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We study equilibrium surfaces for an energy which is a linear combination of the area and a second term
which measures the bending and twisting of the boundary. Specifically, the twisting energy is given by the
twisting of the Darboux frame.

This energy is a modification of the Euler-Plateau functional considered by Giomi and Mahadevan, [7], and
a natural special case of the Kirchhoff-Plateau energy considered by Biria and Fried, [3, 4].

I. INTRODUCTION

Minimal surfaces, which are commonly used to model a
thin fluid membrane, are usually considered to have an im-
movable boundary which is either prescribed (the Plateau
problem) or constrained to lie in a fixed supporting surface
(the free boundary problem). One exception is the thread
problem, where only the length of the boundary is prescribed,
[1].

The current paper represents a confluence of ideas, which
have been considered previously, concerning minimal sur-
faces with elastic boundary components. Giomi and Mahade-
van, [7] investigate a configuration whose energy consists of
the surface tension of a homogeneous membrane coupled to
the bending energy of its boundary, the so called Euler-Plateau
problem. Shortly afterwards, Biria and Fried, [3, 4] treated
the more general case where the boundary curve, regarded as
a flexible rod, is allowed to twist, the so called Kirchhoff-
Plateau problem. This twisting requires an additional variable
in the energy which is a choice of an orthonormal framing of
the normal bundle of the curve. Somewhat earlier, [8], Gu-
ven et. al. considered a class of elastic energies for curves
on surfaces which is more general than that used in [7]. Their
formulation does not allow the surface to vary in space, but
instead it is considered as an “environment” for the curve.

Here, we will replace the bending energy in the Kirchhoff-
Plateau problem by one of the curvature energies discussed in
[8]. Alternatively this can be viewed as requiring the fram-
ing of the boundary of the minimal surface in the Kirchhoff-
Plateau problem to be the Darboux frame consisting of the
normal and conormal of the boundary. Equilibrium surfaces
for this problem can be interpreted as follows. If we replace
the rod in the Kirchhoff- Plateau problem by a twisted ribbon,
then an equilibrium surface will meet this ribbon in a right
angle, i.e. it will be a solution of the free boundary problem
where the supporting surface is the ribbon.

Using an idea due to Nitsche, we show that in the case when
the minimal surface is a topological disc, the only solutions
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are flat planar domains studied in [2]. In the more general sit-
uation where the surface may be contained in a solid cylinder
R3/Z, then, in contrast, the domains in a helicoid bounded by
parallel helices provide examples of equilibria with annular
topology.

One could just as well consider a minimal surface whose
boundary consists of multiple arcs, some of which are fixed
and others of which are elastic, which we will refer to as hav-
ing partially elastic boundary. With this in mind, we prove
a type of local existence result which produces many exam-
ples of minimal surfaces having a boundary arc which satis-
fies the Euler-Lagrange equations for our variational problem.
Modification of this method can also be used to produce local
examples for the problems occurring in [7] and [3] discussed
above.

II. KIRCHHOFF-PLATEAU VARIATIONAL PROBLEM

Let Σ be a compact, connected surface with boundary and
consider the immersion of Σ in the Euclidean 3-space, R3,

X : Σ→ R3 .

Throughout this paper, we assume that X(Σ) is an oriented
surface of class C 2 immersed in R3 with piecewise smooth
boundary, ∂Σ, and area

A [X ] :=
∫

Σ

dΣ .

Let ν denote a unit normal vector field along Σ.
For a sufficiently smooth curve C : I → R3, we denote by

s∈ I = [0,L] the arc-length parameter of C, where L stands for
its length. Then, if ()′ represents the derivative with respect to
the arc-length, the vector field T (s) :=C′(s) is the unit tangent
to C. Moreover, the (Frenet) curvature of C, κ , is defined by
κ(s) = ‖T ′(s)‖.

A Kirchhoff elastic rod is a thin elastic rod with circu-
lar cross sections and uniform density, naturally straight and
prismatic when unstressed and which is being held bent and
twisted by external forces and moments acting at its ends
alone. Recall that the usual formulation of the variational
problem for the Kirchhoff elastic rod is to add to the bending
energy of a curve in space, the center line, a second energy
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term which measures the twisting of the rod. Quantitatively,
this is measured by taking a framing of the normal bundle of
the curve and integrating the square of the norm of its deriva-
tive in the normal bundle.

As in [11], we denote the normal frame, referred to as the
material frame, by M := {M1,M2}. Therefore, we arrive at
the energy of an inextensible Kirchhoff rod:

K [(C,M)] :=
∫

C

(
ακ

2 +ϖ‖∇⊥M1‖2 +β

)
ds

for suitable real constants α , ϖ and β . The constants α and
ϖ are called the flexural rigidity and torsional rigidity of the
rod, respectively ([13]), while the constant β serves as a La-
grange multiplier which fixes the length of the rod. Obviously,
the case ϖ = 0 represents an non-shearable rod and, hence, it
reduces to the classical bending energy of the curve C.

The energy of a homogeneous fluid membrane bounded by
an elastic curve is obtained ([7]) by adding a multiple of the
surface area to the bending energy of the curve resulting in the
Euler-Plateau energy. When the twisting energy of the rod
is included, the resulting functional is called the Kirchhoff-
Plateau energy ([3])

K P[(X ,M)] = σA [X ]+K [(X |∂Σ,M)] .

In order to reach an equilibrium configuration for this prob-
lem, the normal frame can be varied independently of the
boundary curve. The Euler-Lagrange equation characterizing
a critical frame for a given surface with boundary is the sim-
ple equation ∇⊥M1 ·M2 ≡ constant, the constant representing
a torsion of the normal frame. Apart from this, there is a nec-
essary condition on the boundary curve which can be obtained
by varying the surface. The resulting Euler-Lagrange equation
for the boundary curve gives a generalization of the equation
of a center line for the Kirchhoff rod. The modification ap-
pears as a consequence of the interaction of the surface with
the boundary curve in attempting to decrease energy.

In the model that we will study here, we consider the case
of the Kirchhoff-Plateau energy when the choice of the normal
frame is determined by the surface geometry. Specifically, we
consider the case where the normal frame is the normal part of
the Darboux frame, consisting of the normal ν to the surface
and the conormal n := T × ν of the boundary. The Darboux
frame of ∂Σ is the orthonormal frame {n,T,ν}. The derivative
of this frame with respect to the arc-length parameter s is given
by n

T
ν

′ =
 0 −κg τg

κg 0 κn
−τg −κn 0

n
T
ν

 , (1)

where the functions involved, κg, κn and τg are, respectively,
the geodesic curvature, the normal curvature and the geodesic
torsion of the boundary relative to the immersion X . In par-
ticular, it is clear from the definition that κ2(s) = ‖T ′(s)‖2 =
κ2

g (s)+κ2
n (s).

