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1 Introduction

Within a species’ genome, biologists are primarily interested in the relatively
small fraction of sequence that somehow contributes to the species’ persistence.
The vast majority of DNA in a genome does not serve any known purpose (i.e.,
it is ”junk DNA”). One of the foremost methods for identifying functional
sequence is to look for conserved sequence among several species. When a par-
ticular sequence serves an important function, changes in the sequence would
render the organism inviable. This results in the change not being passed on
to future generations. Only progeny that keep these functionally-important se-
quences intact are likely to survive and reproduce and thus these sequences tend
to be conserved across species even after millions of years. For example, the
Dyrk1a gene, which encodes for an important neurological protein of the same
name and which has been implicated in Down syndrome, is highly conserved
across several species (see Figure 1). It is important to be able to perform mul-
tiple sequence alignment in order to detect highly conserved subregions among
a set of biological sequences.

A common metric for scoring a multiple sequence alignment is the SP-score,
where SP stands for sum of all pairs [2]. A standard assumption about any
score scheme s is that is satisfies triangle inequality, which is that for any three
letters x, y, and z, s(x,z) ≤ s(x,y) + s(y,z).

Algorithms which optimally align multiple sequences under the SP measure
are based on dynamic programming and require a running time that is in the
order of the product of the lengths of the input strings [1]. The theorem be-
ing considered demonstrates that the decision version of the multiple sequence
alignment problem is NP-complete [5].

2 Definitions

• A sequence is a string over some alphabet Σ. For DNA sequences the
alphabet Σ contains four letters, namely A, C, G, and T, which represent
four distinct nucleotides. For protein sequences, Σ contains 20 letters,
each representing a unique amino acid.

• An alignment of two sequences s1 and s2 is obtained by inserting spaces
into either sequence or at either end of either sequence such that the two
resulting sequences s′1 and s′2 are of equal length. In other words every
letter in s′1 is directly opposite to a letter in s′2. Spaces, denoted here with

1



Figure 1: A multiple sequence alignment of a subsection of the Dyrk1a protein
in several species including human, dog, mouse, and zebra fish. The identifiers
at the left each indicate a unique species and the aligned sequences are flanked
by the start and end indices of the aligned region within the protein. The fact
that a variety of species have each maintained a relatively conserved version of
this protein suggests that it performs a very important function.

∆, are also often called gaps and can be considered as either insertions
into one sequence or a deletions from the other.

• A match refers to the case when a letter in s′1 is opposite the same letter in
s′2. A mismatch is anything that is not a match or an insertion/deletion.

• An alignment score (also value) denotes the value of a particular alignment
according to some score scheme s and is defined as Σl

i=1 s(s′1(i), s′2(i)),
where s′1(i) and s′2(i) denote the two letters at the ith column of the
alignment, s(s′1(i), s′2(i)) is the score of the letters s′1(i) and s′2(i), and l
is the length of the sequences s′1(i) and s′2(i).

• A score scheme is a mapping which maps each unique pair of letters in
the sequence alphabet to an alignment score for the letters when aligned
opposite each other in two sequences (e.g., Figure 2).
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• An optimal alignment of two sequences is one that minimizes the alignment
score over all possible alignments.

• The edit distance between two sequences is defined as the minimum align-
ment value of the two sequences.

• A multiple alignment A of k ≥ 2 sequences is obtained as follows: spaces
are inserted into each sequence so that the resulting sequences have the
same length l, and the sequences are arrayed in k rows of l columns each.
Again, a score value is defined on each column under some score scheme
and the value of A is simply the sum of the scores of all columns.

• SP-score is a popular score scheme which defines the score value of a
column as the sum of the scores of all pairs of letters in the column. The
value of the alignment A thus corresponds to the sum of the values of all
pairwise alignments induced by A.

3 Theorem Description

We now describe the proof of the NP-completeness of multiple sequence align-
ment with SP-score. One way to prove NP-completeness is to show that some
other NP-complete problem can be reduced (i.e., transformed) into the new
problem for which one would like to prove NP-completeness. The shortest
common supersequence problem (presented by Garey and Johnson [3]) is NP-
complete. We demonstrate its reduction to the problem of multiple alignment
with SP-score.

The decision problem associated with the shortest common supersequence
problem asks whether, given some set of sequences S and some integer m, there
exists a sequence s whose length is less than or equal to m which is a super-
sequence of each sequence in S (in this case, a supersequence for a sequence
t is defined as a sequence s which can be formed by prepending, inserting, or
appending additional sequence to t). The problem remains NP-complete even
if the alphabet for the sequences Σ contains as few as two letters [4], which is
the case used to prove the reduction.

To complete the reduction, we must construct an instance of the superse-
quence problem that can be formulated as a multiple sequence alignment prob-
lem. To aid in constructing such an instance consider first this formulation of
our multiple sequence alignment problem: Given a set S of sequences over al-
phabet {0,1}, and a positive integer m, we construct a collection of sets X =
{Xi,j | i, j ≤ 0, i + j = m}, where Xi,j = S ∪ {ai,bj} and a and b are two new
letters. We assume that each sequence in S has length at most m. The score
scheme is shown in Figure 2.

