1. Suppose that the connectedComponents algorithms (given on page 563) is run on the undirected graph $G=(V, E)$ with vertices $V=a, b, c, d, e, f, g, h, i, j, k$ and the edges E are processed in the order $(d, i),(f, k),(g, i),(b, g),(a, h),(i, j),(d, k),(b, j),(d, f),(g, j),(a, e)$. List the vertices in each connected component after each iteration of lines $3-5$, following the format of figure 21.1(b). Use the weightedunion heuristic and give the nodes in the actual order they would appear in the list. In case of a tie, append the set on the right to the set on the left, e.g., if a and i both have only one element in the set, (a, i) would result in a, i and (i, a) would result in i, a.
2. Consider an undirected graph $G=(V, E)$ with k connected components. Give your answers to the following questions in terms of the number of vertices $|V|$, the number of edges $|E|$ and k. During execution of connectedComponents,
(a) how many times is findSet called?
(b) how many times is union called?
3. Consider an image I where you access the intensity value of each pixel of the image with $I[x][y]$. Suppose the image is grayscale, so $I[x][y]$ returns an integer. Given a pixel p, you can use $I[p]$ as a shortcut. We wish to find all connected components where a connected component is a grouping of pixels that are connected and have identical intensity values. Two pixels are connected if they share an edge. They are not connected if they share only a corner.
Give an algorithm for finding the connected components using disjoint sets. You'll want to start by creating and initializing a 2-dimensional array of representative nodes - one node for each pixel. You can assume you have makeSet() (which returns a representative node), union() and find(). You may not necessarily use all three. Describe your algorithm in pseudocode.
4. Consider the following program.
```
for i = 1 to 6
    makeSet ( }\mp@subsup{x}{i}{
for i = 1 to 6 by 2
    union ( }\mp@subsup{x}{i}{},\mp@subsup{x}{i+1}{}\mathrm{ )
union ( }\mp@subsup{x}{4}{},\mp@subsup{x}{5}{}
union ( }\mp@subsup{x}{1}{},\mp@subsup{x}{4}{}\mathrm{ )
```

(a) Following the linked-list representation of figure 21.2, show the data structure resulting from running the above program. Use the weighted-union heuristic. In case of a tie, use the same tie-breaker strategy as is given in $\# 1$.
(b) Following the disjoint-set forest representation of figure 21.4, show the data structure resulting from running the above program. Use union by rank and path compression. See the algorithms on page 571 . In case of a tie, make the left-hand node a child of the right-hand node. For example, the first union, which is union $(1,2)$, would result in $1->2$.
5. Write a nonrecursive version of findSet () with path compression. Hint: The simplest way is to use two loops and to not use a stack.

