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ABSTRACT. We study the geometry of a stable drop of incompressible liquid
constrained to lie in a spherical container. The energy functional is comprised
of the surface tension, the wetting energy and the line tension. It is shown that
the only stable equilibrium drops having the topology of a disc are flat discs and
spherical caps. Sharp conditions for the stability of equilibrium spherical caps
and flat discs are given.
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FIGURE 1. The basic three phase configuration.

1. INTRODUCTION

The determination of the equilibrium surface having free boundary on a sup-
porting surface is a subject with a long and interesting history which probably
originates with Da Vinci’s investigation of the surface of a capillary tube. The ba-
sic three phase system consists of a partially filled container, in the present case, a
spherical container partially filled by a liquid. Josiah Gibbs observed that points on
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the free boundary curve which is given by the interface of the liquid’s surface with
the container, being in contact with three distinct phases, should carry an energy
term of their own; the so called line tension. For isotropic materials, this energy is
often represented by a multiple of the length of the boundary curve, although other
possibilities can be used. Since this line tension scales linearly while the surface
energy scales quadratically, the line tension becomes increasingly more significant
at small scales. In addition, at small scales the gravitational force, which scales
cubically, is negligible so it is omitted here.

In this paper, we study the stability of equilibria for a liquid drop contained
within a spherical container as in Figure 1. Since the drop is liquid, the energy
of its free surface Σ is proportional to the area and we normalize the constant of
proportionality to be one. The interaction of the material of the drop with that
of the container contributes a wetting energy which is proportional to the area of
the spherical region Ω in contact with the bulk of the liquid. Points on the free
boundary curve ∂Σ are in contact with three phases; the drop, the container and
the material, assumed to be air, which occupies the region interior to the sphere
which is complimentary to the drop. These points contribute an energy term, the
line tension discussed above, which we assume to be proportional to the length of
∂Σ. We thus arrive at the total energy

(1) E := Area[Σ] +ωArea[Ω] + βLength[∂Σ] ,

where ω and β are coupling constants. The main result presented here is the
following:

Theorem 1.1. Let X : (Σ, ∂Σ) → (B3, S2) be a C2 immersed equilibrium drop
where Σ is the unit disc in R2. Then, if the surface is stable, X(Σ) is a spherical
cap or a flat disc.

Nitsche [10] considered the free boundary problem without wetting or line ten-
sion, (ω = β = 0), and gave a beautiful complex analytic argument to show that
the only equilibrium disc type solutions, stable or otherwise, are spherical caps and
flat discs. In [11], Ros and Souam extended this result to drops with wetting energy
but no line tension (β = 0).

For genus zero surfaces contained in the upper half space x3 > 0 and having
one free boundary component in the plane x3 = 0, it is known that for β > 0,
all equilibrium surfaces are spherical caps [7]. When β < 0 holds, it was shown
by B. Widom [15], that the equilibrium spherical caps are never stable. These
surfaces are however energy minimizing among rotationally symmetric surfaces.
It was pointed out in [13] that this mathematical instability does not preclude the
physical existence of drops with negative line tension, since the wave lengths of
destabilizing variations may lie below the length scale for which this type of energy
model is valid.

In the second part of the paper, we study the stability of spherical caps. We give
a necessary and sufficient condition for a spherical cap to be a stable equilibrium
for a functional of the type (1).
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2. STABILITY OF DISC TYPE EQUILIBRIA

In order to obtain the equations characterizing equilibrium, we subject the sur-
face Σ to a variation Xε = X+εδX+O(ε2). Letting X denote the position vector
of the surface, we write δX = T +ψN, where N denotes the surface normal and T
is tangent to Σ. The field δX must, in addition, be tangent to the sphere S2 along
∂Σ, i.e.

(2) X · δX ≡ 0 , on ∂Σ

and it must satisfy the condition

(3)
∫
Σ

ψ dΣ = 0

which means that the variation infinitesimally preserves the volume of the drop. A
standard argument using the Implicit Function Theorem [2] can be applied to show
that conditions (2) and (3) are sufficient to produce an actual variation X + εδX +
O(ε2) which preserves the volume and keeps the drop confined to the sphere.

