1). Section 3 contains calculations of
the third and fourth variation of area. Section 4 contains a discussion of conjugate
Delaunay surfaces. We give explicit representations of an unduloid and its conjugate
nodoid (Proposition 4.1), which is essential to the calculations of examples in the
following two sections. We remark that a CMC surface and its conjugate are locally
isometric. Sections 5 and 6 contain analyses of the stability and the fourth variation
of area for specific domains in unduloids and nodoids, respectively. In Section 5, we
prove that one period of an unduloid U bounded by two consecutive necks is (weakly)
stable (Theorem 5.1). However, for any nontrivial volume-preserving variations
for which the second variation of area vanishes, the third variation of area is zero
(Proposition 5.2) and the fourth variation is negative (Theorem 5.2). This means
that U is not a local minimizer of area for a volume-preserving variation fixing the
boundary. In Section 6, we study the part of a nodoid N which lies between two
circles of points having horizontal tangent planes, here “horizontal” means that the
plane is orthogonal to the axis of revolution ofN . We prove thatN is (weakly) stable
(Proposition 6.1). And, for any nontrivial volume-preserving variations for which
the second variation of area vanishes, the third variation of area is zero (Lemma 6.2)
and the fourth variation is positive (Theorem 6.1). This means that N = X(Σ) is
a minimizer of area for any volume-preserving variation {X(ε)}ε ⊂ C2+α(Σ,R3) of
X such that X(ε)|∂Σ = X|∂Σ holds.

The authors would like to express their gratitude to Professor Henry Wente for
helpful conversations concerning higher variations of area. They would also like to
thank the referee for diligently reading and suggesting corrections to the manuscript.
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2 Preliminaries

Let Σ denote an oriented smooth compact surface with smooth boundary ∂Σ and
let X : Σ → R3 be a smooth (up to ∂Σ) immersion with constant mean curvature
(CMC) H 6= 0 and normal map ν : Σ→ S2 := {x ∈ R3 | ‖x‖ = 1}. It is well known
that CMC surfaces arise variationally as follows. A smooth variation X(ε) of X is
said to be admissible if X(ε)|∂Σ = X|∂Σ is satisfied for all ε. Consider an admissible
variation X(ε) of X. We denote differentiation with respect to ε using “prime”. For
a general immersion X : Σ→ R3, X(ε) is given by

X(ε) = X + εX ′(0) +O(ε2) (1)

with X ′(0)|∂Σ ≡ 0. The first variation of area is given by

A′(0) = −
∫

Σ
2HX ′(0) · ν dΣ ,

and the first variation of the enclosed algebraic volume is given by

V ′(0) =
∫

Σ
X ′(0) · ν dΣ . (2)

Hence, H ≡constant 6= 0 means exactly that the first variation of area vanishes for
all volume preserving variations. We remark that the condition∫

Σ
X ′(0) · ν dΣ = 0 (3)

is known to be sufficient to embed the field X ′(0) in a variation X(ε) which fixes
the boundary and preserves volume to all orders.

If we assume that (1) preserves the enclosed volume to all orders, the second
variation of area is given by

A′′(0) = −
∫

Σ
ψL[ψ] dΣ =: I[ψ] ,

where ψ := X ′(0)·ν and L = ∆+||dν||2 is the Jacobi operator 1 . The operator L has
a spectrum λ1 < λ2 ≤ λ3 ≤ ...→∞ and a corresponding sequence of eigenfunctions
{ψj}j≥1 satisfying (L+λj)[ψj] = 0 in Σ with ψj|∂Σ = 0. {ψj} can be chosen so that

1∆ is the Laplacian on Σ with the metric induced by X. For the euclidean metric ds2 =∑
i,j δijdu

iduj , ∆ϕ = ϕu1u1 + ϕu2u2 .
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they form an orthonormal basis for L2(Σ) ([7, Lemma 1]). Below we will sometimes
write λj for λj(L,Σ).

The immersion is called stable (sometimes called weakly stable) if A′′(0) ≥ 0
holds for all variations which fix the enclosed volume and keep the boundary fixed.
It is clear that stability implies λ2 ≥ 0 holds (cf. Theorem 2.1). We will call X
critical if λ2 = 0 holds and if ∫

Σ
ψ2 dΣ = 0

for all eigenfunctions ψ2 belonging to zero eigenvalue.
For any variation of the surface, the variation of the mean curvature function is

given by

H ′(0) =
1

2
L[ψ] +∇H ·X ′(0) .

Of course, if H ≡ constant, then the second term vanishes. We now consider a
particular type of variation field which is given by

X ′(0) = χ,

where χ is a Killing field on R3. Such fields are given by linear combinations of
constant vector fields and fields of the form ~a×X where ~a is a constant vector field.
It is then clear that for such a field, we have

0 = H ′(0) =
1

2
L[χ · ν]

on any CMC surface. We will call the function ψ := χ · ν a Killing-Jacobi field. A
critically stable CMC surface for which ψ2 is given by a Killing-Jacobi field will be
called Killing critical. It is this type of surface which will be studied in this paper.
This is a special case of (III-B) in Theorem 2.1 below. Examples will be given in
sections 5 and 6.

In general, questions about the stability of the surface cannot be answered by
only using the λj’s. The complete story is given by Theorem 2.1 below, which is a
refinement of Theorem 1.3 in [4]. Before stating it, we give

Definition 2.1 Let X : Σ → R3 be a CMC immersion. A smooth variation X(ε)
of X is said to be admissible if X(ε)|∂Σ = X|∂Σ is satisfied for all ε. For such a
variation, we set u := X ′(0) · ν.

(i) The variation X(ε) is said to be nontrivial (resp. trivial) if u 6= 0 (resp.
u = 0).
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(ii) X is said to be strictly stable if A′′(0) > 0 holds for all nontrivial admissible
variations.

(iii) X is said to be unstable if A′′(0) < 0 holds for some admissible variation.

Set

F0 :=
{
u ∈ C3+α

0 (Σ)
∣∣∣∣ ∫

Σ
u dΣ = 0

}
.

It is known that, for any u ∈ F0, there exists a volume-preserving admissible varia-
tion X(ε) of X such that X ′(0) · ν = 0 holds (cf.[1, Lemma 2.4]). Using this fact, it
is easy to see the following:

Lemma 2.1 (i) X is strictly stable if and only if I[u] > 0 holds for all u ∈ F0 \{0}.
(ii) X is stable if and only if I[u] ≥ 0 holds for all u ∈ F0.
(iii) X is unstable if and only if I[u] < 0 holds for some u ∈ F0.

Denote by E the eigenspace belonging to zero eigenvalue of L with Dirichlet
boundary condition, and by E⊥ its orthogonal compliment with respect to L2-inner
product.

Theorem 2.1 Let X : Σ→ R3 be a C3+α-CMC (0 < α < 1) immersion.

(I) If λ1 ≥ 0, then X is strictly stable.

(II) If λ1 < 0 < λ2, then there exists a uniquely determined function ϕ ∈ C2+α
0 (Σ)

(smooth, in fact) which satisfies Lϕ = 1, and the following statements hold.

(II-1) If
∫

Σ ϕ dΣ > 0, then X is strictly stable.

(II-2) If
∫

Σ ϕ dΣ = 0, then X is stable but not strictly stable. A′′(0) = 0 for a
volume-preserving variation X(ε) if and only if u = aϕ (a ∈ R).

(II-3) If
∫

Σ ϕ dΣ < 0, then X is unstable.

(III) If λ1 < 0 = λ2, then the following statements hold:

(III-A) If there exists a λ2-eigenfunction e which satisfies
∫

Σ e dΣ 6= 0, then X is
unstable.

(III-B) If
∫

Σ e dΣ = 0 for any λ2-eigenfunction e, then there exists a uniquely
determined function ϕ ∈ E⊥ which satisfies Lϕ = 1 and ϕ|∂Σ = 0. Also,
the following statements hold:
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(III-B1) If
∫
Σ ϕ dΣ > 0, then X is stable but not strictly stable. A′′(0) = 0

for a volume-preserving variation X(ε) if and only if u ∈ E.

(III-B2) If
∫
Σ ϕ dΣ = 0, then X is stable but not strictly stable. A′′(0) = 0 for

a volume-preserving variation X(ε) if and only if u = e+aϕ (e ∈ E,
a ∈ R).

