
Homework 12
CS 3385

1. For what values of t is the tree of Figure 18.1 a legal B-tree?

2. Show all B-trees of minimum degree 2 (i.e. t = 2) that represent 1, 2, 3, 4, 5.

3. Show the results of inserting the keys F, S,Q,K,C,L,H, T, V,W,A in order into an empty B-tree with
minimum degree 2 (i.e. t = 2). The first four steps are given. NOTE: Pay particular attention to the
point made in the last 70 seconds of the B-tree operations node about splitting on all encountered full
nodes.

4. Show that if a decrement() operation were included in the k-bit counter example, n operations (either
increment or decrement) could cost as much as Θ(nk) time.

5. Suppose we perform a sequence of n operations on a data structure in which the ith operation costs
i if i is an exact power of 2, and 1 otherwise. Determine the amortized cost per operation using the
aggregate analysis methods.

6. Dynamic array classes work as follows: the class stores a raw array initialized to some size n and also
maintains a counter i for how many elements have been added to the array. Once n elements have been
added to the array, on the next add() call, a new array of size 2n is allocated, n items are copied, and
then the new item is added to the new array. As items are added, the raw array continues to double
in size when necessary.

All major C-based languages support a dynamic array, listed here along with part of their online
documentation:

C++ vector<T> “Insertion or removal of elements at the end - amortized constant
O(1)” 1

Java ArrayList<E> “The add operation runs in amortized constant time” 2

C# List<T> “If Count is less than Capacity, this method is an O(1) operation. If the
capacity needs to be increased to accommodate the new element, this
method becomes an O(n) operation, where n is Count.” 3 (Apparently
Microsoft doesn’t give an amortized analysis.)

Using the result of problem #5, show that the add() operation for such a dynamic array really does
run in amortized constant time. Assume, for simplicity, that you do not have a remove() function.

7. Show the Fibonacci heap that results from calling FIB-HEAP-EXTRACT-MIN on the Fibonacci heap
shown in Figure 19.4(m).

1http://en.cppreference.com/w/cpp/container/vector
2http://docs.oracle.com/javase/6/docs/api/java/util/ArrayList.html
3https://msdn.microsoft.com/en-us/library/3wcytfd1.aspx

1


