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Abstract
The aim of this experiment was to learn which
learning model, feature selection technique, order-
ing process, and distance criteria provided the best
classification accuracy in predicting the outcome of
any NCAA Men’s Basketball Tournament match.
Ninety-four features were selected from ESPN.com
for each team accepted into the tournament for the
last four years. Ordering processes were tested
against the baseline and the random ordering in-
creased classification accuracy from 0.61 to 0.63.
Random ordering was used to test a variety of
feature reduction techniques. Random forest fea-
ture reduction performed best and increased accu-
racy from 0.63 to 0.7322 when used in conjunc-
tion with kNN and limiting the number of features
to five. Using Manahattan distances as opposed to
Euclidean distance further increased accuracy from
0.7322 to 0.7362.

1 Introduction
Since 1939, the best colleges and universities across the
United States have participated in a yearly tournament called
the NCAA Men’s Basketball Championship. This basketball
tournament has become one of the most popular and famous
sporting tournaments in the United States. Millions of peo-
ple around the country participate in contests in which the
participants make their best guesses on who will win each
game throughout the tournament. These types of contests
have become so popular that more than 11 million brackets
were filled out on ESPN.com in 2014. One billion dollars
was even being rewarded to anyone who achieved a ”perfect
bracket” (guessed every game correctly).

Every game is unpredictable, and the teams that are sup-
posedly the ”better team” sometimes end up losing. This
is called an upset in basketball lingo, and happens regularly
throughout the tournament. Because of these upsets, it can
be difficult to correctly guess the winner of each game. The
tournament can be so unpredictable that the time period over
which the tournament runs has been termed March Madness.

∗These match the formatting instructions of IJCAI-07. The sup-
port of IJCAI, Inc. is acknowledged.

Since there are 64 games played in the NCAA tournament,
it is nearly impossible to predict a perfect bracket. High
Point Enterprise, a morning paper from North Carolina, stated
that ”you have a much greater chance of winning the lot-
tery, shooting a hole-in-one in golf or being struck by light-
ning”. They estimated that the chances of predicting a perfect
bracket are 1 in 9.2 quintillion.

It became clear that developing a model that provided per-
fect win/loss classification was unrealistic, so instead we fo-
cused on improving the prediction accuracy of individual
games. Data was collected from a number of sources to help
with the learning. Certain organizations such as ESPN.com
and NCAA.com keep mounds of statistical information on
every team throughout the regular season. By collecting these
statistical measurements and running them through numerous
learning models, prediction accuracy could drastically im-
prove.

Note that the problem at hand is not classification of indi-
vidual teams, but rather predicting the outcome of a match
between any two teams. We discuss the impact of this dis-
tinction and our steps to deal with it in the methods section.

2 Methods
2.1 Data Source
We selected our data from the ESPN.com website, one of
the largest and most popular sources for sports news in gen-
eral, and particularly for information about March Madness.
ESPN.com is listed as the third search result in Google (af-
ter two ncaa.com results) for the query ”march madness”.
ESPN.com not only publishes the results of the March Mad-
ness tournament, but also keeps track of a vast number of
statistics about each team and player that participates in the
NCAA tournament. Each team is associated with a unique ID
on ESPN.com, making associating match results with team
statistics trivial.

Though the NCAA March Madness competition has ex-
isted for many decades, ESPN changed the way that they cal-
culate the statistics in 2010, leaving us with 4 years of data.
Each championship contains 64 matches, yielding nearly 300
matches for evaluation, each match representing a single in-
stance in our machine learning problem. Also included in the
instance are the statistics provided by ESPN.com for the two
competing teams, of which there are 47 per team. This re-
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sults in 94 features per instance, of which several features are
derived from other features.

We considered growing the data set by including matches
that occurred during the season preceding the tournament, but
given the specificity of the problem, we decided that the ad-
dition of such instances would not help the algorithm to gen-
eralize on championship games. Additionally, many of the
features taken from ESPN are calculated based on the team’s
performance during the preceding season, which would not
apply to matches that occurred during that season.

2.2 Selected Models

Given that the comparison classification problem is suffi-
ciently different from typical problems, we wanted to eval-
uate several different learning algorithms to see which would
fare the best. All of the input features are continuous, with
a boolean output class, which fits many common algorithms
well.