(III-B3) If
∫
Σ ϕ dΣ < 0, then X is unstable.

(IV) If λ2 < 0, then X is unstable.

The proof of Theorem 2.1 will be given in Appendix A.

3 Calculation of the higher variation

We consider a volume preserving admissible variation of a CMC surface X : Σ→ R3:

X(ε) = X + [εψ + (ε2/2)f +O(ε3)]ν

that fixes the boundary values, that is, X(ε)|∂Σ = X|∂Σ. It is assumed that ψ is a
Killing-Jacobi field vanishing on ∂Σ. We easily get the following:

0 = V ′ =
∫
X ′ · ν dΣ ,

0 = V ′′ =
∫

(X ′ · ν dΣ)′ ,

0 = V ′′′ =
∫

(X ′ · ν dΣ)′′ , (4)

0 = V(4) =
∫

(X ′ · ν dΣ)′′′ . (5)

A′ = −
∫

2HX ′ · ν dΣ ,

A′′ = −
∫

2H(X ′ · ν dΣ)′ −
∫

2H ′(X ′ · ν dΣ) ,

A′′′ = −
∫

2H(X ′ · ν dΣ)′′ −
∫

4H ′(X ′ · ν dΣ)′ −
∫

2H ′′(X ′ · ν dΣ) .

We first consider the third variation of area for a volume constrained variation.
From (4) and the fact that 2H ′ = L[ψ] = 0, we get

A′′′ = −
∫

2H ′′ψ dΣ . (6)

6



Next we compute the fourth variation. We obtain

A(4) = −
∫

2H(X ′ · ν dΣ)′′′ −
∫

6H ′′(X ′ · ν dΣ)′

−
∫

6H ′(X ′ · ν dΣ)′′ −
∫

2H ′′′(X ′ · ν dΣ) .

Since the mean curvature H is constant, we get from (5),

A(4) = −
∫

6H ′′(X ′ · ν dΣ)′ −
∫

6H ′(X ′ · ν dΣ)′′ −
∫

2H ′′′(X ′ · ν dΣ) .

Since ψ is a Jacobi field, we get, when ε = 0, 0 = 2H ′ = L[ψ], so

A(4)(0) = −
∫

6H ′′(X ′ · ν dΣ)′ −
∫

2H ′′′ψ dΣ . (7)

We next use that for any ε,

2H ′(ε) = Lε[X
′(ε) · ν(ε)] + 2(∇H)(ε) ·X ′(ε),

and so

2H ′′ = L[X ′′ · ν] + L[X ′ · ν ′] + L′[X ′ · ν] + 2(∇H)′ ·X ′ + 2∇H ·X ′′ .

If we use that H ≡ constant and H ′ = 0, when ε = 0, we arrive at

2H ′′ = L[X ′′ · ν] + L[X ′ · ν ′] + L′[X ′ · ν] = L[f ] + L′[ψ] . (8)

Since χ generates a one parameter family of isometries, we have for any ε

0 = Lε[ψε] + 2∇εHε · χε ,

so, at ε = 0 we have

0 = L′[ψ] + L[ψ′] + 2(∇′H +∇H ′) · χ+ 2∇H · χ′ = L′[ψ] + L[ψ′], (9)

since H is constant on Σ. From (8) and (9), we obtain

2H ′′ = L[f − ψ′] , (10)

and so from (7), we get

A(4) = −
∫

3L[f − ψ′](f − 2Hψ2) dΣ−
∫

2H ′′′ψ dΣ . (11)
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The first equality in (8) holds for all ε, so we obtain

2H ′′′ = L′′[ψ] + 2L′[f ] + L[(X ′ · ν)′′] .

Note that for any ε, X ′(ε) · ν(ε) ≡ 0 along ∂Σ, so the same holds for (X ′ · ν)′′. We
get from (11) that

A(4) = −
∫

3L[f − ψ′](f − 2Hψ2) dΣ−
∫

(L′′[ψ] + 2L′[f ])ψ dΣ . (12)

Note that derivatives of the operator L appear in the calculations given above.
We will need to consider how the self-adjointness of L affects its derivatives. We
consider two fixed smooth functions g and h on Σ which are independent of ε. For
any ε, we have ∫

Σ
gLε[h]− hLε[g] dΣε =

∮
∂Σ
g ∗ε dh− h ∗ε dg ,

where ∗ε denotes the Hodge star operator relative to the metric induced by X(ε).
Differentiating the last formula gives, when ε = 0,∫

Σ
gL′[h]− hL′[g] dΣ +

∫
Σ

(gL[h]− hL[g])(−2Hψ) dΣ =
∮
∂Σ
g ∗′ dh− h ∗′ dg .

For a surface in R3, the Hodge operator acting on 1-forms can be expressed

∗dφ(w) = −dφ(ν × w) , φ ∈ C1(Σ), w ∈ TΣ .

Differentiating this with respect to ε, we obtain

∗′dφ(w) = −dφ(ν ′ × w) = dφ(∇ψ × w)

and so we get∫
Σ
gL′[h]− hL′[g] dΣ +

∫
Σ

(gL[h]− hL[g])(−2Hψ) dΣ =
∮
∂Σ
g ∗′ dh− h ∗′ dg

=
∮
∂Σ
gdh(∇ψ × t)− hdg(∇ψ × t) ,

where t is the unit tangent to Σ. Now since ψ ≡ 0 on ∂Σ, ∇ψ is in the direction of
the co-normal to ∂Σ. This means that ∇ψ × t is normal to the surface and so we
arrive at ∫

Σ
gL′[h]− hL′[g] dΣ +

∫
Σ

(gL[h]− hL[g])(−2Hψ) dΣ = 0 . (13)
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Using (13), we get

−
∫

Σ
2ψL′[f ] dΣ = −

∫
Σ

2fL′[ψ] dΣ−
∫

Σ
4Hψ2L[f ] dΣ .

Using (9), we have

−
∫

Σ
2ψL′[f ] dΣ =

∫
Σ

2fL[ψ′] dΣ−
∫

Σ
4Hψ2L[f ] dΣ . (14)

Combining this with (12), we get

A(4) = −
∫

Σ
3fL[f ] dΣ +

∫
Σ

5fL[ψ′] dΣ +
∫

Σ
2Hψ2L[f ] dΣ (15)

−
∫

Σ
6Hψ2L[ψ′] dΣ−

∫
Σ
ψL′′[ψ] dΣ .

We consider the term involving L′′ in (12). At any time ε, we have

Lε[ψε] = −2∇εHε · χε ,

L′ε[ψε] + Lε[ψ
′
ε] = −2(∇′εHε +∇εH

′
ε) · χε − 2∇εHε · χ′ε .

And so at ε = 0

L′′[ψ]+2L′[ψ′]+L[ψ′′] = −2(∇′′H+2∇′H ′+∇H ′′)·χ−4(∇′H+∇H ′)·χ′−2∇H ·χ′′ .

Since H ≡ constant, we get ∇H = ∇′H = ∇′′H = 0 and we also have 2H ′ = L[ψ] =
0. Applying (10) to replace H ′′, we get

L′′[ψ] = −2L′[ψ′]− L[ψ′′]−∇L[f − ψ′] · χ . (16)

Using (16), we have

−
∫

Σ
ψL′′[ψ] dΣ =

∫
Σ

2ψL′[ψ′] + ψL[ψ′′] + ψ∇L[f − ψ′] · χ dΣ . (17)

Using that ψ vanishes on ∂Σ, we obtain from the Divergence Theorem∫
Σ
ψ∇L[f − ψ′] · χ dΣ = −

∫
Σ
ψL[f − ψ′]∇ · χT dΣ−

∫
Σ
L[f − ψ′]∇ψ · χ dΣ .

We use the formulas
∇ · χT = 2Hψ , ∇ψ · χ = −ψ′ . (18)
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Both formulas are easily verified by using that, in general χ(X) = ~a × X + ~b for

constant vectors ~a and ~b. We then obtain∫
Σ
ψ∇L[f − ψ′] · χ dΣ = −

∫
Σ

2Hψ2L[f − ψ′] dΣ +
∫

Σ
ψ′L[f − ψ′] dΣ .