The first variation of the total energy is

(4) δArea[Σ] = −

∫
Σ

2Hψ dΣ+

∮
∂Σ

δX · n ds ,

where n = X ′ × N is the unit conormal to ∂Σ which it tangent to Σ. (“prime”
denotes differentiation with respect to arc length along ∂Σ) and H is the (scalar)
mean curvature. The variation of the wetting energy is [11]

(5) δArea[Ω] =

∮
∂Σ

δX · n̄ ds ,

where n̄ = X × X ′ is the unit conormal to ∂Σ in S2. We point out that our orien-
tation of the surface Ω is different from that of the surface Σ since n × X ′ = N,
while n̄ × X ′ = −X. Along ∂Σ, there holds X ′′ = −X + k̄gn̄, where k̄g is the
geodesic curvature of ∂Σ in S2. The variation of the line tension is

(6) δLength[∂Σ] = −

∮
∂Σ

X ′′ · δX ds .

By considering variations with compact support satisfying (3), we can conclude
that H ≡ constant in the interior of Σ. Then, collecting the boundary terms, we
conclude that

0 =

∮
∂Σ

(n +ωn̄ + β(X − k̄gn̄)) · δX ds

must hold for all admissible δX. This will hold if and only if n+(ω−βk̄g)n̄+βX
is parallel to X along ∂Σ, i.e.

(7) X× (n + (ω− βk̄g)n̄) = 0

must hold. Since X × n̄ = −X ′ and X × n = (X · N)N × n = (X · N)X ′, we see
that (7) is equivalent to

(8) X · N = −βk̄g +ω ,
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and the first variation is given by

(9) δE = −

∫
Σ

2Hψ dΣ+

∮
∂Σ

[
X · N + βk̄g −ω

]
X ′ × X · δX ds .

Obviously, axially symmetric CMC surfaces contained in the ball having their
boundary circles on the sphere provide examples of equilibrium surfaces, Partial
examples, i.e. constant mean curvature surfaces having a boundary arc on the
sphere where (8) holds, can be produced using Bjorling’s Formula [6]. This for-
mula gives the construction of a minimal surface containing a given ‘strip’ which
consists of a real analytic curve C(s), parameterized by arc length, together with
a unit vector field η(s) orthogonal to the curve at each point. If X(w) denotes the
minimal immersion and defined on a neighborhood of the real axis in the complex
plane, then the formula is

(10) X(w) := <{C(w) − i

∫w
w0

η(z)× C ′(z) dz} .

Here C(w) and η(w) denote the analytic continuations of C(s) and η(s) respec-
tively.

We take C : I→ S2 be curve which is real analytic in its arc length parametriza-
tion such that its geodesic curvature satisfies | − βk̄g + ω| < 1 for constants ω,
β. We also use k̄g to denote the analytic extension of the geodesic curvature to a
neighborhood of I in the complex plane. We then define

η(s) = −(ω− βk̄g)C(s) −
√
1− (βk̄g −ω)2 C× C ′(s) .

The field η will turn out to be minus the unit normal N restricted of the minimal
surface restricted to the curve C(s).

Plugging the field η into (10), we get that

X(w) := Re{C(w)−i

∫w
w0

(ω−βk̄g)C(w)×C ′(s)+
√
1− (βk̄g −ω)2C(z)dz}

defines a minimal surface satisfying ( 8) on C(I). Locally, the curve C(I) divides
the minimal surface into two parts, on interior to the 2-sphere and one exterior.
The interior part is then a minimal surface having a boundary component satifying
(8). This construction is useful since it shows that there is no local obstruction to
having an equilibrium surface with a non circular boundary arc.

The second variation of the functional E was worked out in detail in the paper
[12], however we do the calculations for the special case where the supporting
surface is a sphere in the appendix. Assuming the surface Σ to be in equilibrium,
the second variation of energy is given by.

(11) δ2E = −

∫
Σ

ψL[ψ] dΣ+

∮
∂Σ

ψB[ψ] ds .

Here L = ∆+(4H2−2K), where K is the Gaussian curvature of the surface and ∆
denotes the Laplace-Beltrami operator. With sinα := X · n, the boundary operator
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has the form
(12)

B[ψ] = ∇ψ·n−
( 1

sinα
−cotαdN(n)·n)

)
ψ−

β

sinα
(
(
ψ

sinα
)ss+(1+k̄g

2
)
ψ

sinα
)
.

