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Abstract

Inferring author attributes from text (formal and in-
formal) has been attempted numerous times in the
literature. In this project we apply machine learn-
ing techniques to gender-inference using Facebook
post data. In tackling this project we recognize
that none of the numerous online social networking
sites provide mechanisms to participants for detect-
ing gender identity fraud. We believe that a robust
gender-inference model could be incorporated into a
general online author-attribute-inference service for
providing protections to online community partici-
pants. In this report we discuss our current progress
in predicting author gender from Facebook posts—
including an overview of our data source and data
extraction process, as well as data sets and best mod-
els we have developed thus far.
Of all strategies examined, backpropagation pro-
duces models with the highest average generaliza-
tion accuracy, achieving 83% accuracy (based on
a model with thirty six features). We calculate fea-
tures for each of the 10,000 individuals in our data
sets based on writing samples collected by aggregat-
ing Facebook posts.

1 Introduction

In the literature, linguists present numerous models for predict-
ing author attributes based on text samples, including gender
[Moshe et al., 2003]—some more successful than others. In
work by Argamon, Koppel, Fine, and Shimoni [Moshe et al.,
2003], the authors focus on formal written texts, noting that
formal texts can be more difficult to evaluate than spoken
language—for instance, novels are often edited for style and
grammar by publishers. Similarly, and in contrast to formal
writing, we believe that colloquial, spoken English includes
numerous gender-specific properties from which a prediction
model could infer gender with high accuracy.

A working gender-inference model would be particularly
useful within online social networking communities. Con-
sider for example the number of people currently commu-
nicating via Internet chat services (both synchronous and
asynchronous—including Facebook) with persons that they

have never met face-to-face. The ability to infer author traits
such as gender (or age) from conversational text would be
useful to the average participant to detect fraud. Particularly
for adolescent users and their parents, services that detect an
individual posing falsely as male or female would provide
additional safeguards against online predation.

More generally, a successful gender-inference model could
be incorporated into an online author-inference service. In-
ternet communication applications could submit text to the
service via an Application Programming Interface (API). In
response, the service would evaluate the text sample against a
learned model (or models) and return a gender prediction. Ide-
ally the service would also provide some form of confidence
assessment in addition to the prediction. The confidence as-
sessment could take into account both model accuracy and the
size of the text sample.

In this project we tackle one of the first steps necessary to
provide an author-inference service to online communities—
developing a reliable gender-inference model. We develop
our model using machine learning techniques. In doing so,
we acknowledge that other researchers have made attempts to
infer gender from text. Although we will not conduct an ex-
tensive literature survey as part of this preliminary project, we
note that future work on this topic should thoroughly explore
existing solutions.

In Section 2 we discuss our data source, data extraction pro-
cess, data sets (including example data instances) and selected
machine learning techniques. In Section 3 we present results
obtained from training and optimizing perceptron, backprop-
agation, KNN, and clustering models on the initial data set.
We then discuss improvements, in Section 4, to the data and
features, after which we discuss the final (best) results in Sec-
tion 5. In Section 6 we present our conclusions, followed by a
brief discussion of future work (Section 7).

2 Methods

In this section we discuss our methods for predicting author
gender from colloquial English texts.

2.1 Data Source

We select Facebook as the data source for this project. Face-
book affords several benefits: 1) posts and gender data are
public by default (i.e., data availability); 2) Facebook is used
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worldwide by millions of people (i.e., sample size and diver-
sity); 3) Facebook provides an API for downloading posts
(i.e., data accessibility); and 4) most users declare their gender,
which is necessary for supervised learning. In addition to these
benefits, we also note that the Facebook posting mechanism is
used as an asynchronous conversation tool by many users, and
we believe that most users do not heavily edit their postings.
Thus Facebook posts represent colloquial language use and
(arguably) approximate spoken language. Facebook is also
a popular online social networking site and a key potential
consumer of any author-attribute-inference service.

In regards to using Facebook data for supervised learning,
we recognize the potential for Facebook users to falsify their
gender declarations—a potential limitation for this project.
However, we believe that the vast majority of users report
their gender accurately, and therefore, we expect the machine
learning techniques to overcome noise introduced by inaccu-
rate reporting. In general, machine learning algorithms are
designed to overcome noise by focusing on consistent rela-
tionships in data, and as long as sufficient data are provided,
noise can be effectively filtered out. In this regard, Facebook
provides millions of usable instances.