Using this in (17), we get

−
∫

Σ
ψL′′[ψ] dΣ =

∫
Σ

2ψL′[ψ′] + ψL[ψ′′]− 2Hψ2L[f − ψ′] + ψ′L[f − ψ′] dΣ . (19)

From (13), we get, with the help of (9),∫
Σ

2ψL′[ψ′] dΣ = −
∫

Σ
2ψ′L[ψ′] + 4Hψ2L[ψ′] dΣ,

so that (19) becomes

−
∫

Σ
ψL′′[ψ]dΣ =

∫
Σ
−3ψ′L[ψ′]+ψL[ψ′′]−2Hψ2L[f ]+ψ′L[f ]dΣ+

∫
Σ

6Hψ2L[ψ′]dΣ .

Replacing the corresponding term in (15), gives

A(4) = −
∫

Σ
3fL[f ] dΣ +

∫
Σ

5fL[ψ′] dΣ−
∫

Σ
3ψ′L[ψ′] dΣ

+
∫

Σ
ψ′L[f ] dΣ +

∫
Σ
ψL[ψ′′] dΣ .

= −
∫

Σ
3fL[f ] dΣ +

∫
Σ

6fL[ψ′] dΣ−
∫

Σ
3ψ′L[ψ′] dΣ

+
∮
∂Σ
ψ′∂nf − ψ′′∂nψ d` , (20)

where ∂n is the differential with respect to the outward pointing conormal along ∂Σ,
and we have used integration by parts.

We will show that the boundary integral vanishes. First of all, we have

ψ′′ = χ′′ · ν + 2χ′ · ν ′ + χ · ν ′′ .

As mentioned above, the most general form for χ is χ = a × X + b for constant
vectors a and b. So χ′ = a×X ′ = a×ψν and χ′′ = a×X ′′ = a× fν, both of which
vanish on ∂Σ.

The second variation of the normal is given by

ν ′′ = 2ψdν(∇ψ)− |∇ψ|2ν −∇f .
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Since ψ ≡ 0 on ∂Σ and ν · χ =: ψ, this gives

ν ′′ · χ = −∇f · χ

on ∂Σ. Using that ψ′ = −∇ψ · χ, the boundary integral becomes∮
∂Σ
ψ′∂nf − ψ′′∂nψ d` =

∮
∂Σ
−(∇ψ · χ)∂nf + (∇f · χ)∂nψ d`

=
∮
∂Σ
χ× (∇ψ ×∇f) · n d`

= 0, (21)

since ∇f and ∇ψ are parallel along the boundary. Above, we have used the triple
vector product formula A× (B × C) = (A · C)B − (A ·B)C for A,B,C ∈ R3.

For a compact CMC surface with smooth boundary, we let K(Σ) denote the
vector space of Killing Jacobi fields which vanish on ∂Σ.

Proposition 3.1 Let Σ be a compact CMC surface in R3 with smooth boundary
∂Σ. For ψ ∈ K(Σ), let X + [εψ + (ε2/2)f + ...]ν be a volume preserving admissible
variation of X. Then the third variation of area is given by∮

∂Σ
∇ψ · χ∂nψ d` , (22)

where ψ = χ · ν.

Proof. We combine (6), (10) and (18), to get

A′′′ = −
∫

Σ
2H ′′ψ dΣ = −

∫
Σ
ψ(L[f ]− L[ψ′]) dΣ

=
∫

Σ
ψL[ψ′] dΣ

= −
∮
∂Σ
ψ′∂nψ d`

=
∮
∂Σ
∇ψ · χ∂nψ d` .

q.e.d.

Remark 3.1 It is clear from the previous proposition that the third variation de-
fines a quadratic operator on K(Σ). As such, we will say that the third variation
vanishes on Σ if this bilinear form is identically zero. This is equivalent to

0 =
∫

Σ
ψ1L[ψ′2] + ψ2L[ψ′1] dΣ = 0, for all ψ1, ψ2 ∈ K(Σ) . (23)
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Remark 3.2 Note that the variation X+ [εψ+ (ε2/2)f + ...]ν is not necessarily the
same as the one parameter family of surfaces obtained by applying the flow of the
infinitesimal isometry to the immersion X. For this reason, A′′′ does not necessarily
vanish.

Combining (20) with (21) gives

Theorem 3.1 Let Σ be a compact CMC surface in R3 with smooth boundary ∂Σ.
Assume that the kernel of the Jacobi operator with Dirichlet boundary condition
is exactly K(Σ). We assume that for all volume preserving variations X + (εψ +
(ε2/2)f + ...)ν, ψ ∈ K(Σ), the third variation of area vanishes. Then, the fourth
variation of area is given by

A(4) = −
∫

Σ
3fL[f ] dΣ +

∫
Σ

6fL[ψ′] dΣ−
∫

Σ
3ψ′L[ψ′] dΣ , (24)

where ψ′ = −∇ψ · χ.

Note that, in particular, the fourth variation of area only depends on the second
order variation of X. To see what conditions are imposed on f , we consider

0 = V ′ =
∫

Σ
X ′ · ν dΣ ,

0 = V ′′ =
∫

Σ
X ′′ · ν dΣ +

∫
Σ
X ′ · ν ′ dΣ +

∫
Σ
X ′ · ν (dΣ)′

=
∫

Σ
f dΣ−

∫
Σ

2Hψ2 dΣ .

Each boundary component of Σ is assumed to be a closed curve. This means
that we can write the Killing field χ either as a constant vector or it is of the form
~C×X for a constant vector ~C. We consider a closed, bounded domain U ⊂ R3 such
that ∂U = Σ ∪ Q with the surface Q disjoint from Σ. By applying the Divergence
Theoerem to the vector field χ, we get.∫

Σ
ψ dΣ =

∫
Q
χ · d~SQ .

If we deform the surface Σ, keeping the boundary fixed, we can regard the surface
Q as fixed also. Differentiating this equation with respect to ε, gives∫

Σ
ψ′ dΣ−

∫
Σ

2Hψ2 dΣ = 0 .
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Combining, we arrive at the condition∫
Σ
f − ψ′ dΣ = 0 , (25)

for the second order term of a volume preserving variation.
We now regard the right hand side of (24) as a quadratic functional F = Fψ:

Fψ[f ] = −
∫

Σ
3fL[f ] dΣ +

∫
Σ

6fL[ψ′] dΣ−
∫

Σ
3ψ′L[ψ′] dΣ (26)

for the function f . The competing functions are those which vanish on ∂Σ and
satisfy (25).

Proposition 3.2 Let Σ be a compact CMC surface with smooth boundary. Assume
that λ2(L,Σ) = 0, that the kernel of the Jacobi operator is exactly K(Σ) and that the
surface satisfies the conditions of case (III-B1) of Theorem 2.1. Also assume that
the third variation of area vanishes and if dim K(Σ) > 1 we assume the stronger
condition

0 =
∫

Σ
ψ1L[ψ′2] dΣ, for all ψ1, ψ2 ∈ K(Σ) . (27)

Then, the functional Fψ achieves a minimum in the class of functions vanishing on
∂Σ and satisfying (25). This minimum is achieved by the function f1 satisfying

L[f1] = L[ψ′] + A , f1|∂Σ ≡ 0 , (28)

where

A :=

∮
∂Σ ψ

′∂nϕ d`∫
Σ ϕ dΣ

, (29)

(ϕ is as in Theorem 2.1) and the minimum value is given by

1

3
Fψ,min = −

∮
∂Σ
ψ′∂nf1 d` . (30)

Remark 3.3 By the formula (10), equation (28) is equivalent to the equality 2H ′′(0) =
A. Since A is constant on Σ, the equation (28) is exactly the condition that the
mean curvatures of the surfaces X(ε) = X + [εψ+ (ε2/2)f1 + ...]ν are constant on Σ
(not necessarily constant in ε) to second order.

Proof of Proposition 3.2. By the Fredholm Alternative, (28) is solvable provided

0 =
∫

Σ
ψ1(L[ψ′] + A) dΣ, for all ψ1 ∈ K(Σ) .
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If dim K(Ψ) = 1, this condition holds since the integral of every Jacobi field must
vanish by the conditions of case (III-B1) of Theorem 2.1 and the hypothesis that
the third variation of area vanishes, so by Green’s Formula

0 = −
∫
∂Σ
ψ′∂nψ d` =

∫
Σ
ψL[ψ′] dΣ =

∫
Σ
ψ(L[ψ′] + A) dΣ.

If dim K(Ψ) > 1 holds, we again have that the integrals of Jacobi fields must vanish
by the conditions of (III-B1), but in this case, we use the condition (27).

