Homework 2
CS 3385

1. Consider the function $f(x)=x^{3}$.
(a) (4 points) In what range is $f(x)$ monotonically increasing?
(b) (4 points) In what range is $f(x)$ monotonically decreasing?
2. Let $f(n)$ and $g(n)$ be monotonically increasing functions. Show that each of the following functions are also monotonically increasing. You'll do this using the definition of monotonicity.
(a) (4 points) $f(n)+g(n)$
(b) (4 points) $f(g(n))$
(c) (4 points) $f(n) \cdot g(n)$ (Assume that $f(n)$ and $g(n)$ are both nonnegative.)
3. (10 points) Prove equation 3.19 from the book. Stirling's approximation and the various properties of logarithms will be helpful.
4. (8 points) Let

$$
p(n)=\Sigma_{i=0}^{d} a_{i} n^{i}
$$

where $a_{d}>0$, be a degree- d polynomial in n, and let k be a constant such that $k \geq d$. Show that $p(n)=O\left(n^{k}\right)$. You will use the definition of $O(g(n))$.
5. Consider $\left(\frac{3}{2}\right)^{n}=\Omega\left(2^{\lg n}\right)$.
(a) (5 points) Show that the equality is true.
(b) (5 points) What are all valid values of c when $n_{0}=1$?
6. Consider $n!=O((n+1)!)$.
(a) (5 points) Show that the equality is true.
(b) (5 points) What are all valid values of n_{0} when $c=1$?
7. Let $f(n)$ and $g(n)$ be asymptotically positive functions. Prove or disprove each of the following conjectures.
(a) (5 points) $f(n)=O(g(n))$ implies $g(n)=O(f(n))$.
(b) (5 points) $f(n)=O\left((f(n))^{2}\right)$.
(c) (5 points) $f(n)=O(g(n))$ implies $g(n)=\Omega(f(n))$.
(d) (5 points) $f(n)=\Theta(f(n / 2))$.
8. Let $f(x)=\frac{x^{2}}{2}$. Give the following values. Show your work.
(a) $\left(3\right.$ points) $f^{3}(1)$
(b) $\left(3\right.$ points) $f^{3}(2)$
(c) $\left(3\right.$ points) $f^{3}(3)$
9. (13 points) Rank the following functions by order of growth, slowest to fastest; that is, find an arrangement g_{1}, g_{2}, \ldots of the functions satisfying $g_{1}=O\left(g_{2}\right), g_{2}=O\left(g_{3}\right), \ldots$ In your ordering, circle any functions that have the same asymptotic rate of growth.

$n 2^{n}$	n	$\lg \lg n$	n^{3}	$4^{\lg n}$
$n \lg n$	\sqrt{n}	$(3 / 2)^{n}$	$2^{\lg n}$	
2^{n}	n^{2}	$\lg n$	$n!$	