At points on the boundary where X · n =: sinα = 0, ψ/ sinα must be replaced
by −T · n, where T is the tangential part of δX. Defining ψ̃ := ψ|∂Σ/ sinα and
integrating by parts, the second variation can now be expressed
(13)

δ2E =

∫
Σ

|∇ψ|2−|dN|2ψdΣ+

∮
∂Σ

β[(ψ̃s)
2−ψ̃2]−ψ2[cscα−cot(α)II(n, n)]ds

This formula extends (11) to the class of functions

K := {ψ ∈ H1(Σ) | ψ̃ := ψ/ sinα ∈ H1(∂Σ)} .

Definition An equilibrium surface is stable if δ2E > 0 holds for all ψ ∈ K such
that (3) holds.

Diagonalizing the second variation leads to a spectral problem of the form

(L+ λ)ψ = 0, on Σ ,B[ψ] = 0 on ∂Σ .

The second condition is a type of Wentzell boundary condition, has been widely
studied [3], [8], [14].

It will be assumed thatΣ is an embedded topological disc which is in equilibrium
for the functional E such that ∂Σ is a piecewise smooth curve. Our aim is to show
that if Σ is stable, then Σ must be axially symmetric. For c ∈ (R3)∗, the field
c×X generates an infinitesimal rotation with axis c. It is clear that this flow, being
a one parameter family of isometries, preserves volumes, areas and arc lengths.
Introduce the function ψc := c× X · N. It is then clear that ψc satisfies L[ψc] = 0
in Σ with B[ψc] = 0 on ∂Σ. Also note that (3) holds since rotations preserve
volume and (2) is obviously satisfied. We will need the following:

Lemma 2.1. If there exists an arc γ in the boundary of the disc on which ψc ≡ 0
holds, then the surface is axially symmetric and it must be a flat disc or a spherical
cap.

Proof. Assuming that the hypotheses of the lemma hold, at least one of the
following two statements must be true: (i) there is an open arc γ1 ⊂ γ on which
X · n is nowhere zero. (ii) there is an open arc γ1 ⊂ γ on which X · n ≡ 0 holds.

In case (i), write

(14) 0 ≡ ψc = c× X · N = c× X · n× X ′ = −(X · n)(c · X ′) ,

so c · X ′ ≡ 0 holds on γ1. It follows that X(γ1) lies in the intersection of S2 with
a plane, so it is a circular arc.

Since X(γ1) is a circular arc, k̄g is constant and we get from (8)

(15) 0 = ∂s(X ·N+βk̄g−ω) = ∂s(X ·N) = X · (−τgn−kNX ′) = −τgX ·n ,

where τg denotes the geodesic torsion of ∂Σ in Σ and kN denotes the normal
curvature. This means that τg ≡ 0 holds on γ1. We use this to compute the normal
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derivative of ψc on γ1:

∂nψc = c× n · N + c× X · dN(n)
= −N× n · c − (2H− kN)c× X · n − τgc× X · X ′

= −X ′ · c − (2H− kN)X ′ · c − τgc× X · X ′

= 0 .

Now we have that ψc ≡ 0 ≡ ∂nψc along γ1 which is a sub arc of the unit cir-
cle. We can then use the Cauchy- Kovaleskaya Theorem to conclude that ψc ≡ 0
holds on Σ. Recall that by elliptic regularity, CMC surfaces in R3 are real analytic
([9], Theorem 6.6.1) and hence the coefficients of the operator L are real analytic
with respect to the standard coordinates on the disc. The CMC surface Σ can be
analytically continued across the arc γ1. The technique to do this, given in [5]
for minimal surfaces, extends to the CMC case. The Cauchy problem L[f] = 0
with f ≡ 0 ≡ ∂nf on γ1 is locally well posed and we can conclude that f ≡ 0
is the unique solution in a neighborhood of any point in γ1. Therefore ψc ≡ 0 in
a neighborhood of any point in γ1 and so by uniqueness of analytic continuation
ψc ≡ 0 holds in Σ.

Since ψc ≡ 0 holds, it follows that Σ is axially symmetric about the vector c,
since the torque field X × c is everywhere tangent to the surface, so each of its
integral curves, which are coaxial circles perpendicular to c, are contained in the
surface. Since the surface has constant mean curvature and is assumed to be a
topological disc, Σ must be either a spherical cap or a flat disc.