The equation is therefore solvable for every A ∈ R, however there is a unique
value of A for which the solution will satisfy the volume preserving condition (25).
To see this, we multiply (28) by ϕ and integrate

0 =
∫

Σ
ϕ(L[f1]− L[ψ′]− A) dΣ

=
∫

Σ
f1 − ψ′ − Aϕ dΣ +

∮
∂Σ
ψ′∂nϕ dΣ

= −
∫

Σ
Aϕ dΣ +

∮
∂Σ
ψ′∂nϕ dΣ .

This gives the equation (29).
The general smooth function vanishing on ∂Σ and satisfying the condition (25)

is f = f1 + ζ, where ζ vanishes on ∂Σ and∫
Σ
ζ dΣ = 0 .

We get

Fψ[f1 + ζ] = Fψ[f1] + 6
∫

Σ
ζL[ψ′] dΣ− 3

∫
Σ
ζL[f1] dΣ− 3

∫
Σ
f1L[ζ] dΣ− 3

∫
Σ
ζL[ζ] dΣ

= Fψ[f1] + 6
∫

Σ
ζL[ψ′] dΣ− 6

∫
Σ
ζL[f1] dΣ− 3

∫
Σ
ζL[ζ] dΣ

= Fψ[f1]− 6
∫

Σ
Aζ dΣ− 3

∫
Σ
ζL[ζ] dΣ

≥ Fψ[f1] ,

by the stability of Σ. This shows that Fψ achieves its minimum at any function
satisfying the equation (28).

If f1 is as above, then

Fψ[f1] = −3
∫

Σ
ψ′L[ψ′] dΣ + 6

∫
Σ
f1L[ψ′] dΣ− 3

∫
Σ
f1(L[ψ′] + A) dΣ

14



= 3
∫

Σ
(f1 − ψ′)L[ψ′] dΣ− 3

∫
Σ
Af1 dΣ

= 3
∫

Σ
ψ′L[(f1 − ψ′)] dΣ + 3

∮
∂Σ

(f1 − ψ′)∂nψ′ − ψ′∂n(f1 − ψ′) d`− 3
∫

Σ
Af1 dΣ

= 3
∮
∂Σ

(f1 − ψ′)∂nψ′ − ψ′∂n(f1 − ψ′) d`

= −3
∮
∂Σ
ψ′∂nf1 d` .

q.e.d.

Assuming the conditions of the previous theorem hold, a necessary condition
for Σ to be a local minimizer among all surfaces having the same boundary and
containing the same volume is that Fψ,min ≥ 0 holds for all ψ ∈ K(Σ), while
Fψ,min > 0 for all ψ ∈ K(Σ) is sufficient for local minimization in the C1 topology.

The following lemma shows that any variation which is volume preserving to
third order can be embedded in a genuine volume preserving variation. The proof
is a modification of a standard idea.

Lemma 3.1 Let X+[εψ+(ε2/2)f+(ε3/3)g]ν be a variation of X with 0 = ∂kε V = 0,
k = 1, 2, 3. Then there exists variations of X of the form

X + [εψ + (ε2/2)f + (ε3/3!)g +O(ε4)]ν (31)

with V(ε) ≡constant.

Proof. We select any function h ∈ C∞0 (Σ) with∫
Σ
h dΣ 6= 0

and consider the two parameter variation

X(ε, σ) = X + [εψ + (ε2/2)f + (ε3/3!)g + σh]ν .

By assumption, we have

∂εV(0, 0) = 0 , ∂σV(0, 0) =
∫

Σ
h dΣ 6= 0 . (32)

By the Implicit Function Theorem, it is possible to find a smooth function σ(ε) such
that σ(0) = 0 and V(ε, σ(ε)) ≡constant. Differentiating the last expression, we get

0 ≡ d

dε
V(ε, σ(ε))

= Vε(ε, σ(ε)) + Vσ(ε, σ(ε))σ′(ε) .
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When ε = 0, this gives
0 = Vε(0, 0) + Vσ(0, 0)σ′(0) .

Using (32), we obtain σ′(0) = 0.
Differentiating V(ε, σ(ε)) a second time, we obtain

0 ≡ d2

dε2
V(ε, σ(ε))

= Vεε(ε, σ(ε)) + 2Vεσ(ε, σ(ε))σ′(ε) + Vσσ(ε, σ(ε))(σ′(ε))2 + Vσ(ε, σ(ε))σ′′(ε)

Plugging in ε = 0 and using the assumption Vεε(0, 0) = 0, (32) and σ′(0) = 0, we
obtain σ′′(0) = 0.

Finally, differentiating V(ε, σ(ε)) a third time, we get

0 ≡ d3

dε3
V(ε, σ(ε))

= Vεεε(ε, σ(ε)) + 3Vεεσ(ε, σ(ε))σ′(ε) + 3Vεσσ(ε, σ(ε))(σ′(ε))2

+3Vσσ(ε, σ(ε))σ′(ε)σ′′(ε) + Vσσσ(ε, σ(ε))(σ′(ε))3 + 3Vσε(ε, σ(ε))σ′′(ε) + Vσ(ε, σ(ε))σ′′′(ε) .

Again plugging in ε = 0 and using the assumptions of the lemma, (32) and the
vanishing of σ′(0) and σ′′(0), we obtain σ′′′(0) = 0. q.e.d.

4 Conjugate Delaunay Surfaces

In this section we present material that will be essential in considering the examples
which follow.

We identify R2 with C and represent a Delaunay surface by

X(s, ϑ) := (r(s)eiϑ, z(s)) ,

where s is the arc length parameter of the generating curve (r, z). The corresponding
outward pointing normal is given by

ν := (żeiϑ,−ṙ) =: (cos(θ)eiϑ, sin θ)) , (33)

where “dot” means differentiation with respect to s. Using Noether’s Theorem, one
derives that the condition for X to have constant mean curvature, is equivalent to
an equation

cos θ r +Hr2 − F/4 ≡ 0 , (34)
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where F is a constant which we call the flux parameter of the surface. Here H
denotes the mean curvature, which is non positive by the choice of normal. We refer
the reader to [5] for details.

We assume now that H 6= 0. Since (34) is a quadratic, it can be solved, yielding

r =
cos θ ±

√
cos2 θ +HF

−2H
.

From equation (33), we obtain dz/dr = − cot θ, so dz = − cot θ rθ dθ which yields
using (34),

z =
1

−2H

∫ θ

θ0
(1± cos θ̂√

cos2 θ̂ +HF
) cos θ̂ d θ̂ . (35)

For F > 0, the surface X parameterizes an unduloid U . In this case, starting
from θ0 = 0, we can take the + branch of the square root until the value θi =
± arccos(

√
−HF ) is reached. These points correspond to inflection points on the

generating curve of U . At these values of θ, we must switch to the negative branch
of the root and then continue from θi back to θ = 0.

The extremal values of r will be referred to as a bulge and a neck:

B :=
1 +
√

1 +HF

−2H
, N :=

1−
√

1 +HF

−2H
.

For F < 0, the surface is a nodoid N . In this case, we need only to consider the
positive branch of the root.

For reasons that will be apparent in the next paragraph, it is interesting to
note that equation (34) is a special case of the more general equation which can be
used to describe both rotationally invariant and helicoidally invariant surfaces with
constant mean curvature, i.e. all CMC surfaces which admit a continuous group of
isometries.

Bonnet showed that every simply connected non-spherical CMC surface Σ ad-
mits a 2π periodic isometric deformation which preserves the principal curvatures.
This deformation is achieved by introducing a one parameter family of second funda-
mental forms {IIα}α∈[0,2π) which, together with the original first fundamental form,
satisfy the Gauss and Codazzi equations and thus allow the construction of a one
parameter family of surfaces over any simply connected domain. The resulted sur-
faces are referred to as the associated family of Σ. The associate family is known
to contain all CMC surfaces isometric to a given one that have the same mean
curvature. If Σ0 := Σ, then the surface Σπ is known as the conjugate surface. In
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particular, when Σ0 is an unduloid, the conjugate surface is part of a nodoid and all
other surfaces in the associated family are invariant under a helicoidal group action.
Pictures of this family of surfaces can be found in [3] and [8].