In this setting, our Kirchhoff-Plateau energy functional
K P[(X ,M)] for the immersion X : Σ→ R3 is the potential

energy (E ≡ Eσ ,α,ϖ ,β )

E[X ] := σ

∫
Σ

dΣ+
∫

∂Σ

(
ακ

2 +ϖ‖∇⊥ν‖2 +β

)
ds

= σ

∫
Σ

dΣ+
∫

∂Σ

(
ακ

2 +ϖτ
2
g +β

)
ds .

For convenience, we assume that all connected components
of the boundary are made of the same material, so that the
flexural and torsional rigidities, α and ϖ , and the Lagrange
multiplier restricting the length, β , are the same constants for
all boundary components.

One way to visualize the choice of the potential energy is
to replace the boundary rod with a boundary ribbon. As the
curve, which is the center line of the ribbon, and the surface
vary so as to decrease the total energy, the surface is required
to meet the ribbon in a right angle. Then, it is clear that the
unit normal to the ribbon is parallel to the conormal of the
boundary ∂Σ and, hence, the energy of the ribbon depends on
ν obtaining E[X ] for the Kirchhoff-Plateau energy.

We will now compute the first variation of the functional
E[X ]. Since we would like to include the case of partially
elastic boundary, we will denote by C = ∪iCi the union of non
fixed arcs, Ci, of ∂Σ. Consider arbitrary variations of the im-
mersion X : Σ→ R3, i.e. X + εδX +O(ε2). By the consider-
ations above, we require that δX ≡ 0 on ∂Σ\C. On the other
hand, on C, we will denote the restriction of δX by δC. Then,
for each term in the energy, we have the following variation
formulas:

• The area functional:
The first variation of the area for an arbitrary variation
δX is given by

δ

(∫
Σ

dΣ

)
=−2

∫
Σ

Hν ·δX dΣ+
∫

C
n ·δC ds ,

where H is the mean curvature of Σ.

• The bending energy:
Using the standard formula for the variation of the
(Frenet) curvature, κ ,

δκ =
1
κ
(δC)′′ ·T ′−2κ (δC)′ ·T

and that δ (ds) = (δC)′ ·T ds, we get after integrating by
parts

δ

(∫
C

κ
2 ds
)
=
∫

C

(
2T ′′+3κ

2T
)′ ·δC ds

+
(
2T ′ · [δC]′−

[
2T ′′+3κ

2T
]
·δC

∣∣
∂C ,

where T is the unit tangent to the boundary and its
derivatives with respect to the arc-length parameter s
are given in (1).

• The twisting energy:
As computed in Appendix A, the first variation of the
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twisting energy is

δ

(∫
C

τ
2
g ds
)
=
∫

C

(
2τ
′
g [κn−2H]n+ τ

2
g T ′

+ 2
[
τgT ×T ′

]′) ·δC ds−2
∫

C
τ
′
g∂n (ν ·∂C)ds

+
(
2τg∂n [ν ·δC]−

[
2τg (κn−2H)n+2τgT ×T ′

−τ
2
g T
]
·δC

∣∣
∂C ,

where ∂n means derivative in the conormal direction.

• The length functional:
Using an argument involving integration by parts, we

have that

δ

(∫
C

ds
)
=−

∫
C

T ′ ·δC ds+(T ·δC
∣∣
∂C ,

where we have used once again the standard formula
δ (ds) = (δC)′ ·T ds.

If we define a vector field along ∂Σ as follows,

J := 2αT ′′+
(
3ακ

2 +ϖτ
2
g −β

)
T +2ϖτgT ×T ′ , (2)

then, combining the information above, we can express the
first variation formula for the potential energy E[X ], by

δE[X ] =−2σ

∫
Σ

Hν ·δX dΣ+
∫

C

(
J′+σn+2ϖτ

′
gdν (n)

)
·δC ds−2ϖ

∫
C

τ
′
g∂n [ν ·δC]ds

+
(
2αT ′ · [δC]′+2ϖτg [∂n (ν ·δC)−dν (n) ·δC]− J ·δC

∣∣
∂C .

For the configuration to be in equilibrium, it is clear by
considering compactly supported variations, that H ≡ 0 must
hold, i.e. the immersion X is minimal. Next, by taking normal
variations δX = ψν with ψ vanishing near ∂C, we obtain the
boundary integral

0 =
∫

C

(
J′ ·ψν−2ϖτ

′
g∂nψ

)
ds .

However, ψ and ∂nψ can be chosen to be arbitrary func-
tions on the boundary. For example, the biharmonic Dirichlet
problem ∆2ψ = 0 in Σ, with continuous boundary conditions
ψ = f , ∂nψ = g is well posed. From this we conclude that
τ ′g ≡ 0, so τg is locally constant on the boundary (it may have
different constant values in each connected component of the
boundary) and

J′ ·ν ≡ 0 (3)

on the boundary.
By taking variations that are tangential to the immersion,

we also deduce the boundary condition

J′+σn = 0 , (4)

where J has been defined in (2). Note that ‖J′‖2 = σ2 ∈R+ is
a consequence of this equation. This condition does not make
reference to the surface itself.

Using equations (1), (3) and (4), the Euler Lagrange equa-
tions for equlibria of E[X ] can be summarized:

H ≡ 0 , on Σ , (5)

while on C, the following hold:

τg ≡ constant , (6)

2ακ
′′
g +

(
ακ

2 +[3ϖ −2α]τ2
g −β

)
κg

−2(2α−ϖ)τgκ
′
n +σ = 0 , (7)

2ακ
′′
n +

(
ακ

2 +[3ϖ −2α]τ2
g −β

)
κn

+2(2α−ϖ)τgκ
′
g = 0 . (8)

These equations are a modified version of a system ap-
pearing in [8]. Since κ can be expressed in terms of the
geodesic and normal curvatures using κ2 = κ2

g +κ2
n , the Euler-

Lagrange equations (7) and (8) have only the unknowns κg(s)
and κn(s).