To show that multiple alignment with SP-score is NP-hard, it is sufficient to
show that: S has a supersequence s of length m if and only if some Xi,j has an
alignment with value at most c. The reduction is essentially of the form:

P ⇐⇒ Q
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In the analysis of genetic evolution, we are given a set X of k sequences, each stands for an extant species.
Let F be a set of hypothetical sequences, where Y n X = 0. (Usually each sequence in Y could represent an

extinct species.) An evolutionary tree Tx Y for X is a weighted (sometimes rooted) tree of \X U Y\ nodes,
where each node is associated with a unique sequence in X U Y (Gusfield, 1991,1993). The cost of an edge is
the edit distance between the two sequences associated with the ends of the edge. The cost c(Tx Y ) of the tree

Tx y is the total cost of all edges in Tx Y. Given sequences X, the optimal evolutionary tree or multiple tree

alignment or, simply, tree alignment problem is to find a set of sequences Y as well as an evolutionary tree

Tx Y for X which minimizes c(Tx y) over possible sets Y and trees Tx Y. Sometimes one might require that
the given sequences of the extant species be only associated with the leaves in the evolutionary tree (Farach
et al, 1993). It is easy to verify that our result in Theorem 5 still holds in this case.

An important variant of tree alignment is that we are not only given the sequences of some species, but
also the phylogenetic structure (i.e., the tree structure). More precisely, we are given a set X of k sequences
and a tree structure with k leaves, each of them associated with a unique sequence in X. Then we would like
to find the hypothetical sequences Y and assign them to the internal nodes of the given tree so that the total
cost is minimized (Sankoff, 1975). We will refer to this problem as tree alignment with a given phylogeny.

NP-COMPLETENESS OF MULTIPLE ALIGNMENT WITH SP-SCORE

In this section, we prove that the following decision version of multiple sequence alignment with SP-score
is NP-complete.

INSTANCE: Set of sequences S = {sl,s2,..., sk], and positive integer c.

QUESTION: Is there a multiple alignment of S with value c or less?
The reduction is from the shortest common supersequence problem (Garey and Johnson, 1979):
INSTANCE: Finite set S of sequences over alphabet £ and positive integer m.

QUESTION: Is there a sequence 5 with \s\ < m such that each t = t.u    tr e S is a subsequence of s,
i.e., s = sQtlslt2s2    trsr, for some s0,sl,..., srl

The problem remains NP-complete even if | £ | =2 (Middendorf, in press).
Theorem 1 Multiple sequence alignment with SP-score is NP-complete.
Proof. Obviously, multiple sequence alignment is in NP. We reduce the shortest common supersequence

problem to multiple alignment with SP-score. Given a set S of sequences over alphabet {0,1}, and a positive
integer m, we construct a collection of sets X = {X. .\i, j >0,i+j— m}, where X¡

.

= S U {a', bJ} and
a and b are two new letters. Here we can assume that each sequence in 5 has length at most m. The score

scheme is shown in Table 1. Clearly the score scheme satisfies triangle inequality. The positive integer c is
defined as c

—

(k - i)\\S\\ + (2k + l)m, where ||S|| is the total length of all sequences in S.
To show that multiple alignment with SP-score is NP-hard, it is sufficient to show that: S has a supersequence

s of length m if and only if some X; . has an alignment with value at most c.

(if) Suppose that we have an alignment A of the k + 2 sequences in Xt . with value at most c, for some i, j.
Consider the induced alignment of the k sequences in S. No matter what the alignment is, its score is always
(k — 1 ) || S ||. Thus, in A, the total contribution of the pairwise alignments involving sequences a1 and/or bj, is
at most (2k + \)m. Therefore, every 0 must be aligned with an a and every 1 must aligned with a b in A. We

Table 1. Score Scheme I

S 0 1 a b A

0 2 2 12 1
12 2 2 1 1
a 12 0 2 1
fc21201
A 1 1 1 1 0

Figure 2: A score scheme used in the reduction of the shortest common supserse-
quence problem to the MSA with SP-score problem.

where
P = “S has a supersequence s of length m” and

Q = “∃Xi,j∈X(Xi,j has an alignment with value ≤ c)”

4 Logic-and-Proof Strategies Analysis

The proof is solved by first solving the reverse implication, Q =⇒ P and then
the forward implication, P =⇒ Q. We do this by finding appropriate values
for m given c and then c given m. The author tells us up front the relationship
between c and m which is that c = (k - 1)|S| + (2k + 1)m, where |S| is the
total length of all sequences in S. We will attempt to make sense of why this
particular assignment for c was made as we explain the remainder of the proof.