Proposition 4.1 Let U be an unduloid with mean curvature H and flux parameter
F . Let a := 1/

√
1 +HF and define

r̃ := ar , z̃ :=
∫ s

0
±
√

1− (aṙ)2 ds , ϑ̃ := ϑ/a . (36)

Then the surface defined by

X̃(s, ϑ) := (r̃eiϑ̃, z̃)

is the conjugate nodoid to U and its flux parameter is given by

F̃ = −a2F .

In other words
r̃ ˙̃z +Hr̃2 + a2F/4 = 0 (37)

holds.

Remark 4.1 When computing the z̃ coordinate, starting from s = 0, the + sign is
chosen for the radical until the value of s corresponding to the first inflection point
on the generating curve of the unduloid is reached whence the sign is flipped. At
the next inflection the sign flips again and so forth.

Proof of Proposition 4.1. It is straightforward to check that the metrics of both X
and X̃ are given by ds2 + r2dϑ2.

With z̃ defined as above, we have

( ˙̃z)2/a2 − (ż)2 = a−2 − 1 (38)

holds. The equation (37) is the same as

( ˙̃z)2/a2 = (
F

4r
+Hr)2. (39)

And (34) gives (ż)2 = (F/(4r)−Hr)2. Then (39) follows since

(
F

4r
+Hr)2 − (

F

4r
−Hr)2 = FH = a−2 − 1 . (40)

Since both surfaces also have constant mean curvature H, they are in the same
associate family. q.e.d.
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Figure 1: The generating curve of one period of an unduloid (red) and the generating
curve of the corresponding part of its isometric nodoid (blue).

5 Applications to the unduloid

In this section U will denote one period of an unduloid bounded by two consecutive
necks and N will denote the corresponding domain in the conjugate nodoid. The
generating curves for both domains are shown in Figure 1.

Proposition 5.1 For U , λ1 < 0 = λ2 holds. Moreover, the function ν3 spans the
eigenspace belonging to 0.

Proof. By using the Stone-Weierstrass Theorem, we can reduce the study of the spec-
trum of L to considering functions of the form ψ(s, ϑ) = u(s) cos(nϑ) or ψ(s, ϑ) =
u(s) sin(nϑ), n = 0, 1, 2, .... We will assume the ψ has the former form, the case of
sin being very similar. We have

L[ψ] =
1

r
(rψs)s +

1

r2
ψϑϑ + (4H2 − 2K)ψ

= (
1

r
(rus)s + (4H2 − 2K − n2

r2
)u) cos(nϑ)

=: (L̂− n2

r2
)[u] cos(nϑ) .
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Figure 2: The unduloid on the left, minus a meridian, is isometric to the nodoid
domain displayed on the right.

The first component of the Gauss map is given by ν1 = ż cos θ and so (L̂− 1
r2

)[ż] = 0
holds. Note that w := ż is positive on U , since the height function z is strictly
increasing along the generating curve.

By using separation of variables, we see that each Dirichlet eigenvalue of L occurs
as an eigenvalue of a one dimensional problem:

(L̂− n2

r2
+ µ)[u(s)] = 0 , u(0) = 0 = u(`) , (41)

where ` is the length of the generating curve of U .
Note that the first eigenvalue λ̂1(n) of (41) satisfies

λ̂1(n) = min
u∈C∞0 ([0,`])−{0}

−
∫ `

0 u(L̂− n2

r2
)[u]r ds∫ `

0 u
2r ds

.

Let ζ = ζ(s) denote any smooth function vanishing at 0 and ` and let n ≥ 1.
We have by standard calculations

−
∫ `

0
ζw(L̂− n2

r2
)[ζw] rds =

∫ `

0
w2ζ2

s rds−
∫ `

0
ζ2w(L̂− n2

r2
)[w] rds
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=
∫ `

0
w2ζ2

s rds−
∫ `

0
ζ2w(L̂− 1

r2
)[w] rds+

∫ `

0
w2ζ2n

2 − 1

r2
rds

=
∫ `

0
w2ζ2

s rds+
∫ `

0
w2ζ2(

n2 − 1

r2
) rds

≥ 0 .

This means that for n ≥ 1, all eigenvalues of the problems (41) are non-negative
and we need only consider the case n = 0 which is the case of axially symmetric
variations.

The function ν3 = −ṙ(s) satisfies L̂[ν3] = 0 and has exactly two nodal domains,
which means that the second eigenvalue of L̂ on [0, `] is 0. This follows from general
results on Sturm-Liouville problems [2]. The first eigenvalue must then be negative
since the inequality λ1 < λ2 is known to also holds for Sturm-Liouville problems.
q.e.d.

Lemma 5.1 Let X : Σ → R3 be a CMC surface and let q := X · ν be its support
function. Then

L[q] = −2H (42)

holds.

Proof. If X(ε) = X + εδX +O(ε2) is any variation of X, then the first variation of
the mean curvature is

δH =
1

2
L[δX · ν] + δX · ∇H . (43)

We consider the variation by rescalings X(ε) = (1 + ε)−1X. Then, the mean cur-
vature Hε of X(ε) is (1 + ε)H. Since H ≡ constant, by using (43), we get (42).
q.e.d.

Lemma 5.2 Let q̃ be the support function of N which may be considered as a func-
tion on U and define

η(s) := q̃ + aq ,

where a := 1/
√

1 +HF as in Proposition 4.1. Then

L[η] = −2H(1 + a) > 0

and η ≡ 0 on ∂U .

Proof. Let sN denote the first positive value of s at which a neck of U occurs. Then
the first neck on N also occurs at s = sN . To see this, note that the domain in
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U given by 0 < s < sN is a nodal domain for the axially symmetric function ν3

and so the corresponding domain in N must also be a nodal domain for an axially
symmetric eigenfunction of L. The only axially symmetric eigenfunctions on N
vanishing at s = 0 are multiples of ν̃3 and their nodal domains correspond to the
part of N between a bulge and a neck.

We have

q = rż − zṙ , q̃ = r̃ ˙̃z − ˙̃rz̃ = a(r(±
√

1− (aṙ)2 )− z̃ṙ) .

We have
q̃(0) = aB, q̃(sN) = −aN.

The minus sign occurs since there is exactly one inflection point between 0 and sN .
Also,

q(0) = B, q(sN) = N.

Let η := aq+ q̃. Then L[η] = aL[q] +L[q̃] = −2H(1 + a) > 0 and η(sN) = 0. q.e.d.

Theorem 5.1 The surface U is stable in the sense that its second variation of area
is non negative for all volume preserving variations. More precisely, (III-B1) in
Theorem 2.1 holds.

Proof. Because of Proposition 5.1 we are in case (III-B) of Theorem 2.1. Note that
η is even. Since the function η is a positive multiple of the function ϕ in Theorem
2.1, we should consider ∫

U
η dΣ = −2H(1 + a)

∫
U
ϕ dΣ . (44)

By applying the Divergence Theorem to the vector field X, we get

3V =
∫
U
q dΣ + 2πN2z(sN) .

And so ∫
U
q dΣ = 3V − 2πN2z(sN) . (45)

Similarly, we get ∫
U
q̃ dΣ =

∫
U
q̃ dΣ̃ = 3Ṽ − 2πa2N2z̃(sN). (46)

The expressions on the right hand sides of (45) and (46) are both positive since
they represent three times the volume of the respective surface minus the volume of
the cylinder with radius equal to the neck size and having the same height as the
surface.

It follows that the integral of η = aq + q̃ is positive since a > 0 holds. q.e.d.
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Remark 5.1 This result was used in [6] in order to study a specific bifurcation of
the unduloid.

Although the unduloid U is stable, it is unclear whether or not it minimizes
area for the prescribed volume and boundary because of the existence of a Jacobi
field; namely the function ν3. To explore this question in greater depth, we need to
consider higher variations of the area.

Let X(ε) = X + (εν3 + (1/2)ε2f + O(ε3))ν be a volume preserving variation
with the same boundary conditions as X. We express the Gauss map of X(ε) as
νε = ν + εν ′ + O(ε2). (‘Prime’ denotes differentiation with respect to ε.) Since
X ′ = ν3ν, we have

ν ′ = −∇ν3 , ν ′3 = −∇ν3 · E3 = −∇ν3 · ∇z = r̈ż = k1(ż)2 . (47)

Here and afterwards, we will use ki, i = 1, 2 to denote the principal curvatures of
the considered surface.

Proposition 5.2 For variations as above, the third variation of area vanishes.