When the boundary is regarded as a twisted rod (ϖ 6= 0)
made of homogeneous isotropic material, the coefficients α

and ϖ are related by α = (1 + ε)ϖ , where the constant ε

denotes the Poisson’s ratio, [6]. This constant ε , which is a
property of the boundary material itself, may vary from −1 to
1/2. However, the negative values are only obtained for rare
materials usually linked with anisotropy, namely, auxetic ma-
terials, [5]. With one exception in Chapter 4, we are only go-
ing to consider ε ∈ [0,1/2], i.e. for any ϖ > 0, α ∈ [ϖ ,3ϖ/2],
although most of our results are also true for arbitrary values
of α and ϖ . Note that the restrictions on α and ϖ clarify some
of the coefficients appearing in (7) and (8).

Equation (7) results from considering only variations which
are tangent to the minimal surface. Thus, if C is a closed curve
lying on a minimal surface which satisfies this equation, it rep-
resents a critical point for the problem of minimizing the elas-
tic energy of the curve with constrained enclosed area. The
presence of the constant σ contains the interaction between
the surface and curve geometries, [8].

Equation (8) is obtained by taking only normal variations
of the minimal surface. Somewhat surprisingly, the condition
(6) also arises from considering only normal variations. It
is worth noting that we could also obtain the condition (6)
by demanding that the normal part of the Darboux frame,
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{ν ,n}, is a critical frame in the Kirchhoff-Plateau problem
K P [(X ,M)].

Note that we have a first integral[(
κ
′
g
)2

+
(
κ
′
n
)2
]
+

α

2
κ

4

+
(
[3ϖ −2α]τ2

g −β
)

κ
2 +2σκg ≡ constant.

The system consisting of (6), (7) and (8) has fixed points
located at (κg,κn) = (κ̄g,0), where κ̄g is a real solution of
the cubic αx3 +([3ϖ −2α]τ2

g −β )x+σ = 0. When τg = 0,
these solutions correspond to circles, which bound flat discs,
while for τg 6= 0, the solutions give rise to helices, which
bound helicoids as will be discussed below. By using the
first integral to construct a Lyapunov function, we see that the
fixed points are stable (but not asymptotically stable), when
ακ̄2

g +([3ϖ −2α]τ2
g −β )> 0 holds.

If X : Σ→ R3 is a minimal immersion of Σ in R3, there
locally exists a conjugate isometric minimal immersion, Y ,
defined by the condition that X + iY defines a holomorphic
curve in C3, C denoting the complex plane. Considering our
choice of orientation along the boundary, this amounts to the
Cauchy-Riemann equation

(∂n + i∂s)(X + iY ) = 0 ,

along ∂Σ. In particular, from the real part of this equation, we
can assume that n ≡ ∂sY = Y ′ holds on ∂Σ. Then, using this
in the boundary condition (4) we obtain a third order conser-
vation law which holds on ∂Σ,

J+σY ≡ Λ , (9)

for some constant vector Λ ∈ R3.

Remark. Observe that if C represents any entire closed con-
nected component of the boundary ∂Σ, then integrating the
boundary condition (4) along C, we get that∮

C
nds = 0 .

If C is the entire boundary, this identity can also be derived
by taking the first variation of area with respect to constant
vector fields on R3.

The boundary condition gives us a way of computing the
area of the minimal surface whose boundary verifies (4). In-
deed, it turns out that this area is completely determined by
data of the boundary, as the following result shows.

Proposition II.1 Assume there exists a minimal surface Σ

such that the boundary condition (4) is satisfied and denote
by C = ∪iCi the union of the connected components of ∂Σ.
Then the following relation holds:

2‖J′‖A [Σ]+∑
i

(
β −ϖτ

2
g
)
L [Ci] = α

∮
C

κ
2 ds

where L is the length functional and J is defined in (2).

Proof. Consider the potential energy E[X ], and make a vari-
ation by rescalings, i.e. X → rX for r > 0. The area rescales
quadratically, the length linearly, while the other term rescales
like r−1. That is,

E[rX ] = σr2
∫

Σ

dΣ+
1
r

∮
∂Σ

(
ακ

2 +ϖτ
2
g
)

ds+β r
∮

∂Σ

ds .

Thus, differentiating with respect to r, we get at the critical
point r = 1 that the following relation must hold

0 = 2σA [Σ]+βL [∂Σ]−
∮

∂Σ

(
ακ

2 +ϖτ
2
g
)

ds .

Finally, if we apply that τg is locally constant along C (recall
that it may have different constant values in each connected
component Ci) and that σ is, precisely, ‖J′‖ as mentioned
above, we get the statement. q.e.d.

III. A LOCAL EXISTENCE THEOREM

Let C(s) be an arc-length parameterized smooth curve in
R3. We denote the usual Frenet frame along C by {T,N,B},
where N and B are the unit normal and unit binormal to C,
respectively. If C is a geodesic, i.e. a straight line, it should
be understood that N and B are any unit orthogonal constant
vector fields of the normal bundle to C, ⊥ C. Note that for
the Kirchhoff-Plateau problem defined in E[X ] with no fixed
arcs, each connected component of the boundary (represented
by Ci) must be closed curves. Therefore, they cannot be
geodesics, i.e. their (Frenet) curvature, κ , is non-zero. Con-
sequently, in this case, the Frenet frame is well defined along
Ci. Moreover, the closure condition of Ci also implies that
both the curvature, κ(s), and the (Frenet) torsion, τ(s), are
periodic functions.

In general, the Frenet equations involving the curvature, κ ,
and torsion, τ , of a curve C(s) are given byT

N
B

′ =
 0 κ 0
−κ 0 τ

0 −τ 0

T
N
B

 , (10)

where, again, ()′ means derivative with respect to the arc-
length parameter s.

Denote by θ the angle between the normal to the surface
Σ, ν , and the normal to the non fixed boundary C, N. This
angle θ will be referred to as the contact angle between the
surface and the boundary. (This angle is actually the contact
angle between the surface and the ruled, developable surface
given by (s, t) 7→ T (s)+ tN(s).)

Then, using complex coordinates in the normal bundle of
C, ⊥C, we have that

ν + in = eiθ (N + iB) . (11)

Here, we are assuming that when listing the vectors in any or-
thonormal frame of⊥C, the frame has the same orientation as
the Frenet frame {N,B}. Now, a simple calculation involving
differentiation of above equation together with formulae (1)
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and (10), shows that κg, κn and τg are related with κ , τ and θ

by the following equations

κg = κ sinθ , (12)
κn = κ cosθ , (13)
τg = θ

′− τ . (14)

Consider now the system of equations for unknowns κg(s) and
κn(s), given by the boundary conditions (7) and (8), where α ,
β , ϖ , σ and τg are regarded as constants. Short time existence
for this system with prescribed first order initial conditions is
standard. Note that the right hand side is real analytic in κg,
κ ′g, κn, κ ′n and thus all solutions of this system are real analytic
[10].