If case (ii) holds, we must have X · N ≡ ±1 on γ1, since X · X ′ ≡ 0 holds.
Consquently N ′ = ±X ′ implies that kN ≡ ±1 and τg ≡ 0 holds. We again get
from (8) that k̄g ≡ constant on X(γ1). Since the curvature κ of X(γ1) as a space
curve satisfies κ2 = 1 + k̄2g, κ ≡ constant holds. We can then easily obtain from
X ′′ = −X+ k̄gn̄, that X ′′′ and X ′ are parallel. Since the torsion of X(γ1) is given
X ′ × X ′′ · X ′′′/|X ′ × X ′′|, the torsion is zero and so X(γ1) is a circular arc.

Note that when X · n ≡ 0 holds, a calculation similar to that done in (14) shows
that ψa := a × X · N vanishes identically along γ1 for any non zero vector a. We
take a to be a non zero vector which is perpendicular to the plane containing γ1.
The same steps in the calculation for ∂nψc done above then show that ∂nψa ≡ 0
holds along γ1 and by the same reasoning, the surface is axially symmetric and
must be a spherical cap or flat disc. q.e.d

Proof of Theorem 1.1 On ∂Σ, there holds ψc = c × X · N = −N × X · c =
−(X · n)N× n · c = −(X · n)X ′ · c. We will use this to show that if we assume the
surface is not axially symmetric, then there always exists a c ∈ (R3)∗ such that the
function ψc has, at least, four sign changes on ∂Σ.

If (r, θ) are the polar coordinates on the disc, then X ′ = Xθ/|Xθ| and so

(16) ψc|∂Σ = −(X · n/|Xθ|)Xθ · c .
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For any c ∮
∂Σ

Xθ · c dθ =

∮
∂Σ

(X · c)θ dθ = 0

holds. Let ∮
∂Σ

Xθeiθ dθ =: A + iB ∈ C3 .

Thus, there exists c ∈ R3, c 6= 0 with 0 = c ·A = c ·B. It then follows that for this
c the function Xθ · c can be represented as a Fourier series of the form

Xθ · c =
∑
j>2

(aj cos(jθ) + bj sin(jθ)) .

Since the disc is simply connected, this function can be interpreted as the boundary
values of the real part of the complex analytic function

F(z) :=
∑
j>2

(aj − ibj)z
j .

Note that F(z) = z2η(z) for a function η(z) which is complex analytic in the
disc. The variation of arg(F(z)) over the boundary of the disc is therefore at least
4π. If Re(F(z)) vanishes identically on an open arc in ∂Σ, then the same is true for
ψc and, by Lemma 2.1, the surface is axially symmetric so we can assume that this
does not happen. Because the variation of arg(F(z)) is at least 4π, Re(F(z)) must
have at least four sign changes on ∂Σ. Specifically, there are at least four points
pi which are contained in arcs on which Re(F(z)) is positive on one side of pi
and negative on the other side. The same is true for the function ψc. This follows
from equation (16) and the fact that X · n > 0 holds on ∂Σ since the function ||X||2

clearly assumes its maximum on ∂Σ. Also recall that X · n cannot vanish on any
arc in ∂Σ by Lemma 2.1 and (16).

At each point pi, at least one arc of the nodal set of ψc must enter Σ. These
arcs must divide the disc into at least three nodal domains of the function ψc. We
will now show that the existence of more than two nodal domains of ψc implies
instability. Suppose Ω1,Ω2, ...ΩN are nodal domains, N > 3. We can assume
Ω1 andΩ2 are adjacent to each other. Let U = Ω1 ∪Ω2, V = Σ \U.

Define F to be the set of all functions f on Ū satisfying the following conditions:
(i) f is piecewise C1 on Ū, (ii) f/X · n is piecewise C1 on ∂Σ and (iii) f ≡ 0 on
∂U\∂Σ. Note thatψc|U ∈ F. Also, since (X·N)2+(X·n)2 ≡ 1 on ∂Σ, F contains
all functions vanishing identically on V which are of the form v(1−(X ·N)2) near
∂U ∩ ∂Σ, where v is smooth function. In particular, this includes C∞c (U). Define

µ1 = inf
F

(∫
U

|∇f|2 − (4H2 − 2K)f2 dΣ−

∫
∂Σ∩∂U

( 1

sinα
− cotα dN(n) · n

)
f2 ds

+β

∫
∂Σ∩∂U

f̂2s − f̂
2 ds

)/∫
U

f2 dΣ .