Proof. By Proposition 3.1, we must show∮
∂U
∇ν3 · E3∂nν3 d` = 0 . (48)

On both components of ∂U , we get ∇ν3 · E3 = ∇ν3 · ∇x3 = k1 which is an even
function. On the other hand ∂nν3 = −r̈ = −k1 on the upper boundary component
and ∂nν3 = +r̈ = +k1 on the lower boundary component and therefore the integral
in (48) vanishes. q.e.d.

Theorem 5.2 For the Killing critical domain of the unduloid, let X(ε) = X+[εν3+
(1/2)ε2f1 + O(ε3)]ν be the volume preserving variation constructed in the proof of
Proposition 3.2 with ψ = ν3. Then the fourth variation of area is negative.

Proof. In this case, we can explicitly find the solution of

L[f1] = L[ν ′3] + A , f1|∂U ≡ 0 , (49)

where

A :=

∮
∂U ν

′
3∂nϕ d`∫
U ϕ dΣ

. (50)
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Let j = j(s) denote the even solution of

L̂[j] = 0 , j ≡ 1 on ∂U .

This problem (49) has a solution since ν3 vanishes on ∂U and j and ν3 cannot
simultaneously vanish. Then using (47), we get that

f1 := ν ′3 − (2H + 1/N)j + Aϕ , (51)

since ν ′3 = k1 = 2H − k2 = 2H + 1/N on ∂U . The general solution is obtained by
adding an arbitrary multiple of the function ν3.

It follows easily from the calculations in the proof of Lemma 5.2, that

ϕ =
q̃ + aq

−2H(1 + a)
, j :=

q − q̃
N(1 + a)

. (52)

So by (51), the function f1 is more or less explicitly known. Moreover, on ∂U , we
have

∂nν
′
3 = ±∂s[k1(ż)2]s=sN = ±[∂s(2H − k2)(ż)2]s=sN = ±∂s[(2H + ż/r)(ż)2]s=sN = 0,

since both ż and r have critical points at s = sN . Therefore we have

Fmin = F [f1] = −3
∮
∂U
ν ′3∂nf1 d`

= −3(2H + 1/N)
∮
∂U
∂nf1 d`

= −3(2H + 1/N)
∮
∂U
∂n[ν ′3 − (2H + 1/N)j + Aϕ] d`

= −3(2H + 1/N)
∮
∂U
∂n[−(2H + 1/N)j + Aϕ] d`

=
3(2H + 1/N)2∫

U ϕ dΣ

(∫
U
ϕ dΣ

∮
∂U
∂nj d`− [

∮
∂U
∂nϕ d`]

2
)

=
3(2H + 1/N)2∫

U ϕ dΣ

(∫
U
ϕ dΣ

∮
∂U
∂nj d`−

∮
∂U
∂nϕ d`

∫
U
j dΣ

)
.

Below, we use (·)n to denote differentiation with respect to the outward pointing
unit normal along ∂U . Using (52), we get

Fmin =
3(2H + 1/N)2

−2HN(1 + a)2
∫
U ϕ dΣ

(∮
∂U
qn − q̃n d`

∫
U
q̃ + aq dΣ−

∮
∂U
q̃n + aqn d`

∫
U
q − q̃ dΣ

)

=
3(2H + 1/N)2

−2HN(1 + a)
∫
U ϕ dΣ

(∮
∂U
qn d`

∫
U
q̃ dΣ−

∮
∂U
q̃n d`

∫
U
q dΣ

)
.
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Finally, we use that qn(sN) = −(2H + 1/N)z(sN) (< 0), q̃n(sN) = −(2H +
1/Ñ)z̃(sN) (> 0) , (45) and (46) to get

Fmin =
3(2H + 1/N)2Length[∂U ]

−2HN(1 + a)
∫
U ϕ dΣ

(
−(2H + 1/N)z(sN)[3Ṽ − 2πÑ2z̃(sN)]

+(2H + 1/Ñ)z̃(sN)[3V − 2πN2z(sN)]
)
< 0 .

The last inequality follows since 3V − 2πN2z(sN), (resp. 3Ṽ − 2πÑ2z̃(sN)) is three
times the volume enclosed by U (resp. N ) minus the volume enclosed in the cylinder
having the same boundary, so both of these quantities are positive.

6 Applications to the nodoid

In this section, we show that a stable, Killing critical domain of a particular nodoid
is area minimizing in comparison to nearby surfaces sharing the same boundary and
enclosed volume.

Let U denote an unduloid domain generated by the part of an undulary curve
between two inflection points which contains a bulge. Note that the surface U differs
from the surface represented by the same letter in the previous section. Up to rigid
motions in R3, there is a two parameter family of such domains and we fix one of
these parameters by requiring H = −1. We fix the second parameter by taking
the flux parameter F = 3/4. By the results of section 4, this unduloid is locally
isometric to a nodoid domain N . If we represent U as the image of an immersion

X = (reiϑ, z) ,

then N is represented

X̃ = (r̃eiϑ̃, z̃) := (2reiϑ/2,
∫ s

0

√
1− 4ṙ2 ds) .

We wish to emphasize that U is only isometric to N locally. In this case, we have
a = 2. The inflection points on the generating curve of U occur when

0 =
√

cos2 θ +HF =
√

cos2 θ − 3/4 ,

where ż = cos θ, −ṙ = sin θ. So at the inflection points, we have ˙̃z =
√

1− (2(1/2))2 =
0, which means that the nodoid N lies between two circles of points having hor-
izontal tangent planes. Also note that since ϑ̃ = ϑ/2, the unduloid U , minus a
generating curve, is isometric to half of a nodoid as shown in Figure 3.
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Figure 3: The unduloid U and the isometric subdomain N1 ⊂ N .

Being locally isometric and having the same mean curvature, the unduloid and
the nodoid share the same Jacobi operator which is given by

L[ψ] =
1

r
(rψs)s +

1

r2
ψϑϑ + (4H2 − 2K)ψ . (53)

Lemma 6.1 N is a Killing critical domain.

Proof. Since the tangent planes are horizontal along both circles comprising the
boundary of N are horizontal, the functions ν̃i, i = 1, 2 are Killing-Jacobi fields for
N . Since these functions both change sign, we get λ̃1 < 0, λ̃2 ≤ 0. We need to show
that λ̃2 = 0.

Firstly, there is no negative eigenvalue belonging to an axially symmetric function
except for λ̃1. To see this, let w denote the even axially symmetric Jacobi field on
the nodoid normalized by w(0) = 1, ws(0) = 0, where s is the arc length along the
generating curve measured from the bulge. The function w must have a sign change
since λ̃1 < 0 holds. Since ν̃3 is the odd Jacobi field, we get

r̃(ν̃3ws − wν̃3s) ≡ constant = k̃1r̃z̃s(0) < 0 .
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Let s = s0 denote the arclength from the bulge to upper boundary circle. On the
interval (0, s0), both ν̃3 and ν̃3s are positive. Then it follows from the previous
equation that w cannot increase on any interval in (0, s0) on which w is negative.
So w has exactly one nodal domain in (−s0, s0).

Let f(s) be an eigenfunction belonging to the second eigenvalue of L restricted
to axially symmetric functions. By the Sturm Oscillation Theorem, f has exactly
two nodal domains and if the eigenvalue is negative, ν3 must change sign in each of
these nodal domains. This gives a contradiction since ν3 has only one sign change.

It is well known that the eigenvalue problem for (53) with Dirichlet boundary
conditions can be reduced to separation of variables. Writing ψ(s, ϑ) = f(s)einϑ,
the equation for f becomes

1

r
(rfs)s + (||dν||2 − n2

r2
+ λ)f = 0 . (54)

We have established that there is exactly one negative eigenvalue in the case n = 0.
When n = 1, the function z̃s is a non negative solution of (54) with λ = 0 which
vanishes on the boundary so there can be no negative eigenvalues occurring for
n ≥ 1. q.e.d.

Proposition 6.1 N is stable. More precisely, (III-B1) in Theorem 2.1 holds.

Proof. The eigenfunctions ν̃i, i = 1, 2 satisfy∫
N
ν̃i dΣ = 0,

so we are in case (III-B) of Theorem 2.1. Since H = −1 on N , the solution of
L[ϕ] = 1 is given by

ϕ :=
1

2
(q̃ − z̃Tη0) , (55)

where z̃T is the height on the top circle of N and η0 = η0(s) is the even Jacobi field
which is identically 1 on this circle. This is because, q̃ satisfies L[q̃] = −2H and the
boundary values of q̃ are equal to z̃T .