In the following theorem we give a way of constructing a
local equilibrium configuration for the potential energy E[X ].

Theorem III.1 Let κg(s), κn(s) be a solution of the system
(7)-(8), having no common zeros in an interval I ⊂ R. Then
there exists an arc-length parameterized curve C(s), s∈ I, and
a minimal surface with boundary X : Σ→R3 such that the im-
age of C is contained in the boundary of Σ and the geodesic
curvature, normal curvature and geodesic torsion of C rela-
tive to the surface are κg(s), κn(s) and τg, respectively.

Proof. Assume that κg(s) and κn(s) are solutions of (7)-(8) in
the conditions of the statement. On the interval I, we define

κ(s) :=
√

κ2
g (s)+κ2

n (s)

and an angle θ(s) by the equations (12) and (13). Now, we
use equation (14) to define a torsion, τ(s). Then, both κ(s)
and τ(s) are real analytic functions of s. By the Fundamen-
tal Theorem of Curves, there exists a curve C(s) defined on
I. Since C is found by integrating the Frenet equations, which
have real analytic coefficients, the curve C(s) is also real ana-
lytic on I. This follows by again using results of [10].

We next define a unit vector field orthogonal to C′(s) and
making an angle θ(s) with the Frenet normal N(s), ν(s). By
analyticity, the curve C and the vector field ν , defined along
it, have holomorphic extensions C(z) and ν(z), for a complex
variable z = s + it, to a simply connected domain U in the
complex plane C, with I ⊂U . Thus, for fixed so ∈ I, we use
the following Bjorling’s Formula

X(z) := ℜ

(
C(z)+ i

∫ z

s0

C′(ω)×ν(ω)dω

)
to construct a minimal surface, containing the curve C, whose
unit normal along C is, precisely, ν(s). We chose the conormal
to C(s), relative to the surface, to be n(s) :=C′(s)×ν(s), then
equation (11) holds along I. Differentiating this formula and
using equations (1) and (10), we obtain

−(κ̃n + iκ̃g)C′+ iτ̃g (ν + in) =−κeiθC′

+ i
(
θ
′− τ

)
eiθ (N + iB) ,

where κ̃g, κ̃n and τ̃g are, respectively, the geodesic curvature,
normal curvature and geodesic torsion of C relative to the min-
imal surface X(z). We see from the last equations that

κeiθ = κ̃n + iκ̃g, τ̃g = θ
′− τ,

holds and so it follows from (12)-(14), that κ̃n ≡ κn, κ̃g ≡ κg
and τ̃g ≡ τg hold.

If we take Σ to be the part of the minimal surface X(z)
constructed above which lies on one side of the curve C, we
obtain the result. q.e.d.

The proof of the previous theorem shows the difficulty with
finding global examples of critical points for the functional
E[X ], i.e. minimal surfaces bounded by a closed curve, or
system of closed curves, satisfying (6)-(8), on the boundary.
Suppose that a closed curve C satisfying the boundary condi-
tions was found. Then for a global solution, we would need
to solve the Plateau problem of finding a minimal surface Σ

with boundary C. In addition to this, the angle θ between
the surface normal and curve normal would have to satisfy
the condition (14). This shows that the problem of producing
examples is quite overdetermined.

The construction above can be used to produce examples
of minimal surfaces having partially elastic boundary. If we
take a local solution, i.e. a minimal surface Σ having a non
closed boundary arc C satisfying (6)-(8), we can connect the
endpoints of C by an arc C∗ contained in Σ. We then just
regard C∗ as the fixed boundary component.

Moreover, the previous theorem can also be used to prove
the local existence of critical points for the original Euler-
Plateau problem introduced by Giomi and Mahadevan, [7].
Firstly, the boundary condition (4) implies that the potential
energy E[X ] can be written as a combination of the area func-
tional with a boundary energy defining center lines of Kirch-
hoff elastic rods, that is,

E[X ] = σ

∫
Σ

dΣ+
∫

C

(
ακ

2 +µτ +λ
)

ds , (15)

where µ and λ are two constants related with the parameters
ϖ and β and with the constant geodesic torsion, τg, as follows

µ =−2ϖτg , λ = β −ϖτ
2
g .

If we rewrite the boundary condition (4) in terms of the Frenet
frame {T,N,B} along the boundary, we obtain J′+σn = 0
where the vector field J is now given by,

J =
(
ακ

2 +ϖτ
2
g −β

)
T +2ακ

′N +2(ατ +ϖτg)κB . (16)

It turns out that J′+σn = 0 is, precisely, the boundary condi-
tion of the energy (15). In particular, this new expression of
the Euler-Lagrange equations (7)-(8) allows us to rewrite them
in terms of the curvature, κ , and torsion, τ , of the boundary,
obtaining the following system

2ακ
′′+
(
ακ

2 +ϖτ
2
g −β

)
κ−2κτ (ατ +ϖτg)

+σ sinθ = 0 , (17)(
κ

2 [2ατ +ϖτg]
)′
+σκ cosθ = 0 , (18)

where θ is the contact angle.
A first consequence is that if in the second equation in the

system above we use equation (13) and integrate over any
closed component of the boundary, C, we get that∮

C
κn ds = 0 . (19)
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Let C̄(s) be a new curve in R3 uniquely defined, up to rigid
motions, by the following curvature, κ̄ , and torsion, τ̄ ,

κ̄ = κ , τ̄ = τ +
ϖ

2α
τg .

This transformation is a particular case of one for center lines
of Kirchhoff rods described in [11]. Later, in [3], it was also
used to transform solutions of the general Kirchhoff-Plateau
problem to the Euler-Plateau one.

Then, using it, we have the following local existence result
for the Euler-Plateau problem of [7].

Corollary III.1 Let C(s) be the curve of Theorem III.1 with
curvature κ(s) and torsion τ(s). Then, locally there exists
a curve C̄(s) (defined as above) and a minimal surface with
boundary X̄ : Σ̄→ R3 such that X̄ is a critical point of the
energy

Ē[X̄ ] := σ

∫
Σ̄

dΣ̄+
∫

C̄

(
ακ̄

2 + β̄
)

ds ,

where β̄ = β −ϖτ2
g
(
1+ ϖ

2α

)
and θ̄ ≡ θ .