By using the function ψc|U, we get that µ1 6 0 holds.
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Suppose µ1 = 0. Let ψ∗ be the function which is identically ψc in Ω1 and is
identically zero offΩ1. Then ψ∗ realizes the infimum µ1 = 0 and hence we have,
for all ζ ∈ C∞c (U),

0 = ∂ε

(∫
U

|∇(ψ∗ + εζ)|2 − (4H2 − 2K)(ψ∗ + εζ)2 dΣ

−

∫
∂Σ∩∂U

(
1

sinα
− cotα dN(n) · n

)
(ψ∗ + εζ)2 ds

+β

∫
∂Σ∩∂U

(ψ̂∗ + εζ̂)2s − (ψ̂∗ + εζ̂)2 ds

)
ε=0

= 2

∫
U

∇ψ∗ · ∇ζ− (4H2 − 2K)ψ∗ζ dΣ .

In other words,ψ∗ is a weak solution of L = 0 inU. Elliptic regularity then implies
that ψ∗ is a classical solution. However ψ∗ ≡ 0 on Ω2 which contradicts a well
known unique continuation property [1].

We can therefore conclude that µ1 is negative and so there is then an f ∈ F

for which the ratio in (17) is negative. Extend f to be zero in V . Let ψ2 be the
function which is identically equal to ψc in V and is identically zero in U. There
is a nontrivial superposition φ := c1f + c2ψ2 ∈ K which has zero mean value.
We seek a variation field δX = φN + T, with T tangent to Σ such that on ∂Σ there
holds 0 ≡ δX · X = φN · X + (T · n)(n · X). In other words, we want T · n =
−(φ/(n·X))N·X. This last expression is well-defined and piecewise differentiable
by the definition of F. Let w be the solution of the biharmonic Dirichlet problem
∆2w = 0 in Σ having boundary values w ≡ 0 and ∂nw = −φ/(n · X). Then
setting δX := ∇w+φN, we get δX ·X ≡ 0 on ∂Σ. Using a standard method ([2]),
this variation field can be shown to arise from a genuine one parameter family of
surfaces contained in the ball which enclose the same volume as Σ and for this
variation, the second variation of energy would be negative. Thus, for the surface
to be stable ψc ≡ 0 must hold, in which case the surface is axially symmetric.
q.e.d.

3. STABILITY OF EQULIBRIUM SPHERICAL CAPS

We consider a spherical container represented as the unit ball B. It is occupied
two phases a and b, separated by a single interface Σ which is assumed to have the
geometry of a spherical cap or flat disc. The exterior of B is occupied by a phase
c. Each interface carries a surface energy which is proportional to its area. The
coupling constants for the interface between phase x and phase y is denoted σxy
with σab normalized to be 1. The total energy is then given by

E = Area[Σ] + σacArea[Ω] + σbc(4π− Area[Ω]) + βLength[∂Σ]
= Area[Σ] + (σac − σbc)Area[Ω] + βLength[∂Σ] + 4πσbc .(17)

There are two possible configurations, pictured in Figure 2, which can occur: It is
clear from (17) that every configuration of type II is variationally equivalent to one
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(A) I (B) II.

FIGURE 2. Two configurations of spherical caps.

of type I, but with a different coefficient ω since the volume preserving variations
of Σ must preserve the volumes of both the a and b phases. For this reason, we
will only consider the configurations of type I. Equilibrium discs can be considered
as surfaces of either type.

FIGURE 3. Spherical cap

First assume that the surface is not a flat disc. We represent a spherical cap Σ
as the intersection of a sphere of radius R and center (0, 0, c) with the unit ball
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centered at the origin. The energy is

(18) E = 2πR2(1− cosφ) + 2πω(1−

√
1− R2 sin2φ) + 2πβR sinφ .

The boundary condition for equilibrium becomes

(19) R(1− c cosφ) = β
c− R cosφ√

1− [c− R cosφ]2
+ω ,

where c, R,φ are related by

1 = c2 + R2 − 2cR cosφ .

