1. Show that $T(n) = T(n - 1) + 1$ is $O(n)$ using the substitution method.

2. Show that $T(n) = 2T([n/2]) + n + 1$ is $O(n \log n)$ using the substitution method.

3. Show that $T(n) = 2T(n - 1) + n$ is $O(n^2)$ using the substitution method.

4. Show that $T(n) = T([n/2]) + 1$ is $O(\log n)$ using the substitution method.

5. Show that $T(n) = 2T([n/2] + 1) + n$ is $O(n \log n)$ using the substitution method.

6. Show that $T(n) = T(n - 1) + n$ is $\Omega(n^2)$ using the substitution method. *Hint:* Show that $cn^2 \leq T(n)$ for some c and $n \geq n_0$. You may find it easier to show that $T(n) \geq cn^2$.

7. Sam Smartypants likes how splitting the problem up into halves in merge sort reduces the sorting problem from $O(n^2)$ to $O(n \log n)$. He decides that splitting the array into thirds will make things even better. That is, he decides to make a recursive call on each third of the array and then merge them.

 (a) Assuming that n is a power of three, that $T(1) = 1$, and that the running time of the merge step is exactly n, give a recurrence for the running time of Sam’s algorithm.

 (b) Find the solution to the recurrence in big-O notation and prove it using the substitution method.