Proof. By the argument above, it is clear that the new curve
C̄ is locally a boundary curve satisfying the Euler-Lagrange
equations (17) and (18) for the functional Ē[X̄ ] with respect to
the parameters of the statement.

Now, considering once more the Bjorling’s Formula for the
new data, i.e. the associated data to C̄(s), we get a minimal
surface where C̄ is its boundary satisfying the Euler-Lagrange
equations of Ē[X̄ ]. q.e.d.

Note that previous corollary provides local existence of crit-
ical immersions for the Euler-Plateau problem Ē[X̄ ], where
the geodesic torsion of the boundary, τ̄g, is constant. Indeed,
from formula (14) for X̄ , we have, using the definition of C̄,

τ̄g = θ̄
′− τ̄ = θ

′−
(

τ +
ϖ

2α
τg

)
= θ

′− τ− ϖ

2α
τg

= τg

(
1− ϖ

2α

)
which is clearly constant.

IV. GLOBAL RESULTS OF EQUILIBRIUM
CONFIGURATIONS

For an equilibrium immersion X : Σ→ R3 of the potential
energy E[X ], equations (5) and (6) implies that Σ is minimal
and that τg is constant along the non fixed boundary, respec-
tively. From these properties, we can prove a first result con-
cerning surfaces which are topologically discs, Σ∼=D. Indeed,
adapting an argument due to Nitsche, we have

Theorem IV.1 Let X : Σ→ R3 be an immersion of a minimal
surface of disc type having constant geodesic torsion along
the boundary. Then, the surface is a planar domain. In par-
ticular, there are no non-planar critical surfaces for the func-
tional E[X ] having the topology of the disc.

Proof. We may assume that the surface is given by a confor-
mal immersion of the unit disc X : D→R3. Let z be the usual
complex coordinate in the disc and let ω := logz. Although ω

is not well defined, dω = dz/z is well defined in D \ {0}. In
a neighborhood of ∂D , we express the fundamental forms of
the immersion as

ds2
X = eµ |dω|2 ,

ℜ

(
Φ̃ dω2

)
= ℜ

(
− [L22 + iL12]dω2

)
,

where Li j, i, j = 1,2 are the coefficients of the second funda-
mental form. Here we have used that the surface is minimal,
so L11 =−L22. These functions are known, [9], to satisfy the
Codazzi and Gauss equations, which in the case of a minimal
surface, state

Φ̃ω̄ = 0 , |Φ̃|2e−2µ =−K .

The first of these means that Φ̃ defines a holomorphic func-
tion.

Note that on ∂D , we have

Φ̃ =−eµ (kn + iτg) .

We first assume that τg ≡ 0 holds on ∂D . We use the transfor-
mation law for quadratic differentials, to obtain the following
relation between the Hopf differential in the ω and z coordi-
nates,

Φ̃ dω
2 = Φ̃ω

2
z dz2 = Φ̃

(
1
z2

)
dz2 =: Φdz2 .

In contrast to Φ̃, Φ is globally defined and holomorphic on D ,
as is z2Φ. The calculation above shows that Φ̃ = z2Φ on ∂D ,
so we conclude that ℑ

(
z2Φ
)
≡ 0 holds on ∂D . It follows that

on D , Φ = c/z2 holds for a real constant c, which is impossi-
ble unless c, and hence Φ vanishes identically. (Nitsche used
this argument to prove that the only disc type minimal sur-
faces in a ball with free boundary on the sphere are flat discs,
[15].)

Next, we consider the case where τg is a constant different
from zero. Consider the image of ∂D under the map −Φ̃.
Since the imaginary part of −Φ̃ never vanishes, this image is
contained in a half plane, so it is clear that the total variation
of argΦ̃ over ∂D vanishes. We write this as

VarargΦ̃ |∂D = 0 .

However, since Φ̃ = z2Φ on ∂D , we get

0 = VarargΦ̃ |∂D = Varargz2
Φ |∂D

= Varargz2 |∂D +VarargΦ |∂D = 4π +VarargΦ |∂D .

Unless Φ ≡ 0 holds, this gives a contradiction, since, by the
Argument Principle, the last term is equal to the total number
of zeros of Φ (which are the umbilics) in D , counting multi-
plicities. So, in particular, the last term is non negative.

Finally, if Φ≡ 0 holds in D , then every point is planar and,
hence, the surface is also planar. q.e.d.
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For constants a 6= 0, b ∈ R the immersion

X : R2 −→ R3, (r,ϑ) 7→ (r cosϑ ,r sinϑ ,aϑ +b)

defines a minimal helicoid. The curves for constant r are he-
lices, for which

κn = 0 , τg =
−a

a2 + r2 , κg =
±r

a2 + r2

hold. Since these quantities are all constant, it is easily
checked that for suitable constants α,β ,ϖ and σ , the equa-
tions (5)-(7) hold. The domain ∆01 in the helicoid defined for
any constants r0 < r1 by r0 ≤ r≤ r1 and 0≤ θ ≤ 2π will then
correspond to a minimal annulus in a quotient R3/Z which is
a critical surface of the functional E[X ]. Alternatively, the do-
mains ∆01 in the helicoid are critical for E[X ] having partially
elastic boundary where the line segments ϑ = ϑi, i = 0,1 are
regarded as the fixed boundary components. The left image
of Figure 1 shows a critical domain in the helicoid having par-
tially elastic boundary where the fixed boundary is given by
the black line segments.

The helicoid, together with a curvature driven boundary en-
ergy, has been used to model a particular structure in biologi-
cal cells called a stacked endoplasmic reticulum, [14, 16]. In
this application, the multivalence of the immersion, which re-
sults in the stacking of layers, is an essential property.

The helicoid shows the existence of a critical surface for the
functional E[X ], such that a quotient Σ/Z is an annulus A. In
addition, all of the geometry of Σ, i.e. the first two fundamen-
tal forms, descend to A. This type of situation is quite com-
mon for minimal surfaces since the integrals used to construct
a minimal surface may have periods on a non simply con-
nected domain. In fact, the most common way to parameter-
ize a minimal surface is using the Weierstrass representation.
Starting with a trio of holomorphic differentials (h1,h2,h3)dz
having no common zeros on a planar domain U and satisfying
h2

1 +h2
2 +h2

3 = 0,

X := ℜ

(∫
z0

(h1,h2,h3)dz
)

defines a minimal immersion into R3 which is, in general, un-
less U is simply connected, multivalued. When U = A is an
annulus, then the topology of the surface is completely deter-
mined by the period

p := ℜ

(∫
γ

(h1,h2,h3)dz
)
,

where γ is any curve representing the generator of π1(A).
For these kind of multivalued immersions we have the fol-

lowing result.