From Figure 3, we get cosα + c cosφ = R. Using this we get, after some
manipulation, that the second variation formula for a spherical cap Σ is given by
(20)

δ2E = −

∫
Σ

ψ(∆+
2

R2
)ψdΣ+

∮
∂Σ

ψ
(
ψn−

cotφ
R
ψ
)
ds−β

∮
∂Σ

ψ̂(ψ̂ ′′+
1

R2 sin2φ
ψ̂)ds.

It is clear that a spherical cap which is in equilibrium for a single energy func-
tional is, in fact, in equilibrium for a linear continuum of functionals obtained by
varying (ω,β) so that the right hand side of (19) is left unchanged. A particular
spherical cap will be stable for only a certain range of the parameters in this fam-
ily. For example, all spherical caps are stable when β = 0, [11], but for β < 0,
all spherical caps are unstable. As in the case of planar boundary, studied in [15],
the surface can be deformed near the boundary so that the length increases while
fixing the wetted area Ω. This type of deformation can be localized in a small
neighborhood of the boundary curve so that it has negligible effect on the surface
area.

It is also clear from (20), that for a fixed spherical cap, increasing β, (while
decreasing ω so that the right hand side of (8) remains constant), will lead to
instability, since ω does not appear in the second variation. The type of instability
that occurs is referred to in [15] as a drying transition since as β increases, the drop
will tend to detach from the supporting sphere in order to decrease energy. This
will even happen for ω < 0, since the circumference of the wetted disc dominates
the wetted area as its radius tends to 0.

Lemma 3.1. An equilibrium spherical cap for a functional as given in (1) with
β > 0 is stable if and only if it is stable with respect to axially symmetric volume
preserving variations.

Proof. The necessity is clear. Consider the variational problem for a pendent
drop having free boundary in a horizontal plane. If the total energy is

(21) E = Area(Σ) + ω̂Area(W) + β̂Length(∂Σ)

whereW is the wetted area in the plane, then the boundary equation for equilibrium
is

(22) N · E3 = ω̂+
β̂

R sinφ
.
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If we use N · E3 = − cosφ and set β̂ = β/ sin2 α and then define ω̂ by (22), we
find that an equilibrium spherical cap is also an equilibrium surface for the problem
(21), (see [7]). In addition, the surface is simultaneously stable or unstable for both
problems. However, it follows from Corollary 5.1 of [7] that an axially symmetric
surface is stable for the functional (21) if and only if it is stable with respect to
axially symmetric volume preserving variations. q.e.d.

Theorem 3.2. A non flat equilibrium spherical drop of type I is stable if and only
if

(23) 0 6 β 6 βmax := c2R sin3φ(2+ cosφ) .

holds. Here c, φ and R are as in Figure 3.
An equilibrium disc of radius R is stable if and only if

(24) 0 6 β 6 βmax := 3R3 .

Proof. By the lemma, we need only consider axially symmetric variations.
We will first consider the case where Σ is not a flat disc. Let s denote arc length

from the pole of Σ and define

(25) ψ1 := N3 −
1

Area(Σ)

∫
Σ

N3 dΣ = − cos(s/R) −
1

2
(1+ cosφ) .

This function is, up to a multiplicative constant, the unique axially solution of
∆u+ 2R−2u ≡constant having mean value zero on Σ. A calculation gives

∂nψ1
ψ1

=
∂sψ1
ψ1

=
2 sinφ

R(1− cosφ)
,

on ∂Σ. Solving the equation cotφ
R + βmax

R2
csc2 α csc2φ = 2 sinφ

R(1−cosφ) for βmax

then gives that the second variation formula (20) vanishes for β = βmax and this
particular choice of ψ. Clearly, for any β > βmax, the same function will make
the second variation negative since ψ1(Rφ) 6= 0. This shows the necessity of the
condition in the theorem.

To show the sufficiency, we will show that, when β = βmax the second variation
δ2uE attains its minimum value (zero) at u = ψ. Hence for β 6 βmax, the second
variation is non negative.

For axially symmetric functions and β = βmax , the second variation can be
expressed.

δ2uE =

∫
Σ

||∇u||2 − 2

R2
u2 dΣ(26)

−2πR(sinφ)(u(Rψ))2(
cotφ
R

+
βmax

R2
csc2φ csc2 α)

=

∫
Σ

||∇u||2 − 2

R2
u2 dΣ

−2πR(sinφ)(u(Rψ))2(
2 sinφ

R(1− cosφ)
) .
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Note the homogeneity in u which allows us to normalize the functions.
Let G denote the class of smooth axially symmetric functions u(s), 0 6 s 6 Rφ

on Σ satisfying

(27) 2π

∫Rφ
0

(us(s))
2 ds = 1 ,

and

(28)
∫
Σ

u dΣ = 0 .