Accordingly, we selected Naive Bayes, kNN, Decision
Tree, SVM, CN2 Induction, Random Forest, Logistic Regre-
sison, and Backpropagated Neural Network to form our base
set of models. Additionally, we ran all tests with a simple
learner that output the majority class (stochastically) to form
a baseline.

Table 1: Feature Descriptions

Feature Name Feature Description
2P Two point field goals made for season

2PA Two point field goal attempts for season

2PM Two point field goals made for season

3P Total three point fields for season

3PA Three point attempts

3PM Three pointers made for season

APG Assists per game

ASM Average scoring margin

AST Assists for season

AST/TO Assists to turnover ratio

BLK Blocks for season

BLK/PF Blocks to personal foul ratio

BLKPG Blocks per game

CFRP Conference RPI

CFSS Conference strength of schedule

DEF Defensive rating

Feature Name Feature Description
DEFQ Defensive Quotient

DRPG Defensive rebounds per game

FG Field goal percentage

FT Total free throws made for season

FTA Total free throw attempts for season

FTM Free throws made for season

GP Games played for season

LRPI Road and neutral game RPI

NCRP Non-conference RPI

NCSS Non conference strength of schedule

OFF Offensive rating

OFFQ Offensive quotient

ORPG Average offensive rebounds per game

PF Personal fouls for season

PPG Points per game

PPS Points per shot

RK Rank at the end of the season

RPG Rebounds per game

RPI Rating percentage index

SOS Strength of schedule

ST/TO Steals to turnover ratio

STPG Steals per game

TOPG Turnovers per game

These statistics refer to teams’ performances as a whole and
do not pertain to the performance of individual players.

3 Initial Results
For our initial results, we ran all of the learners with their
default parameters (as supplied by the orange computation
platform) using all 94 features and a feature-based order-
ing scheme where the ”team1” was the team with the lower
”strength of schedule” score. This yielded abysmal results;
the best learner was kNN, which achieved 61% accuracy,
barely above the baseline of 60%. All of the other learners
tied with the baseline or did significantly worse.

4 Improvements
4.1 The Problem of Comparison
One of the features of this machine learning task is that its
goal is comparison between two items (in this case teams),
where for each team there are a number of features associated
with it. The problem of classification, and specifically binary
classification, is to determine whether an instance A is one of
two classes, for example X or Y . What’s unique about the



situation of comparison is that each instance A is comprised
of an ordered pair of ”teams” B and C. For every instance
BC => X , the reversed pair CB will always Y , and vice
versa.

This adds a layer of complexity to what the learner must
learn; for every logical input feature f , fA and fB are im-
plicitly linked and their reverse is linked to the reverse of the
outcome.

The setup of the learners forces B and C to be ordered,
though the data set is not inherently ordered; for each game
there are just two teams and an indication of which team won.
An obvious option would be to put the winner first and the
loser second, but then all classifiers would only classify the
outcome as ”WIN”; the ordering must be something that can
be trivially determined for novel data.

We investigated several methods of approaching this issue,
including feature-based ordering, arbitrary ordering, reverse
duplication, and random ordering.

Feature-based Ordering
Initially, we just sorted the teams based on a single feature
that we thought was most useful, the ”strength of schedule”
feature that is decided by ESPN.com based on a secret algo-
rithm known only to them. This feature generally has a lot
of weight when people build their brackets by hand, and so
we tried ordering the teams such that the team with a lower
”strength of schedule” came first.

Arbitrary Ordering
Our second approach was to order the teams alphabetically,
such that the team to come ”first” was the one whose name
came first alphabetically. This was arbitrary, but not random;
it introduced a bias that was completely unrelated to the prob-
lem at hand.

Random Ordering
A third approach was to order the teams randomly – essen-
tially remove any bias from the ordering. Removing that bias
would mean one less thing that a learner has to discover. This
doesn’t help them to understand that there is reversability in
the data set, however, which could potentially damage results.

Data Doubling
The final method was to insert both orderings; both BC =>
X and CB => Y . This would give learners the most pos-
sible information and hopefully also remove any bias. While
testing learners, pairs from the test set were excluded from
the test set. If BC were left in the training set when testing
on CB, the learners achieved nearly 100% accuracy.