4.1 Reverse Implication

In this step we prove that if ∃Xi,j∈X(Xi,j has an alignment with value ≤ c,
then S has a supersequence s of length m. We assume it as given that we have
an alignment A of the k + 2 sequences in Xi,j with value at most c for some i,
j. We now prove that S has a supersequence s of length m.

First, using Existential Instantiation, we must pick some Xi,j for which the
antecedent is true. To do this, consider the alignment of the original k sequences
in S. Due to the score scheme, which always scores a match or mismatch as
2 and an insertion/deletion as 1, this alignment will always have a score of (k
- 1)|S|. Now we begin to intuit the relationship between c and m. Because of
our previously assigned value of c above, the total contribution of the pairwise
alignments involving sequences ai and/or bj , is at most (2k + 1)m. Note that
2k + 1 is the number of pairwise alignments involving ai and/or bj (2 with each
of k sequences + 1 between ai and bj). Therefore the average value for each
of these pairwise alignments must be less than or equal to m. As m is at least
as long as each sequence in S, every 0 must be aligned with an a and every 1
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must be aligned with a b in A. Otherwise, then due to the score scheme, the
pairwise alignments involving ai and/or bj would include the addition of one or
more 2’s, causing the sum to exceed m. We can choose i and j such that there
are enough a’s and b’s in ai and bj to construct such an alignment. This will be
our selection for Xi,j .

Having thus more precisely defined the alignment A of the k + 2 sequences
in Xi,j (which has a value at most c), we can obtain a supersequence s for S by
assigning 0 to the columns in A containing a’s and 1 to the other columns. The
length of s is i + j = m.

4.2 Forward Implication

Having proven the reverse implication, we now prove that if S has a superse-
quence s of length m, then ∃Xi,j∈X(Xi,j has an alignment with value ≤ c). We
assume it as given that s is a supersequence for S with length m. Let i be the
number of 0’s and j be the number of 1’s in s. We now show that ∃Xi,j∈X(Xi,j

has an alignment with value ≤ c).
We let Xi,j , as defined above, be arbitrary. For each sequence t ∈ S, there

exists an alignment of t and s such that each 0 (or 1) in Xi,j matches a 0 (or 1,
respectively) in s. Some 0’s and 1’s in s may correspond to spaces. To obtain
a multiple sequence alignment for S, we align each t ∈ S with s in this manner
and then align the a’s in ai with the 0’s in s and the b’s in bj with the 1’s in
s. In this alignment, the letters in a column are either 0, a, ∆, or 1, b, ∆. The
value of the alignment (with sequence s removed) is c.

4.3 Quod erat demonstradum

Therefore, by checking the value of an optimal alignment of Xi,j , i + j = m,
we can use this value to answer if there is a supersequence s for X with length
m using a polynomial-time reduction. Because we know that the latter is an
NP-complete problem, we know that the multiple sequence alignment problem
with SP-score is also NP-complete.

5 Example

Consider a set S = 0100, 0010. As shown in Figure 3, their optimal alignment
has a value of 8.

We construct a collection of sets X = {Xi,j | i, j ≤ 0, i + j = m}, where
Xi,j = S ∪ {ai,bj} and a and b are two new letters. m must be greater than or
equal to the largest sequence in S in length. We will choose m=5. X is shown
in Figure 4. The optimal pairwise alignments for X4,1 involving a4 and b1 is
shown in Figure 5. The value c is calculated as the sum of the alignments in
Figure 5, i.e., c = 33 (we leave it to the reader to prove that the score for the
alignment is indeed 33).
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Figure 3: An optimal alignment for the two sequences shown is given together
with the computed alignment score.

Figure 4: X is a collection of sets defined from a set of sequences and facilitates
the reduction from the shortest common superstring problem.

Figure 5: The optimal pairwise alignment for X4,1 involving a4 and b1.

We know then that ∃Xi,j∈X(Xi,j has an alignment with value ≤ c) and we
can obtain a supersequence s for S of length m where m is calculated as follows:

c = (k - 1)|S| + (2k + 1)m
33 = (2 - 1)8 + (2(2) + 1)m

5 = m

We do this by assigning 0 to the columns in A containing a’s and 1 to the
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other columns (see Figure 6).

Figure 6: A derivation of the supersequence s for S of length m = 5.

Conversely, had we started with this supersequence s for S of length m =
5, we would be able to find an alignment for some Xi,j∈X (which is derived
from S) such that Xi,j has an alignment with value ≤ c, where c is calculated
as follows:

c = (k - 1)|S| + (2k + 1)m
c = (2 - 1)8 + (2(2) + 1)5

c = 33

This alignment is found by finding an alignment for each sequence t∈S and
s such that each 0 (or 1) in Xi,j matches a 0 (or 1, respectively) in s. We then
align the a’s in the sequence ai with the 0’s in s and the b’s in bj with the 1’s
in s. This is essentially the reverse process illustrated earlier in Figure 6.

In our example, by checking the value of an optimal alignment of Xi,j where
i + j = 4 + 1 = 5 = m, we are able to answer if there exists a supersequence s
for X with length m.
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