Because of (28), we have

(29)
∫
Σ

||∇u||2 dΣ > ν1

∫
Σ

u2 dΣ ,

where ν1 denotes the first non zero Neumann eigenvalue of the Laplacian on Σ.
We claim that there exists a positive constant A such that

(30)
∫
Σ

||∇u||2 dΣ > A(u(Rφ))2

holds for all u ∈ G.
For u ∈ G, we have

(31) 1 > 2π
∫Rφ
0

u2s(s) sin(s/R) ds =
1

R

∫
Σ

||∇u||2 dΣ .

and ∫
Σ

u2 dΣ = 2π

∫Rφ
0

u2(s) sin(s/R) ds

By the Fundamental Theorem of Calculus, we get

2πu(Rφ) sin2(φ) = 2π
∫Rφ
0

us(s) sin2(s/R) +
2

R
u(s)cos(s/R)sin(s/R) ds .

From this, we easily obtain

2π|u(Rφ)| sin2(φ) 6 2π
(∫Rφ
0

u2s(s) sin(s/R) ds
)1/2(∫Rφ

0

sin(s/R) ds
)1/2

+
4π

R

(∫Rφ
0

u2(s) sin(s/R) ds
)1/2(∫Rφ

0

sin(s/R) ds
)1/2

= R(1− cos(φ)
((∫

Σ

||∇u||2 dΣ
)1/2

+
2

R

(∫
Σ

u2 dΣ
)1/2)

.

By using (29), the claim easily follows.
The statements (29) and (30) impy that

inf
u∈G

δ2uE > −∞ .

Let {un} ⊂ G be a minimizing sequence for δ2uE. Using (27), (31), (30) and
a standard argument, one sees that the functions in G are uniformly bounded and
equicontinuous. Hence, by the Arzela-Ascoli Theorem, the set of functions G has
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compact closure in C(Σ). Also, by (29), (31) and the Banach-Alaoglu Theorem, G
has compact closue in H1(Σ) with respect to the weak topology.

We can therefore assume, by passing to a subsequence if necessary, that the
sequence {un} converges weakly in H1(Σ) and strongly in C(Σ) to a function
u ∈ H1(Σ)∩C(Σ) which realizes the infimum of δ2E in G. We take the variational
derivative of δ2uE with respect to any compactly supported f ∈ G and get

∂t(δ
2
u+tfE)t=0 =

∫
Σ

∇u · ∇f− 2

R2
uf dΣ = 0

This shows that u is a weak solution of ∆u + 2R−2u = constant. By elliptic
regularity, u must be a strong solution. It then follows that u = cψ1, where ψ1
is given by (25) and c is a non zero constant. Therefore the minimum of δ2E for
functions in G is zero. From this the result follows in the case that Σ is a spherical
cap.

If Σ is the flat horizontal disc of radius R, note that cosα =
√
1− R2 and

sinα = R, so the second variation formula (11) gives for ψ = ψ(r)

(32) δ2E = −

∫
Σ

ψ∆ψ r drdθ+

∮
∂Σ

ψ(ψr − [
1

R
+
β

R4
]ψ) Rdθ .

Analogous to the spherical case , we consider the radial solution of

(33) ∆ψ = constant ,

with mean value zero. The solution is given, up to a multiplicative constant, by
ψ(r) := r2 − R2/2 which satisfies

ψr

ψ
=
4

R
.

Inserting this function in the second integral of (32),we find that Σ is stable only
if β 6 3R3 holds.

The proof of sufficiency is similar to the spherical case and is left to the reader.
q.e.d

We next consider a numerical example for comparison with the result of the
previous theorem.