Comparison of Orderings
When tested with the default settings of eight different ma-
chine learning algorithms, the different ordering schemes re-
sulted in significant differences in accuracy. Figure 1 shows
the absolute accuracy of each learner for each of the four dif-
ferent ordering schemes, and Figure 2 shows the relative ac-
curacy compared with a baseline learner (majority) for that
ordering. Accuracy was determined using 10-fold cross vali-
dation.

In this comparison, difference from the baseline is a more
useful metric than absolute performance. In a case where the

ordering resulted 90% of the instances being the same class,
many learners would doubtless do very well, perhaps in the
80-90% range. This is far less impressive, however, than a
learner that achieves 60% accuracy on a data set that is split
50-50.

Figure 1: Performance of Various Learners on Different Or-
derings

Figure 2: Performance of Various Learners against the Base-
line

The large amount of variance for a given learner on the
different orderings indicates that ordering does have a large
impact on a learner’s ability to learn the problem. The various
learners reacted differently to each of the orderings, as some
were better able to cope with or take advantage of the bias
introduced by a given scheme.

For the arbitrary (alphabetical by team name) ordering, al-
most all of the learners were more accurate than the baseline.
Because the ordering was fairly uncorrelated with the learn-
ing goal, there wasn’t much of an extra bias that had to be
overcome. However, it still fared worse than the random or-
dering, which was (by definition) uncorrelated and unbiased.

Feature-based ordering was least helpful; almost all of the
learners did worse than the baseline. The ”strength of sched-
ule” feature was more correlated with the learning goal than
any other ordering; it resulted in 60-40% win-loss split in our
data set. The majority learner therefor achieved 60% accu-
racy, making all others comparatively much worse.

Random ordering was most effective across the board, both
in terms of absolute accuracy and in terms of improvement



over the baseline. Given that none of the algorithms used are
designed to take advantage of ordering bias in a comparison
instance, the best method was to just remove the bias.

Data doubling was surprisingly ineffective. Even though
there were twice as many instances for a learner to learn from
and the ordering bias was effectively neutralized, the prob-
lem was apparently just as hard to learn as when there was
ordering bias.

4.2 Feature Reduction
From an initial feature space of 94 dimensions, we tested
several different methods of reduction, in which we took the
top n attributes as ranked by four different algorithms: Gain
Ratio, ReliefF, Linear SVM Weights, and Random Forests.
For each algorithm we tested taking different numbers of at-
tributes (always the top n) for each of the learners. Figure
3 shows the best accuracy achieved by each learner for each
reduction technique, for n < 45.

Figure 3: Comparison of Reduction Methods

ReliefF scoring proved to be the least helpful, and was the
only method that actually decreased accuracy when the num-
ber of features was reduced; the other three methods managed
to achieve significant gains over the full feature set.

Using Gain Ratio to reduce feature size resulted in modest
accuracy improvements for over half of the learners. How-
ever, it was only able to reduce the feature set size down to
about 15 before all the learners began to lose accuracy dra-
matically.

The two reduction methods that involved more complex
computation resulted in the most impressive accuracy gains.
They also succeeded in reducing the number of features by
over 80%.

Reduction using the Support Vector Machine resulted in
dramatic improvements for several learners. The SVM
learner improved by 8% and the neural network and logistic
regression algorithms both improved by 6%. In each case, the
feature space was reduced from 94 features to between 5 and
10, dramatically speeding up learning time as well. It is inter-
esting that the SVM learner improved when using SVM pre-
processing. The second learner was apparently able to benefit
from the work done by the previous one, while at the same
time exploring new territory to achieve better accuracy.

Random forest feature reduction proved to be the most suc-
cessful, both in terms of accuracy and in the amount of re-

duction achieved. The kNN algorithm was boosted by 10%
when run on only the top 5 features from the random forest
weights—a 95% reduction in feature space size. All except
logistic regression and SVM achieved similar improvements
in accuracy. As was the case with SVM reduction, the Ran-
dom Forest reduction resulted in a significant improvement
for the Random Forest algorithm.

Figure 4: Benefit of Reduction to Individual Learners

4.3 Model Tweaks
The kNN learner achieved the greatest accuracy after apply-
ing feature reduction, so we chose to focus on it for more
granular parameter adjustment. We experimented with two
different distance metrics, Euclidean and Manhattan, at vary-
ing values of k to isolate the ideal parameters. Results are
displayed in Figure 5. The greatest accuracy (73.62%) was
reached by using the Manhattan distance metric and a k value
of 130.