Theorem IV.2 Let X : A→ R3 be a multivalued minimal im-
mersion such that the image surface is a critical point of the
functional E[X ] in R3 or R3/Z. If τg = 0 holds on at least one
component of ∂A, then the image surface is planar.

Proof. We first show that if τg = 0 holds on one component of
∂A, then it also holds in both boundary components.

Every annulus A is conformally a domain 1 ≤ |z| ≤ ρ . We
may assume that τg ≡ 0 on |z|= 1, otherwise, we can replace
X with X ◦ f where f (z) := ρ/z. Write the Hopf differential
as ℜ

(
Φ dz2

)
and define−z2Φ :=U + iV . On |z|= ρ , we have

constant = τg =−ℑ

[(
z
|z|

)2

Φ

]
e−µ =Ve−µ , (20)

while on |z|= 1, we have V ≡ 0.
The harmonic measure of |z| = ρ is the harmonic function

ω(r) := ln(r)/ ln(ρ). On |z|= ρ , we have ∂nω = e−µ/2∂rω =

e−µ/2(ρ lnρ)−1 > 0. We then obtain∫
|z|=ρ

V ∂nω ds =
∫

∂A
V ∂nω ds

=
∫

∂A
ω∂nV ds+

∫
A
(V ∆ω−ω∆V )dA

=
∫

∂A
ω∂nV ds+0 =

∫
|z|=ρ

∂nV ds

=
∫
|z|=ρ

−∂sU ds = 0 .

In the last line, we have used the Cauchy-Riemann equations:
(∂n + i∂s)(U + iV ) = 0. On |z| = ρ , V is either non negative
or non positive, by (20), while ∂nω > 0 holds, so we can con-
clude that V ≡ 0 holds on |z|= ρ also.

Now we have V ≡ 0 on ∂A, hence V ≡ 0 and so z2Φ≡ c for
a real constant c. Note that on either circle C,

−κn = ℜ

[(
z
|z|

)2

Φe−µ

]
= c|z|−2e−µ .

However, integrating above equation along C and using (19)
we get that c = 0 and hence Φ ≡ 0 holds, so the surface is
planar. q.e.d.

Recall that any multivalued minimal immersion X can be
embedded in a one parameter family of multivalued minimal
immersions

Xϑ := ℜ

(
eiϑ
∫

z0

Xz dz
)
.

The case ϑ = π/2 just gives the conjugate minimal surface
Y appearing in (9). Because of (9) and (16) the immersion
Y = Xπ/2 is always single valued on A since each boundary
curve represents the generator of π1(A). If we denote by pϑ

the period for the immersion Xϑ , we have

pϑ =
∫
|z|=ρ

ℜ

(
eiϑ Xz dz

)
=

1
2

∫
|z|=ρ

eiϑ Xz dz+ e−iϑ Xz̄ dz̄

=
1
2

∫
|z|=ρ

cosϑ (Xz dz+Xz̄ dz̄)+ isinϑ (Xz dz−Xz̄ dz̄)

= cosϑ

∫
|z|=ρ

dX + sinϑ

∫
|z|=ρ

dY = p0 cosϑ +0 ,

i.e. pϑ = p0 cosϑ . This means that if p0 = 0 holds, then
the image surface is always a topological annulus, while if
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p0 6= 0 then as the surface deforms isometrically, the transla-
tional period decreases in magnitude to zero, as ϑ varies in
[0,π/2) but maintains its direction. In any case, we can imag-
ine the surfaces as being a family of annuli in solid cylinders
R3/(Z(cosϑ)p0). Roughly, the surface deforms like a helix
made of ribbon compressing to a thin cylinder (see Figure 1).

Since our deformation is isometric, the areas of this fam-
ily of annuli are unchanging, as are the arc lengths of their
boundary curves and the geodesic curvatures of the boundary
curves. Examining the boundary terms of the values E[Xϑ ],
we see that the only terms that change with ϑ is

f (ϑ) :=
∫

∂A

(
α

[
κ

ϑ
n

]2
+ϖ

[
τ

ϑ
g

]2
)

ds ,

where κϑ
n + iτϑ

g := eiϑ (κn + iτg). Using this, we easily com-
pute

d2 f
dϑ 2

∣∣
ϑ=0 = 2(α−ϖ)

∫
∂A

(
τ

2
g −κ

2
n
)

ds . (21)

Thus, we end up with the following necessary condition for
the stability.

Proposition IV.1 A necessary condition for the stability of a
critical annulus as described above, is the non negativity of
the integral (21).

By applying Proposition IV.1, it is clear that the helicoidal
domains ∆01 are thus unstable when α < ϖ holds, i.e. when
the Poisson’s ratio is negative, [5].

Finally, as a consequence of Theorem IV.1 and Theorem
IV.2, if the surface is either topologically a disc or an annu-
lus where the geodesic torsion vanishes on, at least, one of
the boundary components, then it must be planar. Hence, us-
ing the condition that K ≡ 0 along the boundary, we conclude
that τg = κn = 0. Moreover, since the boundary cannot be
a straight line, from equation (13) we obtain that the contact
angle verifies θ = π/2.

V. CONSTANT CONTACT ANGLE

Assume that the contact angle θ is constant along any
closed boundary component C. Thus, using (13) and (19) we
have that

0 =
∮

C
κn ds =

∮
C

κ cosθ ds = cosθ

∮
C

κ ds .

Since κ > 0 along C, this is only possible if θ ≡ π/2.
Using (12)-(14), we obtain along C, κg = κ , κn = 0 and

τg =−τ ∈R. We use this data in the boundary condition (see
equations (7) and (8)) to obtain

2ακ
′′+
(
ακ

2 +[3ϖ −2α]τ2−β
)

κ +σ = 0 , (22)

(2α−ϖ)τκ
′ = 0 , (23)

along the closed component of the boundary, C.
Due to the restriction of Poisson’s ratio, α ∈ [ϖ ,3ϖ/2]

holds. So ϖ 6= 2α , and critical points of E[X ] with constant
contact angle are characterized as follows.

Theorem V.1 Let X : Σ→ R3 be a critical immersion for the
potential energy E[X ] and assume that the contact angle, θ ,
is constant along at least one closed boundary component C.
Then, θ = π/2 along the entire boundary ∂Σ and X(Σ) is a
planar domain bounded by area-constrained elasticae.