We locate individuals within Facebook by querying the
Facebook API for non-user-specific posts, which produces a
set of posts from seemingly “random” users. We then cache
the user names/IDs associated with each post, pulling users in
this way as necessary to obtain the desired number of unique
users. Drawing names from the person cache, we finally query
for individual posts and gender to obtain a raw data set. We
use this particular person-acquisition process because 1) it is
relatively easy to implement, 2) it provides only users with
public posts (requiring less queries), and 3) Facebook does
not provide a way to obtain a truly random sample of individ-
uals short of downloading all individuals (which is infeasible
considering API throttling constraints). We recognize the
limitation of the sample not being truly random.

We concatenate enough posts for each individual to obtain
a minimum number of “words” (substrings separated by white
space) for each person, but without arbitrarily trimming the last
post collected; thus text sample lengths vary slightly. Initially
we queried for 1,000 words per person, from which we report
initial results in Section 3. However, we found that boosting
the sample size (see Section 4) significantly increases accuracy
on all models; accordingly we report results in Section 5 based
on 5,000-word samples. Also note that if gender or sufficient
posts are not available for a given individual, the individual is
dropped from the data set.

2.2 Data Sets

The data sets used in this study consist of 10,000 instances,
5,000 representing each gender. Generalization assessments
during the model-building process were conducted using inde-
pendently drawn random hold-out sets. The output variable
in each data set is a single class variable representing gender
(’M’ or ’F’), which we map to a set of 27 continuous (i.e.,
real-valued) attributes in the initial data set and 35 continuous
attributes in the final data set. The initial 27 attributes are listed
and defined in Table 1; additional attributes are discussed in
Section 4.

To calculate attributes, we perform lexical analysis on text
samples to produce a list of tokens. A token represents ei-
ther a word, a number, an emoticon, a punctuation mark, a
symbol, a block of white space, or an ”other” character. We
then calculate the frequency of language features by divid-
ing each feature’s occurrence count by the total number of
sampled words, tokens, or non-white space characters, respec-
tively. We use frequencies because text samples are variable
in length and frequency metrics are normalized. Some of the
attributes in Table 1 measure the frequency of a specific token
type. However, several attributes are designed to measure sub-
frequencies within a particular attribute type. For example,
“word” tokens are subdivided into profanity, non-dictionary
words, British National Corpus words, etc.

For each frequency attribute, we create an associated dic-
tionary of strings—representing punctuation marks, standard
emoticons, profane words, etc.—from which we count feature
occurrences. In the case of the misspelling frequency, we use
a standard English dictionary. The profanity dictionary was
created from publicly available content filter dictionaries. Cap-
italization is ignored when appropriate (e.g., when comparing
words for proper spelling). Also note in Table 1 that some
attributes—designated by a superscript asterisk (*)—were de-
rived in part from work by Rayson, Leech, and Hodges on
the conversational component of the British National Corpus
[Rayson et al., 1997]. Similarly, attributes designated by a
superscript plus (+) were derived from the Gender Genie ap-
plication [BookBlog, 2007]. The Gender Genie is an online
tool based on work by Argamon, Koppel, Fine, and Shimoni
[Moshe et al., 2003], in which the authors statistically model
writing style characteristics in formal writing in order to dif-
ferentiate between genders.

2.3 Selected Models

Consistent with user expectations of Internet applications, as
well as the needs of potential client applications (e.g., Face-
book), a gender-inference model should evaluate instances
relatively quickly. A slow response time, for instance, would
be constraining for chat applications, particularly for syn-
chronous applications. Thus we are most interested in eager
learning techniques. Further, continuous numbers are well-
suited to measuring frequency-based attributes of text data,
which is the predominant feature type in our attribute sets (see
Section 2.2); thus we focus on models that naturally handle
real-valued attributes.

In light of these two conditions we select the perceptron,
backpropagation, KNN, and clustering techniques to model
author gender in Facebook posts.1 In applying these models
to the problem, we tune algorithm attributes (where possible)
to obtain the most generalizable models. For example, in the
case of backpropagation, we optimize the algorithm’s learning
rate, graph size (number of hidden nodes and layers), and
momentum rate to achieve the highest possible generalization
accuracy.

1Note that perceptron, backpropagation, and clustering are all
eager learning strategies, whereas KNN is a lazy learning approach.
Perceptron, backpropagation, and KNN are also supervised learning
algorithms; clustering is unsupervised.



Attribute Description Gender=F Gender=M

Average word length Average number of characters per word. 3.78169 4.20816

Longest word length Maximum number of characters in any standard English word. 18.00000 18.00000

Misspelling frequency Number of words per word token not appearing in a standard
English dictionary (excluding contractions).