Figure 5: Nearest Neighbor Accuracies by # Neighbors

5 Results
Numerous tests were performed altering the ordering se-
quence, training model, features, and type of distance (Eu-
clidean vs. Manhattan). The data was trained using SVM,
CN2 rules, neural network, classification tree, logistic regres-
sion, naive bayes, random forest, k-nearest neighbor, or sim-
ple majority. The features were selected according to those
that provided the highest SVM weights. In other words, if
the data set was training using 10 features, then the 10 fea-
tures with the highest SVM weights were used. Increasing
classification accuracy (CA) was our primary goal.



5.1 Ordering
Each ordering technique was run with each learning model.
The results can be seen on table 2.

Arbitrary Random Feature Double

SVM 0.6047 0.6195 0.5813 0.6071
CN2 rules 0.5734 0.6417 0.555 0.5854
Random Forest 0.5249 0.6189 0.5171 0.5
Neural Network 0.6043 0.6379 0.5736 0.5783
Naive Bayes 0.6201 0.6313 0.6077 0.5613
Logistic regression 0.5852 0.6533 0.6004 0.6034
Majority 0.5246 0.517 0.6001 0.5528
kNN 0.5816 0.6312 0.6117 0.5411
Classification Tree 0.5506 0.6229 0.55 0.609

Table 2: Ordering influence on training models

Random ordering gave us our best results for every training
model. The classification accuracy increased from the base-
line of 0.61 to 0.63. Other ordering techniques introduced a
type of bias that random ordering did not introduce. These
results were attained without implementing any feature re-
duction techniques.

5.2 Feature Reduction
SVM
Features were chosen according to their SVM weights. If
only ten features were selected, the top ten features with the
highest SVM weights were used. Random ordering was used
in creating each instance.

Model Top N Features

All 35 10 9 5
SVM 0.619 0.679 0.702 0.698 0.588
CN2 rules 0.641 0.663 0.562 0.592 0.569
Random Forest 0.618 0.660 0.611 0.641 0.551
Neural Network 0.637 0.667 0.687 0.706 0.641
Naive Bayes 0.631 0.645 0.634 0.623 0.6
Logistic regression 0.653 0.668 0.691 0.720 0.607
kNN 0.631 0.672 0.656 0.657 0.603
Classification Tree 0.622 0.555 0.547 0.570 0.572

Table 3: Features were reduced using the best features ac-
cording to SVM weights.

Random Forest
Features were chosen by constructing a large number of de-
cision trees and choosing the features that averaged the most
importance among the decision trees. These results can be
viewed in Table 4.

ReliefF
Instances are chosen at random and changes the weights of
feature relevance according to its nearest neighbor. Table 7
shows the results using ReliefF scoring.

Model Top N Features

All 15 5 4
SVM 0.6195 0.6452 0.6228 0.6226
CN2 rules 0.6417 0.6687 0.6835 0.6905
Random Forest 0.6189 0.6903 0.6719 0.6571
Neural Network 0.6379 0.6493 0.6942 0.6946
Naive Bayes 0.6313 0.6755 0.6909 0.6835
Logistic regression 0.6533 0.6379 0.6187 0.6187
kNN 0.6312 0.6872 0.7322 0.7024
Classification Tree 0.6229 0.5774 0.6756 0.5936

Table 4: Features were selected by selecting those features
most important in a random forest

Model Top N Features

All 65 15 5
SVM 0.6195 0.6085 0.5991 0.5651
CN2 rules 0.6417 0.5813 0.5969 0.4828
Random Forest 0.6189 0.616 0.5665 0.5132
Neural Network 0.6379 0.6303 0.6305 0.5694
Naive Bayes 0.6313 0.6496 0.6074 0.566
Logistic regression 0.6533 0.6528 0.6377 0.5991
kNN 0.6312 0.6199 0.5701 0.5963
Classification Tree 0.6229 0.5595 0.5661 0.5131

Table 5: Features selected using ReliefF scoring

Gain Ratio
Calculates features that provide the most gain, but does not
take combination of features into account. Table 8 shows fea-
ture selection using gain ratio.