Proof. As mentioned above if θ is constant along any closed
boundary component, C, then necessarily θ = π/2. Hence,
consider that θ ≡ π/2 along C. By the remark above, ϖ 6= 2α ,
so equation (23) simplifies to τκ ′ = 0.

If the curvature κ is constant, then C is a Frenet helix (κ
and τ constant). Moreover, in order to close up, the torsion
must vanish and, as a consequence, C is a circle.

On the other hand, if τ = 0, then equation (22) becomes

2ακ
′′+
(
ακ

2−β
)

κ +σ = 0

which implies that C is an area-constrained elastica (see [2]).
The case with constant curvature can also be included here in
an obvious manner.

Finally, since the surface is minimal, we have

K =−κ
2
n − τ

2
g = 0

along the boundary component C, which, together with the
minimality condition, implies that C is a curve of umbilic
points. Therefore, X(Σ) must be a planar domain bounded
by ∂Σ. Clearly, in the component C the statement holds.
For the other boundary components, we have from the flat
condition that κn = τg = 0 and, hence, equation (22) becomes
the Euler-Lagrange equation of an area-constrained elastica,
as before, proving the statement. q.e.d.

In particular, if the surface Σ happens to be a topological
disc, we get the following result.

Corollary V.1 Let X : Σ→R3 be an immersion of a disc type
surface critical for E[X ], then X(Σ) is a compact domain in
the plane bounded by an area-constrained elastica. (These
domains were studied in detail in [2].)

Proof. The result follows directly from Theorem IV.1 and
Theorem V.1. q.e.d.

We point out that in Theorem V.1 we have only used the
periodicity of the boundary component C, therefore a similar
argument may be used to prove the following result.

Proposition V.1 Let X : A→R3 be a multivalued minimal im-
mersion such that the image surface is a critical point of the
functional E[X ] in R3/Z and assume that the contact angle,
θ , is constant along ∂A. Then, θ = π/2 and, if X(A) is not
planar, it is a domain bounded by Frenet helices.

Proof. Let C denote any connected component of the bound-
ary ∂A. Since C is periodic and θ is constant along it, we have
the following relation

0 =
∫

C
κn ds = cosθ

∫
C

κ ds .
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FIG. 1. Four steps of the deformation of a domain of surfaces of the one parameter family of multivalued minimal immersions associated
to the helicoid. From left to right: a part of the helicoid (ϑ = 0), ϑ = π/3, ϑ = 2π/5 and a part of the conjugate surface, i.e. the catenoid
(ϑ = π/2).

By the same argument as before, we have that this is only
possible when θ ≡ π/2. In this case, along C, κg = κ , κn = 0
and τg = −τ ∈ R. In particular, equations (22) and (23) also
hold.

If τg = 0, we can use Proposition IV.2 to conclude that the
domain X(A) is planar. As a consequence, θ = π/2 along ∂A.

On the other hand, if τg = −τ 6= 0, we conclude from (23)
that κ is constant, since ϖ 6= 2α . Then, it is clear that C is
a Frenet helix. We then use a similar argument on the other
boundary component, proving the result. q.e.d.

VI. THE INTRINSIC VARIATIONAL PROBLEM

In this section we fix a minimal surface X : Σ→ R3 and
seek a critical curve C in the surface for an extrinsic elastic
energy which encloses a relatively compact domain ∆ of the
surface of prescribed surface area. Specifically, we consider
the energy

F [C] := σA [∆]+
∫

C

(
ακ

2 +ϖτ
2
g +β

)
ds .

Here, the curve C may be the entire boundary of the domain
∆ or it may only be a union of open arcs of the boundary. As
before, in the latter case, we will assume that ∂∆ \C is kept
fixed under deformations.

Since the minimal surface Σ is fixed from the beginning,
this problem is equivalent to the problem of finding critica of
E[X ], when only variations δX tangential to the immersion
X are considered. On the non fixed part of the boundary, C,
we can write δC = ϕn+ φT for some compactly supported
functions. For these type of variations, we obtain from the
first variation formula (Section II)

δE[X ] = δF [C] =
∫

C

(
J′ ·n+2ϖτ

′
gκn +σ

)
ϕ ds = 0 .

Thus, it is clear that J′ ·n+2ϖτ ′gκn +σ = 0 must hold on C.
This equation can be rewritten as

2ακ
′′
g +

(
ακ

2 +[3ϖ −2α]τ2
g −β

)
κg

−2
(
[2α−ϖ ]τgκ

′
n− [2ϖ −α]τ ′gκn

)
+σ = 0 . (24)

Using the equation above instead of (7), a similar argument to
that of Corollary III.1 can also be used to obtain solutions of
the original Euler-Plateau problem with non-constant τ̄g.

Corollary VI.1 Let κg(s), κn(s) be a solution of the system
(8)-(24), where τg is any analytic function. Then, locally there
exists a curve C̄(s) and a minimal surface with boundary X̄ :
Σ̄→ R3 such that X̄ is a critical point of

Ē[X̄ ] := σ

∫
Σ̄

dΣ̄+
∫

C̄

(
ακ̄

2 + β̄
)

ds ,

where β̄ = β −ωτ2
g
(
1+ ω

2α

)
.

Proof. As in the proof of Theorem III.1, from κg and κn de-
fine analytic functions κ(s) and θ(s). Use (14) to define τ(s)
for the arbitrary analytic function τg(s). Now, using the trans-
formations above to get κ̄(s) and τ̄(s), we obtain an analytic
curve C̄(s), which verifies the boundary conditions of Ē[X̄ ].

We finally use the Bjorling’s Formula as before to conclude
the proof. q.e.d.

Note that it may also be used to prove the local existence of
critical points of the general Kirchhoff-Plateau problem, using
the transformation of the curvature and torsion of [11] and [3].

In particular, if ϖ = α , the energy F [C] can be rewritten in
an intrinsic form. Physically, this relation between the coeffi-
cients of flexural and torsional rigidities means that the mate-
rial of the boundary rod has zero Poisson’s ratio, i.e. it does
not overcome lateral expansion when compressed. An exam-
ple of this kind of materials is cork. Using that for a minimal
surface, the Gaussian curvature, K, on the boundary is given
by K =−κ2

n −τ2
g , and recalling that κ2 = κ2

g +κ2
n , we obtain.

F̃ [C] := σA [∆]+
∫

C

(
α
[
κ

2
g −K

]
−β

)
ds .