0.24547 0.16531

Profanity frequency* Number of profane words per word token. 0.00704 0.00612

Capital word frequency Number of all-capitalized alphabetic words per word token. 0.05433 0.03878

Gender Genie male-typical
word frequency+

Number of male-typical words per word token (based on a dic-
tionary of Gender Genie male-typical words [BookBlog, 2007]).

0.02314 0.02449

Gender Genie female-typical
word frequency+

Number of female-typical words per word token (based on a
dictionary of Gender Genie female-typical words [BookBlog,
2007]).

0.00503 0.00510

British corpus male-typical
word frequency*

Number of male-typical words per word token (based on a
dictionary of British male-typical words [Rayson et al., 1997]).

0.00000 0.00000

British corpus female-typical
word frequency*

Number of female-typical words per word token (based on
a dictionary of British female-typical words [Rayson et al.,
1997]).

0.00805 0.00612

Self-reference frequency* Number of personal pronouns per word token. 0.11670 0.05918

Third-person male reference
frequency

Number of third-person male pronouns per word token. 0.00704 0.00306

Third-person female refer-
ence frequency*

Number of third-person female pronouns per word token. 0.00302 0.00204

Third-person gender-neutral
reference frequency

Number of third-person neuter pronouns per word token. 0.01811 0.01224

Internet acronym frequency Number of Internet acronyms per word token (e.g., “lol”). 0.01408 0.00000

Line break frequency Number of line breaks per character. 0.00184 0.00055

Exclamation point frequency Number of exclamation points per character. 0.00285 0.00658

Question mark frequency Number of question marks per character. 0.00041 0.00146

Quotation mark frequency Number of quotation marks (single & double) per character. 0.00041 0.00421

Em-dash frequency Number of em-dashes per character. 0.00020 0.00146

Digit frequency Number of digits per character (“1,250” = 4 digits). 0.22961 0.23811

Capital letter frequency Number of capital alphabetic letters per character. 0.03140 0.02725

Word token frequency Number of word tokens per token. 0.47221 0.44708

Number token frequency Number of number tokens per token. 0.00570 0.00639

Punctuation token frequency Number of punctuation tokens per token. 0.03420 0.08531

Symbol token frequency Number of symbol (non-alphanumeric) tokens per token. 0.00095 0.00137

White space token frequency Number of white space tokens per token. 0.48171 0.45849

Emoticon token frequency Number of emoticon tokens per token. 0.00523 0.00137

Table 1: Initial attributes (with descriptions and example instances) for training models to predict author gender from Facebook
posts. Example instances are taken from the actual data set. One example is shown for each gender. All attributes are continuous.

*Based on work by Rayson, Leech, and Hodges [Rayson et al., 1997].
+Based on work by Argamon, Koppel, Fine, and Shimoni [Moshe et al., 2003].



3 Initial Results

For the initial round of model building, we tested the learning
performance of standard perceptron, backpropagation, KNN,
and clustering algorithms on the initial data set with 27 fea-
tures. All models performed better than random (i.e., better
than 0.5 accuracy), with backpropagation outperforming the
other three. K-means clustering showed the least promise with
an average generalization accuracy (over 3 runs) of 0.62.2
For the clustering approach, we tested values for K up to
100. Cluster gender was assigned based on the most common
gender within each cluster. For testing, new instances were
assigned to a cluster (i.e., gender) based on the closest distance
to a cluster centroid. The linear perceptron model performed
remarkably better than clustering, with an average general-
ization accuracy (over 3 runs) of 0.69. Distance-weighted
(Euclidean) KNN, with K = 10, achieved an average gener-
alization accuracy (over 3 runs) of 0.70, slightly better than
perceptron, and backpropagation outperformed all three. We
discuss the performance of backpropagation in detail.

Initially backpropagation produced an average generaliza-
tion accuracy (over 3 runs) of 0.71. In this case the multi-layer
perceptron included three hidden layers, with 54 nodes (twice
the input size) per layer. We also used a learning rate of
0.1 and and a momentum rate of 0.9. With these baseline
results, we then optimized the backpropagation algorithm’s
parameters for best generalization accuracy by independently
testing four different, independently developed versions of
the algorithm. Each author worked with various settings and
stopping conditions to achieve the best possible generalization
accuracy.

For the best-performing backpropagation algorithm (of the
four implementations), changes in the number of hidden nodes
and layers, learning rate, and momentum rate had only small
impact on average generalization accuracy. Setting a learning
rate extremely high, or the number of hidden nodes extremely
low, did significantly (negatively) impact accuracy, but within
reasonable limits optimizing these parameters only provided
marginal accuracy gains. Overall, these adjustments led to
accuracy fluctuations within a range of one to two percent.
The other backpropagation algorithms, which did not perform
as well as the baseline—peaking between 67% and 69% gener-
alization accuracy—fluctuated more significantly, over a range
of about 10% each, in response to parameter changes.

