Homework 3
CS 3385

1. Show that $T(n)=T(n-1)+1$ is $O(n)$ using the substitution method.
2. Show that $T(n)=2 T(\lfloor n / 2\rfloor)+n+1$ is $O(n \lg n)$ using the substitution method.
3. Show that $T(n)=2 T(n-1)+n$ is $O\left(n^{2}\right)$ using the substitution method.
4. Show that $T(n)=T(\lceil n / 2\rceil)+1$ is $O(\lg n)$ using the substitution method.
5. Show that $T(n)=2 T(\lfloor n / 2\rfloor+1)+n$ is $O(n \lg n)$ using the substitution method.
6. Show that $T(n)=T(n-1)+n$ is $\Omega\left(n^{2}\right)$ using the substitution method. Hint: Show that $c n^{2} \leq T(n)$ for some c and $n \geq n_{0}$. You may find it easier to show that $T(n) \geq c n^{2}$.
7. Sam Smartypants likes how splitting the problem up into halves in merge sort reduces the sorting problem from $O\left(n^{2}\right)$ to $O(n \lg n)$. He decides that splitting the array into thirds will make things even better. That is, he decides to make a recursive call on each third of the array and then merge them.
(a) Assuming that n is a power of three, that $T(1)=1$, and that the running time of the merge step is exactly n, give a recurrence for the running time of Sam's algorithm.
(b) Find the solution to the recurrence in big-O notation and prove it using the substitution method.