We have

2
∫
N
ϕ dΣ =

∫
N
q̃ dΣ− z̃T

∫
N
η0 dΣ

= 3V(N )− 2πr̃2
T z̃T −

1

2
z̃T

∫
N
η0L[q̃] dΣ

= 3V(N )− 2πr̃2
T z̃T −

1

2
z̃T

∮
∂N

∂nq̃ − q̃∂nη0 d`
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= 3V(N )− 2πr̃2
T z̃T +

1

2
z̃2
T

∮
∂N

∂nη0 d`−
1

2
z̃T

∮
∂N

∂nq̃ d`.

The term 3V(N ) − 2πr̃2
T z̃T represents three times the volume of N minus the

volume of the cylinder having the same boundary. This is clearly positive. Above,
we showed that even Jacobi field w(s), normalized by w(0) = 1, must be negative
and decreasing on ∂N . However η0(s) = w(s)/w(s0) which is increasing on ∂N .
This shows that the third term is non negative. On ∂N , ∂nq̃ = −2r̃T , so the last
term is non negative as well. q.e.d.

Remark 6.1 For the nodoid domain we are considering, K(N ) =span {ν̃1, ν̃2}. For
any ψ ∈ K(N ), we can write, by a standard manipulation

ψ = aν̃1 + bν̃2 = z̃s(a cos ϑ̃+ b sin ϑ̃) =
√
a2 + b2z̃s cos(ϑ̃− δ),

for a constant δ. After linear change of the the angle ϑ̃′ := ϑ̃ − δ, we arrive at
ψ =

√
a2 + b2z̃s cos(ϑ̃′). For this reason, it is enough to only consider the function

ν̃1.

Lemma 6.2 For any volume preserving variation of the nodoid N satisfying A′′(0) =
0, the third variation of area is zero.

Proof. By the remark above, it is sufficient to consider variations with X̃(0) · ν̃ = ν̃1.
For E1 = (1, 0, 0),

ν̃ ′1 = −∇ν̃1 · E1 = −∇ν̃1 · ∇x̃1

= −(r̃s cos ϑ̃X̃s −
r̃ sin ϑ̃

r̃2
X̃ϑ) · (z̃s cosϑXs −

z̃s
r̃2

sin ϑ̃X̃ϑ)

= −(r̃sz̃ss cos2 ϑ̃+
z̃s
r̃

sin2 ϑ̃)

= k̃1ν̃
2
3 cos2 ϑ̃+ k̃2 sin2 ϑ̃ . (56)

On ∂N , k̃2 = 0 and ν̃3 = ±1, so

ν̃ ′1 = 2H cos2 ϑ̃ = H(1 + cos 2ϑ̃) on ∂N . (57)
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Denote by C̃+ (resp. C̃−) the top (resp. bottom) circle of ∂N . Then, by
Proposition 3.1 and (57), we get,

A′′′ =
∮
∂N
∇ν̃1 · E1∂nν̃1 d`

= H
∮
C̃+

(1 + cos(2ϑ̃))z̃ss(s0) cos ϑ̃ d`−H
∮
C̃−

(1 + cos(2ϑ̃))z̃ss(−s0) cos ϑ̃ d`

= H
∫ 2π

0
(1 + cos(2ϑ̃))z̃ss(s0) cos ϑ̃ r̃dϑ̃−H

∫ 2π

0
(1 + cos(2ϑ̃))z̃ss(s0) cos ϑ̃ r̃dϑ̃

= 0 .

q.e.d.

Theorem 6.1 The minimum of the fourth variation of area of the nodoid domain
N , restricted to volume preserving variations, is positive.

Proof. In this case, we first take the Killing-Jacobi field to be the function ν̃1. The
metric on N is dS2 = ds2 + r2dϑ2. Let ηk, k = 0, 1, 2, ... denote the even solution of

1

r̃
(r̃ηs)s + (||dν̃||2 − k2/r̃2)η = 0 ,

normalized so that ηk ≡ 1 on ∂N . It follows that ηk cos kϑ̃ is a Jacobi field on N and
hence it is also a Jacobi field on U . The solution ϕ of L[ϕ] = 1 with zero boundary
values is

ϕ =
q − cη0

2
, (58)

where c is the value of q on the top circle. Using (57), we get that the function
defined by

f1 = ν̃ ′1 −H(η0(s) + η2(s) cos(2ϑ̃)) + Aϕ , (59)

where

A :=

∮
∂N ν̃

′
1∂nϕ d`∫

N ϕ dΣ
, (60)

satisfies the equation L[f1] = L[ν ′1] + A and f1|∂N = 0. Using Remark 6.1 and the
Fredholm Alternative, we then get that the condition (27) holds and by Proposition
3.2,

1

3
Fν̃1,min = −

∮
∂N

ν̃ ′1∂nf1 d` , (61)

which we now compute.
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Note that ν̃ ′1 is an even function of s and so ∂sν̃
′
1 is odd and ∂nν̃

′
1 = ±∂sν̃ ′1 is

even. Using (56), we get on the top circle

∂nν̃
′
1 = ∂sν̃

′
1

= k̃1s cos2 ϑ̃+ k̃2s sin2 ϑ̃

= −k̃2s cos(2ϑ̃) .

We compute

−k̃2s = ∂s(
z̃s
r̃

) =
r̃z̃ss − r̃sz̃s

r̃2
=
k̃1

r̃T
=

2H

r̃T
.

Therefore

∂nf1 =
2H

r̃T
cos 2ϑ̃−H(η0n + η2n cos(2ϑ̃)) + Aϕn . (62)

We claim that for the particular nodoid that we have chosen, ∂nη2 = 0 holds.
As mentioned above, η2(s) cos(2ϑ̃) is a Jacobi field on both N and U which is even
with respect to s. However ϑ̃ = ϑ/2 so this function can be expressed as η2(s) cosϑ
on U . But, up to a scalar multiple, the only even Jacobi field on U of this form is
ν1 = zs cos(ϑ). On the boundary of U , we have ∂szs = −k1rs = 0 since the points
on the boundary of U are inflection points of the generating curve. This proves the
claim.

By (57), (59) and (62), we have

1

3
Fmin :=

1

3
Fν̃1,min = −H

∮
∂N

(1 + cos 2ϑ̃)(
2H

r̃T
cos 2ϑ̃−Hη0n + Aϕn) d`

=
∮
∂N

η0n + Aϕnd`− 4π , (63)

where we have used that H = −1, d` = r̃T dϑ̃ and that the integral over ∂N includes
the integrals over both the top and bottom circles.

Using (57) and (60), we get

1

3
Fmin =

1∫
N ϕ dΣ

(∮
∂N

η0nd`
∫
N
ϕ dΣ− (

∮
∂N

ϕn d`)
2 − 4π

∫
N
ϕ dΣ

)
. (64)

We have shown above that the first factor on the right hand side is positive. Note
that ∮

∂N
ϕn d` =

∮
∂N

η0ϕn d` =
∫
N
η0 ,
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since L[ϕ] = 1 and L[η0] = 0. Using this to replace one of the factors above, we get

1

3
Fmin =

1∫
N ϕ dΣ

[∮
∂N

η0nd`
∫
N
ϕ dΣ−

∮
∂N

ϕn d`
∫
N
η0 dΣ− 4π

∫
N
ϕ dΣ

]
. (65)

Note that the first two terms in the square brackets form a determinant. Using
(58) we first get

1

3
Fmin =

1∫
N ϕ dΣ

[
1

2

∮
∂N

η0nd`
∫
N
q dΣ− 1

2

∮
∂N

qn d`
∫
N
η0 dΣ− 4π

∫
N
ϕ dΣ

]
. (66)

Secondly, we use that

η0 =
q̃ − q

(q̃ − q)|∂N
, (67)

which gives

1

3
Fmin =

1∫
N ϕ dΣ

[
1

2(q̃ − q)|∂N
(
∮
∂N

q̃n d`
∫
N
q dΣ−

∮
∂N

qn d`
∫
N
q̃ dΣ)−4π

∫
N
ϕdΣ

]
.