This variational problem will be referred as the intrinsic
Kirchhoff-Plateau problem. Now, all quantities appearing in
the energy are intrinsically determined on the surface. We re-
call the the metrics appearing on minimal surfaces have the
intrinsic characterization known as the Ricci Condition. This
states that away from their flat points, the metric

√
−Kds2

X is
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flat. At the flat points, which are isolated, an additional con-
dition must be imposed [12]. Thus, when α = ϖ holds, the
problem can be formulated in an abstract way.

In this case, the Euler-Lagrange equation, (24), reduces to

2ακ
′′
g +

(
α
[
κ

2
g −K

]
−β

)
κg

−2α
(
τgκ

′
n− τ

′
gκn
)
+σ = 0 . (25)

Moreover, since our surface is minimal, as computed in [8],
we have that along the boundary

2α
(
κnτ

′
g−κ

′
nτg
)
= 4ακgK−2α∇K ·n

holds. Hence, the Euler-Lagrange equation (25) can be rewrit-
ten intrinsically as

2ακ
′′
g +

(
α
[
κ

2
g −K

]
−β

)
κg +4ακgK = 2α∇K ·n .

Finally, as an illustration of the intrinsic Kirchhoff-Plateau
variational problem F̃ [C], we consider the following exam-
ples:

Example 1. Let S denote the Enneper’s minimal surface
which can be given by the conformal immersion of the plane

X(x,y) =
(

x− x3

3
+ xy2,−y+

y3

3
− x2y, x2− y2

)
.

Let (r,ϑ) be polar coordinates in the plane and consider that
∆R denotes the domain in the surface S corresponding to the
planar disc x2 + y2 ≤ R2, for any fixed constant R 6= 0. Notice
that, since the induced metric on S is

ds2
X =

(
1+ r2)2 (

dr2 + r2dϑ
2) ,

then ∆R is also a geodesic disc in S. Moreover, straightforward
calculations give the following quantities for ∂∆R,

κg =−
1+3R2

R(1+R2)2 , κn =
2cos(2ϑ)

(1+R2)2 , τg =
2sin(2ϑ)

(1+R2)2 .

Then, substituting them in (25), we get after some simplifica-
tions

α
(
1−4R2 +27R4)= R2 (1+R2)3

×
(

β
[
1+3R2]+σR

[
1+R2]2) .

Thus, for any fixed R 6= 0, one can always choose suitable pa-
rameters α , β and σ > 0 so that above equation is verified
and, hence, ∆R is a critical point of F̃ [C]. For instance, the pa-
rameters α and σ can be fixed, while β may be varied. In this
case, the length of the boundary curve is changing, while the
surface tension σ > 0 and the coefficient of flexural/torsional
rigidity, α , (which are dependent only on the materials of the
interface and the rod, respectively) remain invariant.

We point out that ∆R is not a critical point of the potential
energy E[X ]. Indeed, the geodesic torsion, τg, is not constant
along ∂∆R.

In Figure 2 we show three geodesic discs in the Enneper’s
minimal surface S, ∆R, for the values R = 0.7, R = 1.5 and

FIG. 2. Three geodesic discs, ∆R in Enneper’s minimal surface and
their corresponding boundary curve for the values R = 0.7 (Left),
R = 1.5 (Center) and, R = 2.2 (Right).

R = 2.2. Fixing α = σ = 1, above equation tells us that these
discs ∆R are critical for the energy F̃ [C] for the following
values of β , β ' 0.4806, β ' −1.1479 and β ' −2.1564,
respectively.

Example 2. Consider now the catenoid given by the immer-
sion of the plane

X(x,y) =
(

Rcosh
[ x

R

]
cosy, Rcosh

[ x
R

]
siny, x

)
where R > 0 is a fixed constant. The domain ∆01 of the
catenoid bounded by two non-geodesic circles of different radi
given by x= xo and x= x1 is a topological annulus. In this set-
ting, we have on ∂∆01 that

κg =±
sinh(x/R)

Rcosh2(x/R)
, κn =

−1
Rcosh2(x/R)

, τg = 0 ,

for each x = xo, x1. Therefore, substitution in the Euler-
Lagrange equation (25) gives two equations(

α−βR2 cosh2
[ x

R

])
sinh

[ x
R

]
= σR3 cosh4

[ x
R

]
where, again, x = xo, x1. Then, it is possible to find two of the
parameters so that above equations are verified. This allows
us to fix one of the parameters, say σ , and leave the ones in-
volving the boundary vary. The right image of Figure 1 shows
a domain ∆01 in a catenoid.
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Appendix A: Variation of the Twisting Energy

We compute the first variation formula of the twisting en-
ergy term appearing in E[X ]. To do this, we first need to com-
pute the pointwise variation of the geodesic torsion, τg. For
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this purpose, consider a general variation of X whose restric-
tion to the boundary is given by

(s, t,ε) 7→C(s, t)+ εδC
= C(s, t)+ ε [ϕ(s, t)n+φ(s, t)T +ψ(s, t)ν ] .

Now, using that δT =
[
(δC)′

]⊥ (here, ()⊥ means orthogonal
to T ) and δν = dν

(
δCT

)
−∇(ν ·δC), where ()T denotes the

tangent component to the immersion X , we obtain the varia-
tion of the Darboux frame with respect to δC,

nε = (τgψ−κgφ −ϕ ′)T +(∂nψ + τgφ +[2H−κn]ϕ)ν ,

Tε = (ϕ ′+κgφ − τgψ)n+(ψ ′+κnφ + τgϕ)ν ,

νε = ([κn−2H]ϕ− τgφ −∂nψ)n+(−τgϕ−κnφ −ψ ′)T,

where ∂n represents the derivative in the conormal direction.
Moreover, we have that

τg =−ν
′ ·n =−

νη

‖Cη‖
·n

where η denotes an arbitrary parameter. Therefore, using
the variation of Darboux frame and after long straightfor-
ward computations differentiating above relation with respect
to δC, we obtain

δτg = (∂n [ν ·δC]+ [2H−κn]n ·δC)′+(τgT )′ ·δC

−
(
T ×T ′

)
· (δC)′ .

Hence, we use it together with integration by parts to obtain

δ

(∫
C

τ
2
g ds
)
=
∫

C

(
2τgδ [τg]ds+ τ

2
g δ [ds]

)
=
∫

C

(
2τ
′
g [κn−2H]n+ τ

2
g T ′+2

[
τgT ×T ′

]′) ·δC ds

−2
∫

C
τ
′
g∂nψ ds+

(
2τg∂nψ−

[
2τg (κn−2H)n+2τgT ×T ′

−τ
2
g T
]
·δC

∣∣
∂C .
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