Model Top N Features

All 35 15 5
SVM 0.6195 0.6566 0.6298 0.6148
CN2 rules 0.6417 0.6342 0.6567 0.5698
Random Forest 0.6189 0.6386 0.6835 0.5922
Neural Network 0.6379 0.6224 0.6684 0.615
Naive Bayes 0.6313 0.6642 0.6528 0.6225
Logistic regression 0.6533 0.6349 0.6115 0.6074
kNN 0.6312 0.6952 0.6989 0.6679
Classification Tree 0.6229 0.6342 0.5671 0.5775

Table 6: Features selected using gain ratio.

Feature Reduction Summary
Random forest provided the best results when used in con-
junction with kNN and limiting the number of features used
in the training to five. The classification accuracy increased
to from 0.63 to 0.7322, adding more than 10% of additional
accuracy.

5.3 Euclidean Distance vs. Manhattan Distance
The results on Table 9 show the differences between us-
ing Euclidean Distance and Manhattan Distance on k-nearest



neighbor training on a randomly ordered instances and limit-
ing the number of features used in training to five.

# Neighbors Euclidean Manhattan

60 0.7174 0.6984
80 0.7209 0.7098
100 0.7322 0.7211
120 0.7171 0.7286
130 0.7095 0.7362
140 0.7020 0.7246

Table 7: Nearest Neighbor Distance Algorithms and K values

Using a Manhattan distance and the nearest 130 neighbors
increased our previous best result from 0.7322 to 0.7362.

6 Conclusion
The results of our experiments show that random ordering
used in conjunction with k-nearest neighbor, Manhattan dis-
tance, and random forest as the feature reduction algorithm
provide the best classification accuracy. Our best classifica-
tion accuracy, using each of these algorithms, was 0.7362.
The following sections describe possible causes about why
these features provided the best results among all experiments
that were tested.

6.1 Style Theory
In basketball, it is believed that certain teams match-up better
against certain teams. For example, one team may be ex-
tremely quick while another team is extremely tall. If the first
team can alter the game so that it is played at a fast pace, then
the game style is in their favor. Essentially, specialties on a
basketball team translate to success against opponents with
certain characteristics.

6.2 K-nearest Neighbor & Style Theory
K-nearest neighbor provided the best results in comparison
to the other training models most likely due to this theory.
The data compares itself to the instances that provide similar
data. In other words, quicker teams that play taller teams will
compare themselves to other match-ups that involved quicker
teams playing taller teams. The consistencies of the match-
ups and their associated outcomes will mean more to an in-
stance that shares those characteristics.

6.3 Combination of Features Theory
Some features, when combined, prove to be more beneficial
to the success of a team than others. For example, a team that
has a low number of steals per game, shoots a large number
of field goals, and shoots a high field goal percentage will
have more success than a team with a combination of large
number of steals, high field goal percentage, and low number
of shots taken each game. Learning models that take into ac-
count the combination of features when classifying instances
will perform better than those that do not.

6.4 Random Forest and Combination of Features
Theory

Using random forest takes into account how features inter-
act one with another. This allowed us to use those features
that provided the best results when used in collaboration with
other features. Thus, we were better able to compensate for
the importance of a combination of features and use that as
part of the training process.

6.5 Perfect Bracket Probabilities
Even with large amounts of statistical information, there are
some parts of a basketball game you simply cannot predict.
Injuries cannot be forecast, and the mental state of players
playing the game cannot be observed. However, these things
can drastically affect the outcome of a basketball match. Per-
fect brackets will therefore continue to be impossible to cal-
culate, no matter how much data is provided to the learning
models.

7 Future Work
We believe that our classification accuracy can improve to
85% if the proper features are used in training. Vital statistical
information we were unable to gather include the following:

• Individual statistics for players on each team
• Venue of the match including the distance
• Importance of a match-up
• Win/loss record for the last five, ten, and fifteen games
• Average number of players who play consistently

All of this data is expected to play a role in how teams per-
form. However, this type of data was out of our scope to ac-
cumulate. Organizations with more access to this type of data
will be able to study whether these features have a profound
effect on the success of a basketball team.

This research would also benefit greatly with more data.
Since only the statistics for the last four tournaments were ac-
cessible in a consistent format, our training models risked the
danger of overfit. We would recommend that much more data
be gathered to help avoid overfit. However, since basketball
continually changes throughout the years, we recommend not
use data from more than ten years back.

We would also recommend experimenting with using sev-
eral feature reduction techniques together as opposed to using
the reduction techniques one by one.