We tested the optimal backpropagation algorithm on a range
of hidden nodes from 2 to 64. Increasing the number of
hidden nodes improved average generalization accuracy (over
15 runs) from 0.708 to 0.719.3 We tested learning rates for this
algorithm between 0.01 and 10.00, for which accuracy ranged
between 0.690 and 0.719. Momentum rates ranging between
0.00 and 0.95 led to accuracies between 0.711 and 0.719. The
best generalization accuracy performance of 0.719 resulted

2All generalization accuracy tests were run on independently
drawn random hold-out sets, each representing 10% of the data set.

3For these tests only 50% of the data set (5,000 instances) was
used for training (i.e., 50% random hold-out sets were used for
testing). We reduced the training set size during the parameter op-
timization process because the process involved running over 300
models.

from 10 hidden nodes (1 hidden layer), a learning rate of 0.1,
and a momentum rate of 0.0. We also tested the algorithm
with two hidden layers, but for all settings, two hidden layers
performed more poorly than with a single layer.

We further tested backpropagation with varying sizes for
the training set—from 5,000 to 9,500 randomly selected
instances—using the remaining data set instances for testing.
We obtained the accuracy of 0.719 during the optimization pro-
cess by training on 5,000 instances. As expected, increasing
the training set size led to increases in the average generaliza-
tion accuracy, with some fluctuation. We achieved the highest
average generalization accuracy (over 15 runs with optimal
parameter settings) of 0.726 when training on 9,500 instances
and testing on the remaining 500.

4 Data and Feature Improvements

With an optimal average generalization accuracy of about 72%,
we were unsatisfied with our best gender-inference model. In
looking to improve performance, we considered ensemble
approaches, increasing the training set size, topic analysis,
subdividing feature dictionaries, and boosting the sampling
size for Facebook posts.

To help determine which of these approaches might be most
effective, we configured the backpropagation algorithm to
maximally overfit the training data. Interestingly, running
backpropagation on a multi-level perceptron graph with 3 hid-
den layers, 54 nodes per layer, and with all overfit avoidance
mechanisms disabled, we could never achieve an accuracy
above approximately 73%. With a gain of only approximately
1%, these results indicate that the data is naturally noisy, and
thus an ensemble approach may not be the most effective next
step. Of course, various models may deal with noisy data
differently, and we would accordingly anticipate an accuracy
gain from this strategy. However, if noise is a significant in-
hibitor, then we should focus first on improving the data to
reduce noise. Ensembles and other more advanced modelling
techniques are best addressed after reducing data noise as
much as possible (see Section 7).

To reduce (or control) noise in the data, the most obvious
approach is to increase the number of training instances. We
tested the potential impact of increasing the training set size
by running the best backpropagation model on training sets
varying from 5,000 to 9,500 instances. As discussed in Section
3, an increase of 4,500 instances improved average generaliza-
tion accuracy by less than three quarters of one percent. The
initial data set also required nearly ten hours, with appropriate
throttling, to download from Facebook. Consequently, we de-
cided instead to try boosting the Facebook post samples from
1,000 to 5,000 words per person.4 Theoretically, boosting the
data in this way should provide more accurate estimates of
language usage, which would reduce noise among the feature
estimates.

We also decided to make specific feature changes. In this
regard, we considered topic analysis as one possible technique
for discovering latent features in Facebook posts that correlate
highly with gender; we decided against this strategy, however,

4Downloading 10,000 instances at 5,000 words per person re-
quired approximately 30 hours with throttling.



due to time constraints (see Section 7 for a description of this
strategy). Instead, we decided to increase the granularity of
our attributes by subdividing some of the feature dictionaries.
Recognizing that more features generally require more data,
we anticipated that 10,000 instances would be sufficient to
support at least 35 features. We also hoped that more granu-
lar features would allow the backpropagation model to learn
which dictionary subsets are most important.

Accordingly, we subdivided four of the initial attributes—
Gender Genie male-typical word frequency (originally 17
words), Gender Genie female-typical word frequency (origi-
nally 16 words), British corpus male-typical word frequency
(originally 26 words), and British corpus female-typical word
frequency (originally 25 words). These attributes represent
the most typical words of male/female speech from two prior
studies ([Moshe et al., 2003] and [Rayson et al., 1997], re-
spectively). We subdivided each of these attributes (roughly
equally) into three sub-dictionaries, representing the highest,
lowest and middle-frequency5 words for each gender—thus
increasing the total number of attributes in our data set from
27 to 35.