(68)
Denote by C+ (resp. C−) the top (resp. bottom) circle of ∂U .
We compute

±qn = qs = rzss − zrss = −k1(rrs + zzs) = 0 on C± , (69)

since the boundary of U consists of inflection points of the generating curve. Also,
on C̃±,

±q̃n = q̃s = r̃z̃ss − z̃r̃ss = −k̃1(r̃r̃s + z̃z̃s) = ±k̃1r̃ = ±2Hr̃T = ∓2r̃T . (70)

We have ∫
N
ϕ dΣ =

1

2

∫
N
ϕL[q] dΣ

=
1

2
(
∫
N
q dΣ +

∮
∂N

ϕqn − qϕn d` ) .

Using (55) and (67) to replace ϕ and then using (69) and (70) , we get∫
N
ϕ dΣ =

1

2
(
∫
N
q dΣ +

1

2
(1− z̃T

(q̃ − q)|∂N
)
∮
∂N

q̃qn − qq̃n d` )

31



=
1

2
(
∫
N
q dΣ− 1

2
(1− z̃T

(q̃ − q)|∂N
)
∮
∂N

qq̃n d` )

=
1

2
(
∫
N
q dΣ− 1

2
(1− z̃T

(q̃ − q)|∂N
)4πr̃T qT (−2r̃T ) )

=
1

2
(
∫
N
q dΣ + 4πqT r̃

2
T (1− z̃T

(q̃ − q)|∂N
) ).

Using this in (68) gives,

1

3
Fmin =

4π∫
N ϕ dΣ

[
(
−r̃2

T

(q̃ − q)|∂N
− 1

2
)
∫
N
q dΣ− 2πqT r̃

2
T (1− z̃T

(q̃ − q)|∂N
)
]
. (71)

We will numerically verify that this quantity is positive.
Using the formulas in Section 4, we get

rT =
√

3/4, r̃T =
√

3/2 = (zs)T .

This gives,

qT =

√
3

4
·
√

3

2
+
zT
2

=
3

8
+
zT
2
,

while
q̃T = z̃T .

By (35), we get

zT =
1

2

∫ π/6

0
(1 +

cos θ̂√
cos2 θ̂ − 3/4

) cos θ̂ d θ̂ ≈ 0.9837311046 , (72)

and

z̃T =
1

2

∫ π/6

0

√
1− 4 sin(θ̂)2(1 +

cos θ̂√
cos2 θ̂ − 3/4

) dθ̂ ≈ 0.7031494430 .

Using the formulas above, we get

(q̃ − q)|∂N = z̃T −
zT
2
− 3

8
≈ −.1637161092 ,

and
−r̃2

T

(q̃ − q)|∂N
− 1

2
≈ 4.081100810 .
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In the second term of (71), the integral of q over N is equal to 2(3V(U) − V(C)),
where C is the cylinder having the same boundary as U . The factor 2 is because N
is a double cover of U up to a set of zero measure. Using the formulas given at the
start of section 4, we arrive at∫

N
q dΣ ≈ 13.32232153 .

Combining theses calculations as in (71), we obtain

1

4π

∫
N
ϕ dΣ(

1

3
Fν̃1,min) ≈ 32.73990212 .

We have shown above that the integral appearing on the right hand side is
positive so the positivity of Fν̃1,min follows. We remark that the numerical values
obtained above were evaluated as elliptic integrals using Maple.

By Remark 6.1, Fψ,min > 0 holds for all ψ ∈ K(N ). q.e.d.

A Proof of Theorem 2.1

(I) and (IV) are the same as (I) and (IV) in Theorem 1.3 in [4].
Assume that λ1 < 0. Let ψi be the eigenfunction corresponding to the i-th

eigenvalue λi of the problem

Lψ = −λψ, ψ ∈ H1
0 − {0}, (73)

where
L = ∆ + ||dν||2.

We choose {ψi} so that they form an orthonormal basis for L2(Σ). Since ψ1 does
not change sign, ∫

Σ
ψ1 dΣ 6= 0. (74)

For a function u ∈ C2+α
0 (Σ), set

v = −
∫

Σ u dΣ∫
Σ ψ1 dΣ

ψ1 + u. (75)

Then ∫
Σ
v dΣ = 0. (76)
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By setting

a = −
∫

Σ u dΣ∫
Σ ψ1 dΣ

,

v is represented as
v = aψ1 + u.

When (73) has no zero eigenvalue, by the Fredholm alternative, there exists a
unique function u ∈ C2+α

0 (Σ) satisfying Lu = 1. In this case, by using the Green’s
formula and (76), we see that

I[v] = −
∫

Σ
vLv dΣ

= −
∫

Σ
(a2ψ1Lψ1 + aψ1Lu+ auLψ1 + uLu) dΣ (77)

= a2λ1

∫
Σ
ψ2

1 dΣ− 2a
∫

Σ
ψ1Lu dΣ−

∫
Σ
u dΣ

= a2λ1 +
∫

Σ
u dΣ.

Since λ1 < 0, I[v] < 0 holds if
∫
Σ u dΣ < 0 holds. In this case, in view of Lemma

2.1, X is unstable, which proves (II-3).
Next, when u = ψ2, from (77) and the orthonormality of {ψi}, we see

I[v] = a2λ1

∫
Σ
ψ2

1 dΣ− 2a
∫

Σ
ψ1Lψ2 dΣ−

∫
Σ
ψ2Lψ2 dΣ

= a2λ1

∫
Σ
ψ2

1 dΣ + 2aλ2

∫
Σ
ψ1ψ2 dΣ + λ2

∫
Σ
ψ2

2 dΣ

= λ1

(∫
Σ
ψ2 dΣ

)2(∫
Σ
ψ1 dΣ

)−2

+ λ2.

Therefore, if λ2 ≤ 0 and
∫
M ψ2 6= 0, then I[v] < 0 and so X is unstable, which proves

(III-A).
Next we prove (II-1). Set

E1 = {aψ1|a ∈ R}, E⊥1 =
{
u ∈ C2+α

0 (Σ)
∣∣∣∣ ∫

Σ
ψ1u dΣ = 0

}
.

Again by the Fredholm alternative, there exists a unique function u ∈ C2+α
0 (Σ)

satisfying Lu = 1. If ∫
Σ
u dΣ ≥ 0,
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then
I[u] = −

∫
Σ
uLu dΣ = −

∫
Σ
u dΣ ≤ 0. (78)

Note

λ1 = I[ψ1] = min
{
I[u]

∣∣∣∣ u ∈ H1
0 (Σ) and

∫
Σ
u2 dΣ = 1

}
,

λi = I[ψi] = min
{
I[u]

∣∣∣∣ u ∈ H1
0 (Σ),

∫
Σ
u2 dΣ = 1

and
∫

Σ
uψj dΣ = 0 for j ∈ {1, · · ·, i− 1}

}
, i = 2, 3, · · ·.(79)

(78), (79) and λ2 > 0 imply u /∈ E⊥1 . Therefore, any v ∈ F0 is represented as follows:

v = w + bu, b ∈ R, w ∈ E⊥1 .

Then

I[v] = −
∫

Σ
(b2uLu+ buLw + bwLu+ wLw) dΣ

= −b2
∫

Σ
u dΣ− 2b

∫
Σ
w dΣ + I[w]

= b2
∫

Σ
u dΣ− 2b

∫
Σ

(w + bu) dΣ + I[w]

= −b2I[u] + I[w].

Note I[w] > 0 if w 6= 0. Hence, I[v] ≥ 0 holds, which implies that X is stable. If∫
Σ u dΣ > 0, then X is strictly stable, which proves (II-1). If

∫
Σ u dΣ = 0, then

I[v] = 0 if and only if v = bu (b ∈ R), which proves (II-2).
Lastly, we prove (III-B). Again by the Fredholm alternative, there exists a unique

function u ∈ E⊥ ∩ C2+α
0 (Σ) that satisfies Lu = 1.

When
∫
Σ u dΣ < 0, we can prove that X is unstable by the same way as in the

proof of (II-2). (III-B1) is proved by the same way as the proof of (II-1). When∫
Σ u dΣ = 0,

I[u] = −
∫

Σ
uLu dΣ = −

∫
Σ
u dΣ = 0 = λ2.

Assume that u ∈ E⊥1 . By (79), u is an eigenfunction corresponding to λ2 = 0, that
is, Lu = 0, which is a contradiction. Therefore, u /∈ E⊥1 , and hence, we can prove
the stability of X by the same way as in the proof of (II-2). q.e.d.
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