Let Σ(u, V) denote the spherical cap enclosing the volume V and having mini-
mum height u and let f(u,ω,β, V) be its energy as given in (1). Figure 4 shows the
graph of the derivative fu(u, 0.5, 0.1, 0.44). By considering the sign of fuu(u, 0.5, 0.1, 0.44),
we can see that for u0 ≈ 0.066, Σ(u0, 0.44) is an unstable critical point while for
u = u1 ≈ 0.33, the cap Σ(u1, 0.44) is stable. In, fact Theorem (3.2) gives

βmax(Σ(u0, 0.44)) ≈ 0.003002 < 0.1 < 1.151287375 ≈ βmax(Σ(u1, 0.44))

which verifies the stability, (resp. instability) of Σ(u1, 0.44), (resp. Σ(u0, 0.44)).
The corresponding spherical caps are shown in Figure 5.
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FIGURE 4. Plot of the derivative of the energy
fu(u, 0.5, 0.1, 0.44) as a function of the lowest point u

(A) Σ(u0, 0.44) (B) Σ(u1, 0.44)

FIGURE 5

4. APPENDIX: THE SECOND VARIATION FORMULA

We consider a one parameter family of embeddings

I× (Σ, ∂Σ) → (B3, S2)

(t, p) 7→ Xt(p) ,

where I = (−ε, ε) and X ≡ X0. The variation field of order n, ∂(n)t (Xt)t=0, will
be denoted by δnX. As before, we express δX in terms of normal and tangential
components as ψN + T.
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It is assumed that the volume between the surface Xt(Σ) and the 2-sphere is
constant. In addition to (3), this implies the second order condition

(34) 0 =

∫
Σ

δ2X · N dΣ+

∫
Σ

δX · δ(NdΣ) .

Using this and the fact that H ≡ constant, we compute the variation of the surface
integral in (4).

−δ

∫
Σ

2HδX · N dΣ = −

∫
Σ

2(δH)δX · N dΣ = −

∫
Σ

ψL[ψ] dΣ .

We have used here that δH = (1/2)L[ψ]+∇H·T = L[ψ] since the mean curvature
is constant when t = 0. We can then deduce from (9) that, since the term in square
brackets vanishes when t = 0, the second variation of energy is given by

δ2E = −

∫
Σ

ψL[ψ] dΣ+

∮
∂Σ

δ
[
X · N + βk̄g −ω

]
X ′ × X · δX ds(35)

= −

∫
Σ

ψL[ψ] dΣ−

∮
∂Σ

δ
[
X · N + βk̄g

]
n̄ · δX ds

It is clear that the T does not contribute to the variation of the surface integral (4)
and it is also clear from (5) and (6) that the component δX ·X ′ does not contribute
to the variations of the energy E. We can therefore assume that

(36) δX · X ′ ≡ 0
holds on ∂Σ which simplifies the calculations.

Along ∂Σ we have two right handed bases X,X ′, n̄ and n,X ′,N. We can there-
fore write X = cosα N + sinα n, n̄ = sinα N − cosα n. From δX · X ≡ 0, we
have ψ cosα+ T · n sinα ≡ 0 and we can define

(37) ψ̂ =

{
ψ cscα, if sinα 6= 0,
−T · n if sinα = 0 .

Using (36), the first order change in the frame X,X ′, n̄ is given by

δX = ψ̂n̄, δX ′ = ψ̂ ′n̄ − ψ̂k̄gX ′, δn̄ = −ψ̂X − ψ̂ ′X ′ .

The first variation of k̄g is then given by

δk̄g = −δ
( n̄ ′ · X ′

X ′ · X ′
)

= −(δn̄) ′ · X ′ − n̄ ′ · δX ′ + 2δX ′ · X ′

= ψ̂ ′′ + ψ̂(1+ k̄2g) .

Here we have used that when t = 0, s is the arc length parameter along ∂Σ. We
also need

δ(X · N) = δX · N + X · δN
= ψ+ X · (−∇ψ+ dN(T))
= ψ−ψn sinα+ (X · n)((T · n)dN(n) · n
= ψ−ψn sinα−ψ cosα dN(n) · n .
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Combining this with δX · n̄ = ψ/ sinα, gives

δ2E =

−

∫
Σ

ψL[ψ] dΣ+

∮
∂Σ

ψ
(
ψn −ψ(

1

sinα
− cotα dN(n) · n)

)
ds− β

∮
∂Σ

ψ̂(ψ̂ ′′ + ψ̂(1+ k̄2g)) ds .

Note that at points where sinα = 0, we can make sense of the integrand by replac-
ing ψ/ sinα with ψ̂ defined by (37). Also, in the case β = 0, this formula agrees
with that found in [11].
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