5 Final Results

We tested our models from the initial round of model building
on the boosted data with both the original 27 attributes and
with the modified 35 attributes. Boosting the data (increasing
the sample size from 1,000 to 5,000 words per person), signif-
icantly increased generalization accuracy on all models. For
the original 27 attributes, K-means clustering model accuracy
increased on average by 5% from 0.62 to 0.67; perceptron
model accuracy increased on average by 8% from 0.69 to 0.77;
KNN model accuracy increased by 8% from 0.70 to 0.78; and
the baseline backpropagation model increased on average by
10% from 0.71 to 0.81.6 With optimized parameters, back-
propagation achieved an average generalization accuracy (over
15 runs) of 0.823 on the boosted data.

Adding the feature modifications (i.e., subdividing attribute
dictionaries) also increased generalization accuracy for three
of the four modelling strategies. K-means clustering did not
produce significantly different generalization accuracy with
the modified features, but perceptron, backpropagation, and
KNN all achieved an accuracy gain of approximately 2%.

The best model overall was produced by the optimized
backpropagation algorithm run on the boosted data with the
modified features; this model achieved an average general-
ization accuracy (over 15 runs) of almost 83% (0.829). The
optimized algorithm included 1 hidden layer, 10 hidden nodes,
a learning rate of 0.1, and a momentum rate of 0.0, as men-
tioned previously. The stopping condition also reserved 25%
(2,250 instances) of the training data for a validation set, and
the algorithm stopped after 300 epochs without accuracy im-
provement on the validation set. We tested the algorithm at

5Frequencies in this case were based on the word-frequencies ob-
served in the original research studies, from which these dictionaries
were taken.

6Based on averages over 3 runs; accuracy tested against indepen-
dently drawn random hold-out sets, each representing 10% of the
data set.

higher thresholds for the required number of epochs to search
without validation set accuracy improvement, but tests up
to 3,000 epochs did not find further accuracy improvement.
Throughout this process, the model weights which performed
best on the validation set were retained for final testing to
assess generalization accuracy. Generalization accuracy is
reported as the average over 15 runs, tested on independently
drawn random hold-out sets. Test sets represented 10% of the
data set (i.e., 1,000 instances), randomly drawn from the data
set prior to partitioning the random validation sets.

6 Conclusions

Of all the improvements tested—including algorithm opti-
mization and feature changes—data boosting (increasing the
number of words sampled per person) provided the most sig-
nificant accuracy gains. For backpropagation, which was the
most effective learning strategy tested, data boosting improved
model accuracy by more than 10%. Optimizing algorithm
parameters, increasing the training set size, and subdividing
feature dictionaries each impacted accuracy by less than 2%.
Collectively, we were able to improve accuracy on the back-
propagation model by roughly 12% (from 0.71 to 0.83)—a
significant gain—and relative to the worst performing model,
we improved accuracy by roughly 21%.

7 Future Work

Despite significant accuracy improvement over niave models,
we believe that our gender-inference techniques can be further
improved to well over 90% accuracy. Although further boost-
ing of the data would likely provide additional gains, 5,000
words is already a rather large sample size for the Facebook
context. In order for a gender-inference tool to be practi-
cal, the required sample size must be somewhat limited. Of
course, we have not yet experimented with training models on
boosted data and then testing them on data with smaller sam-
ple sizes, which may prove reasonably accurate. Nevertheless,
we believe that the most promising next step in developing
gender-inference models would be to further refine the data
features.

7.1 Feature Refinements

Feature exploration was limited in this preliminary study. For
example, we only had time to test 35 features—most of which
we selected based on theoretical arguments—and although
we derived some of the 35 features from two prior studies on
gender-based language use, the literature presents many other
options for reasonable features that could be tested. Methods
in natural language processing (NLP) also provide several un-
supervised techniques for identifying latent features in text. In
particular, applying latent Dirichlet allocation (LDA) to topic
analysis seems promising. NLP tools already exist to perform
LDA topic analysis, and this type of analysis, if correlated with
gender, may reveal new, more effective feature dictionaries
(based on words that fall within prominent topics).

7.2 Other Models

Beyond topic analysis, NLP research is a rich source for ma-
chine learning models, and we believe that NLP techniques



could produce better, more specialized models than backprop-
agation because of their focused emphasis on the analysis of
text data. Bayesian techniques, which are commonly used in
NLP, are also particularly suited to frequency-based feature
data.
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